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Abstract: Lightning Electromagnetic Pulses, or LEMPs, propagate in the Earth–ionosphere waveguide
and can be detected remotely by ground-based lightning electric field sensors. LEMPs produced by
different types of lightning processes have different signatures. A single thunderstorm can produce
thousands of LEMPs, which makes their classification virtually impossible to carry out manually.
The lightning classification is important to distinguish the types of thunderstorms and to know their
severity. Lightning type is also related to aerosol concentration and can reveal wildfires. Artificial
Intelligence (AI) is a good approach to recognizing patterns and dealing with huge datasets. AI is the
general denomination for different Machine Learning Algorithms (MLAs) including deep learning
and others. The constant improvements in the AI field show us that most of the Lightning Location
Systems (LLS) will soon incorporate those techniques to improve their performance in the lightning-
type classification task. In this study, we assess the performance of different MLAs, including a SVM
(Support Vector Machine), MLP (Multi-Layer Perceptron), FCN (Fully Convolutional Network), and
Residual Neural Network (ResNet) in the task of LEMP classification. We also address different
aspects of the dataset that can interfere with the classification problem, including data balance, noise
level, and LEMP recorded length.

Keywords: LEMP classification; artificial intelligence; machine learning algorithms; lightning

1. Introduction

Lightning discharges are transients of high current that occur in the Earth’s atmo-
sphere and produce Lightning Electromagnetic Pulses (LEMPs). These signals can be
remotely recorded by electric field measurement systems and can be employed in lightning
geolocation, modeling, and warning systems, among other applications.

In general, there are two types of lightning: cloud-to-ground (CG), which reaches
the ground, and intracloud (IC), which does not involve the ground. The ICs represent
about three-quarters of lightning discharges that occur on Earth [1]. LEMPs generated by
lightning processes inside the cloud are different from those generated when lightning
strikes the ground. The electrical discharge generated when lightning strikes the ground is
called return-stroke, and typical LEMP return-stroke waveforms measured at a distance
beyond several tens of kilometers or so are characterized by a short rise time and a relatively
slow decay time [2–5]. On the other hand, LEMP waveshapes produced by intracloud
lightning processes are very diverse, and it is difficult to draw a typical waveform for IC
LEMPs. However, they are generally narrower than LEMPs produced by return strokes.
For long distances between the CG lightning channel and the measuring station (beyond
100 km or so), it is possible to observe a subsequent peak after the main one. Those peaks are
related to the so-called “skywaves”. The skywaves are electromagnetic signals propagating
from the lightning channel, reflecting on the waveguide formed by the ionosphere and
ground, and reaching the sensor.
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The stochastic characteristics of lightning in time and space make it difficult to study.
Methodologies that classify events and define what types of lightning are occurring are
very important in the analysis of thunderstorm dynamics in each region, favoring the
decision making of adequate security measures to avoid deaths and financial losses.

Williams et al. [6] studied the correlation between severe weather and total lightning
flash rates. They showed evidence that severe weather manifestations on the ground
are preceded by a rapid increase in the intracloud flash rate. Chkeir et al. [7] used the
number of lightning strikes, their height of occurrence, and their type to nowcast extreme
rain and extreme windspeed (severe weather). According to the authors of [8,9], Narrow
Bipolar Events (NBEs) or Compact Intracloud Discharges (CIDs) can be indicators of severe
convection in thunderstorms. Measurements carried out by the Los Alamos Sferic Array
(LASA) showed an increase in the heights of NBEs during the intensification of convective
elements in the eyewall of hurricanes Rita and Katrina in 2005 [10].

Some studies have shown that changes in the concentration of aerosols in the at-
mosphere influence lightning activity. Liu et al. [11] showed that the increase in aerosol
invigorates positive IC strokes and negative CG strokes in thunderstorms. In [12,13], the
authors related the anthropogenic increase in aerosol concentration in large urban centers to
the decrease in positive CG. From a different point of view, smoke aerosol caused by forest
fires contributes to the increase in positive lightning [14–16]. The final stage of Tropical
Cyclones (TCs) is usually accompanied by intense positive CG lightning activity. This
behavior was reported during hurricanes Emily, Rita, and Katrina in 2005 [17].

From the above, the lightning type is correlated to a variety of atmosphere/thunderstorm
conditions. Hence, knowing the correct type of lightning flash is of interest to different
research subjects, from aerosol pollution to severe weather.

One of the most common ways to obtain LEMPs is by using lightning electric field
measuring systems [18]. A way to differentiate IC from CG events is by using the wave-
form’s rise and fall time and its signal-to-noise ratio [19]. However, due to the variety of
processes that occur in a flash, this statistical method is recommended for a single pulse
flash or the study of a specific thunderstorm, since its accuracy in IC lightning is less than
85%, and in CG, it is between 70 and 80% [20].

Most of the regional and continental terrestrial networks (e.g., the U.S. National
Lightning Detection Network (NLDN), Earth Networks Total Lightning Network (ENTLN),
and European Cooperation for Lightning Detection (EUCLID) network) use multiparameter
lightning classification algorithms to differentiate between CG and IC lightning [21]. The
overall classification accuracy for CG lightning varies between 70 and 92% [22–25]. Some
studies evaluated the accuracy of ICs in specific networks, finding 90% accuracy [26] and
92% accuracy [24], both for NLDN, and 73–92% for EUCLID considering only the peak-
to-zero (PTZ) time and 91–96% considering the multiparameter lightning classification
algorithm [22].

There are some disadvantages to using multiparameter algorithms for lightning clas-
sification. In the work of Biagi et al. [27], a large number of positive ICs were incorrectly
classified as positive CG lightning by the NLDN network. As an attempt to solve this
problem, a new criterion was implemented, in which the estimated peak current amplitude
is used to differentiate positive pulses between positive CG and positive IC, although this
implies a misclassification of low-intensity positive CG pulses [28].

Another classification issue concerns differentiating between CIDs and positive CG.
According to Leal et al. [29], 78% of 1022 CIDs were incorrectly classified as positive CG
by the NLDN, and 56% by the ENTLN, and most of the misclassifications were related to
high-intensity CIDs.

Another approach to performing lightning classification instead of multiparameter
algorithms is applying so-called Artificial Intelligence (AI). AI is a combination of different
Machine Learning Algorithms (MLAs) including deep learning and others. These algo-
rithms can learn complex patterns and behaviors from a representative training dataset
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in order to perform a specific task. Further, we discuss a few approaches found in the
literature on lightning classification using AI.

To the best of our knowledge, Eads et al. [30] were the first to introduce the use
of ML in the lightning-type classification task. Their methodology employed genetic
algorithms for feature extraction and Support Vector Machines (SVMs) for classification.
The dataset used was composed of FORTE Very High Frequency (VHF) satellite data,
with 800-microsecond time windows at a 50 MHz sampling rate. The SVM model was
responsible for classifying the data into seven different classes: Positive Initial Return
Stroke, Negative Initial Return Stroke, Subsequent Negative Return Stroke, Impulsive
Event, Impulsive Event Pair, Gradual Intra-Cloud Stroke, and Off-record. Using 10-fold
cross-validation, the algorithm named Zeus achieved 61.54% accuracy. The authors also
noted that the SVM alone, without the use of feature extraction, achieves 70.38% accuracy.

Wang et al. [20] developed a 10-type lightning classifier based on a One-Dimensional
Convolutional Neural Network (1D-CNN). Their dataset was composed of 50,000 lightning
electric field waveforms (slipped equally into 10 different classes) recorded in the VLF/LF
(3 kHz–400 kHz) band. The sample rate was 1 MSPS (Million Samples per Second), with a
pre-trigger of 100 µs and a post-trigger of 900 µs. Zero-phase digital filtering was used to
reduce high-frequency noise. Then, the data were normalized by the z-score normalization
technique, in the range from 0 to 1. Each event consisted of 1000 data points. The five-fold
cross-validation method was used to find the generalized performance of the model. The
accuracy was used as the evaluation metric. The average accuracy for the 10 types of
lightning studied was 99.11%, with the lowest being 97.83% and the highest being 99.95%.
The algorithm was also used in another 9647 events, which occurred in Hunan, China, on
6 June 2019. The average classification accuracy obtained was 97.55%.

Zhu et al. [21] implemented a SVM classifier to differentiate lightning between +CG,
+IC, −CG, and −IC. They used data from the Cordoba Marx Meter Array (CAMMA) as the
ground truth, classifying the lightning pulses by their reported height. Lightning sources
whose CAMMA-reported altitudes were less than 1.2 km were classified as CG lightning.
If the reported height was greater than 3.2 km, the event was classified as IC. For all these
labeled data, a manual confirmation was carried out to ensure that the waveforms had CG
or IC characteristics. Within the range between 1.2 km and 3.2 km, data have been removed
due to uncertainty in the lightning type classification. Their dataset was composed of
31,005 events, distributed across 543 +CGs, 912 −CGs, 18,249 +ICs, and 11,301 −ICs. The
electric field waveforms were 100 µs long (±50 µs with t = 0 at pulse peak). They applied
training/testing data of an 80/20 split ratio and four-fold cross-validation to find the best
hyperparameters of the model. As the number of IC events was much larger than the
number of CG events, the authors oversampled the CG pulses in the training stage to
reduce data imbalance caused by the duplication of CG data. The overall accuracies for the
training and testing dataset were 97%.

We noticed that machine learning algorithms have higher performance in comparison to
multiparameter algorithms for lightning-type classification. The constant improvements in
the ML field show us that soon, most of the Lightning Location Systems (LLS) will incorporate
those types of algorithms to improve their performance in lightning-type classification.

In this study, we assess the performance of different MLAs, including a SVM (Support
Vector Machine), MLP (Multi-Layer Perceptron), FCN (Fully Convolutional Network), and
Residual Neural Network (ResNet) in the task of LEMP classification. The choice of the
MLAs was based on previous attempts at lightning classification [20,21] and MLAs that
work better with time series [31]. We also address different aspects of the dataset that
can interfere with the problem of lightning-type classification. We assess the length of the
recorded LEMP, noise level, and the imbalance in the datasets. To test the different ML
algorithms and methodologies, we use a dataset composed of 25,901 LEMPs recorded by
the Lightning Detection and Waveform Storage System (LDWSS) in three different locations
of the American continent, including the South and North hemispheres.
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2. Data and Methodology

The LEMPs used in this work were acquired by the LDWSS operating in wideband
(160 Hz–500 kHz). The polarity of lightning electric field waveforms recorded by the
LDWSS is based on the atmospheric electricity sign convention, according to which a
downward-directed electric field (or electric field change) vector is assumed to be posi-
tive. The LDWSS consists of a whip antenna followed by an integrator and a unity-gain,
low-noise amplifier. The signal from the pre-amplifier is digitized at 1 MSPS (one mil-
lion samples per second). The digitizing system has a RTC (Real-Time Clock) which is
synchronized with a GPS module. More information about the LDWSS can be found
in [32,33].

The dataset used in this study is composed of 25,901 LEMPs that occurred in 3 different
locations (Gainesville, FL, USA; Belém, PA, Brazil; and Marabá, PA, Brazil). Figure 1 shows
the location of the LDWSS stations and the percentage of LEMPs per location. The LEMPs
were recorded during different thunderstorms between 2019 and 2020.

Remote Sens. 2023, 15, x FOR PEER REVIEW 4 of 26 
 

 

different ML algorithms and methodologies, we use a dataset composed of 25,901 LEMPs 
recorded by the Lightning Detection and Waveform Storage System (LDWSS) in three 
different locations of the American continent, including the South and North hemispheres. 

2. Data and Methodology 
The LEMPs used in this work were acquired by the LDWSS operating in wideband 

(160 Hz–500 kHz). The polarity of lightning electric field waveforms recorded by the 
LDWSS is based on the atmospheric electricity sign convention, according to which a 
downward-directed electric field (or electric field change) vector is assumed to be positive. 
The LDWSS consists of a whip antenna followed by an integrator and a unity-gain, low-
noise amplifier. The signal from the pre-amplifier is digitized at 1 MSPS (one million sam-
ples per second). The digitizing system has a RTC (Real-Time Clock) which is synchro-
nized with a GPS module. More information about the LDWSS can be found in [32,33]. 

The dataset used in this study is composed of 25,901 LEMPs that occurred in 3 dif-
ferent locations (Gainesville, FL, USA; Belém, PA, Brazil; and Marabá, PA, Brazil). Figure 
1 shows the location of the LDWSS stations and the percentage of LEMPs per location. 
The LEMPs were recorded during different thunderstorms between 2019 and 2020. 

 
Figure 1. LDWSS locations and indication of the percentage of waveforms in each location. 
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2.1. Preprocessing

All the LEMP waveforms in our dataset have a length (window) of 1.1 ms in which
the lightning electric field peak is located at 100 µs. Because of the 1 MHz sampling rate, all
the windows (events) have 1100 samples. Further, each event is normalized relative to the
peak amplitude at 100 µs to eliminate the effect of amplitude scaling.
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We chose five distinguish labels, including Negative Cloud-to-Ground (−CG), Positive
Cloud-to-Ground (+CG), Negative Compact Intracloud (−CID) or Low-altitude CIDs,
Positive Compact Intracloud (+CID) or High-altitude CIDs, and ordinary Intracloud flashes
(IC). Figure 2 shows the distribution of waveforms in each of the five classes. Examples of
typical waveforms of these five classes are shown in Figure 3.
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Figure 2. Distribution of waveforms in each of the five classes.

We did not apply any digital filter in the waveforms of the dataset. However, we
measured the average noise level relative to the waveform peak. We consider the noise
level as the ratio between the average level of the first 40 µs of each LEMP and the LEMP
peak. We found that the average noise level in our dataset is about 2.5%. We also computed
the noise level for all classes (see Figure 4). The class with the highest noise level is IC, with
about 4%. The class with less noise is +CID, with about 1%.

2.2. Machine Learning Algorithms (MLAs)

In this paper, four different MLAs were tested and compared to assess the most
appropriate approach for LEMP classification. LEMPs can be viewed as a time series
because the lightning electric field samples change over time. The choice of the four MLAs
is based on previous attempts at lightning classification and MLAs that work better with
time series.

Support Vector Machines (SVMs)

In machine learning, a SVM is a supervised learning model used in classification
tasks. The SVM is a robust model, having its theoretical basis on the Vapnik–Chervonenkis
theory, where a hyperplane or a hyperplane set is created in a high-dimensional or infinite-
dimensional space. Intuitively, a satisfying separation is achieved by the hyperplane that
features a greater distance to the nearest training point from any class. In general, the
greater the margin, the lower the generalization error of the classifier. For classification
in problems whose data are not linearly separable, the SVM uses Kernel functions that
increase the data space and allow a linear separation [34]. Our SVM classifier’s C value is
set to 1, and its kernel function is the Radial Basis Function (RBF).
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Figure 3. Examples of some typical LEMPs recorded by the LDWSS. (a) Negative Cloud-to-Ground
(−CG), (b) Positive Cloud-to-Ground (+CG), (c) Negative Compact Intracloud (−CID) or Low-
altitude CID, (d) Positive Compact Intracloud (+CID) or High-altitude CID, and (e,f) are ordinary
Intracloud flashes (IC). The waveforms are highlighted with the Class Activation Map (CAM) for the
contribution of each lightning waveform region for ResNet classifiers. Red (1.0) corresponds to high
contribution and blue (0.0) to almost no contribution to the correct class identification.
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Multi-Layer Perceptron (MLP)

The MLP is a kind of Deep Neural Network (DNN) architecture and is often referred to
as a feedforward neural network. MLPs are commonly used in a variety of tasks, including
classification, regression, and pattern recognition [35]. MLPs are known for their ability to
learn patterns from complex data structures, even when there are non-linear relationships
involved, due to their activation functions. However, they may suffer from overfitting
when there is not sufficient data to learn from or when the model is too high capacity for
the task at hand. Regularization techniques and careful hyperparameter tuning can help
mitigate this issue.

The implemented MLP in this work comprises 3 stacked fully connected layers, each
containing 500 neurons, ending in a softmax layer. At each layer’s input, dropout rates of
0.1, 0.2, 0.2, and 0.3 are used, and the ReLU activation function is added to increase the
non-linearity response. Figure 5 shows the network structure. The model structure and
parameters are shown in Table 1.
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Table 1. MLP model parameters.

No. Layer Neuron Number Activation Function Dropout Output Shape

1 Input / / 0.1 1100

2 Dense 500 ReLU 0.2 500

3 Dense 500 ReLU 0.2 500

4 Dense 500 ReLU 0.3 500

5 Dense 5 Softmax / 5

Fully Convolutional Network (FCN)

FCNs have been extensively used in semantic segmentation [36–38] and image pro-
cessing [39] as well as in time series classification tasks [31].

The implemented FCN comprises a convolutional block that contains a convolutional
layer followed by a batch normalization layer and a ReLU activation layer. In total, 3 con-
volutional blocks are chained together, and the convolutions are performed with kernel
sizes of 8, 5, and 3, respectively. The respective filter sizes of the convolutions are 128, 256,
and 128. A Batch Normalization layer follows the chained convolutions to speed up and
stabilize the convergence of the model. Then, the features are fed up to a Global Average
Pooling layer to reduce the number of weights needed in the final Dense layer that gives
the probabilities of each label using the softmax activation function. Figure 6 shows the
FCN structure. The model structure and parameters are shown in Table 2.
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Table 2. FCN model parameters.

No. Layer Filter Number Kernel Size Padding Stride Activation Function Output Shape

1 Input / / / / / (1100, 1)

2 1D-Conv 128 8 yes 1 / (1100, 128)

3 Batch Norm / / / / ReLU (1100, 128)

4 1D-Conv 256 8 yes 1 / (1100, 256)

5 Batch Norm / / / / ReLU (1100, 256)

6 1D-Conv 128 8 yes 1 / (1100, 128)

7 Batch Norm / / / / ReLU (1100, 128)

8
Global

Average
Pooling

/ / / / / 128

9 Dense / / / / Softmax 5
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Residual Network (ResNet)

ResNets come to solve the degradation problems encountered in deeper networks by
adding the shortcut connection, a linear layer from the input to the output of each residual
block that allows the model to learn more complex patterns in the data [31]. Wang et al. [31]
experimented using a ResNet in time series classification tasks and achieved premium
performance, even with a deeper structure.

Our ResNet follows the baseline presented in [31] and is composed of 3 stacked
residual blocks that contain 3 convolutional blocks inside, and the input of each residual
block is connected via a linear layer to its output. The convolutional blocks of the residual
units are the same as in the FCN; the only difference is that the number of filters is 64, 128,
and 128, respectively, as shown in Figure 7. Similar to the FCN, the features are fed up to a
Global Average Pooling layer to reduce the number of weights needed in the final Dense
layer that gives the probabilities of each label using the softmax activation function. The
model structure and parameters are shown in Table 3.
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Table 3. ResNet model parameters.

No. Layer Filter Number Kernel Size Padding Stride Activation Function Output Shape

1 Input / / / / / (1100, 1)

2 1D-Conv 64 8 yes 1 / (1100, 64)

3 Batch Norm / / / / ReLU (1100, 64)

4 1D-Conv 128 5 yes 1 / (1100, 128)

5 Batch Norm / / / / ReLU (1100, 128)

6 1D-Conv 128 3 yes 1 / (1100, 128)

7 Batch Norm / / / / ReLU (1100, 128)

8 1D-Conv 64 8 yes 1 / (1100, 64)

9 Batch Norm / / / / ReLU (1100, 64)

10 1D-Conv 128 5 yes 1 / (1100, 128)

11 Batch Norm / / / / ReLU (1100, 128)

12 1D-Conv 128 3 yes 1 / (1100, 128)

13 Batch Norm / / / / ReLU (1100, 128)

14 1D-Conv 64 8 yes 1 / (1100, 64)

15 Batch Norm / / / / ReLU (1100, 64)

16 1D-Conv 128 5 yes 1 / (1100, 128)
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Table 3. Cont.

No. Layer Filter Number Kernel Size Padding Stride Activation Function Output Shape

17 Batch Norm / / / / ReLU (1100, 128)

18 1D-Conv 128 3 yes 1 / (1100, 128)

19 Batch Norm / / / / ReLU (1100, 128)

20
Global

Average
Pooling

/ / / / / 128

21 Dense / / / / Softmax 5

2.3. Evaluation Metrics

There are several metrics that are commonly used to evaluate the performance of
MLAs, namely classification accuracy, precision, recall, and F-score. The classification
accuracy expresses the probability of a given sample being correctly classified by the
classifier but does not provide information about the number of correct labels of different
classes [40]. Precision denotes the classifier’s ability to minimize false positives (FP) and it
is a function of true positives (TP) and FP. Recall, on the other hand, conveys the classifier’s
ability to minimize false negatives (FN) and it is a function of TP and FN. The F-score is a
composite measure and can be calculated by the harmonic mean between precision and
recall. A balance that equally favors precision and recall is achieved when β = 1, resulting
in the F1-score.

Fβ =

(
β2 + 1

)
·precision·recall

β2·precision + recall

In this paper, we present all the metrics, but we use the macro-averaged F1-scores to
say which model performed better. Macro averaging is essential when dealing with an
imbalanced dataset because it treats all classes equally [41,42]. The F-score summarizes
precision and recall values and is better suited than accuracy to evaluate the classifier’s
performance given an imbalanced dataset [43].

The SVM was evaluated using stratified 5-fold cross-validation, holding 80% of the
overall dataset to the training subset and 20% to the test subset. Each evaluation metric
is calculated as the average of all 5 test sets. This is performed to reduce variability in the
evaluation process and return a more robust performance estimate [44]. The final models
for each different time window are then trained on 80% of the overall dataset and the
classification time is measured.

All the other MLAs (MLP, FCN, and ResNet) were trained only once. From the entire
dataset, 80% of the samples were drawn to compose the training subset and the remaining
20% were used for testing. A total of 20% of the training subset was used as the validation
subset. The training epochs were controlled by the Early Stopping callback in Keras, which
monitored the validation loss with a patience value of 50 epochs. The initial learning
rate (LR) was set to 0.001 and was systematically reduced by the Reduce Learning Rate
On Plateau callback in Keras. The LR reduction occurred when a validation loss plateau
was identified by the callback, which decreases the LR by half, with a patience value of
20 epochs. The Model Checkpoint callback in Keras allows us to save the latest best model,
monitoring the validation loss. These callbacks help avoid overfitting and help save time
in the training process.

Due to lightning distribution in nature and the use of single-station electric-field
waveform lightning data, some classes are less represented than others. The +CID class,
for example, constitutes less than 1% of the total number of instances, and the +CG class,
less than 2%. This can lead to overfitting in the training process and result in non-optimal
performance in the minority classes, as the model does not have sufficient examples to
learn from. To deal with this issue, we use the Synthetic Minority Oversampling Tech-
nique (SMOTE). The SMOTE algorithm systematically introduces new synthetic instances
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between k minority class nearest neighbors by estimating the difference of one feature
vector over its nearest neighbor and randomly scaling this difference, later adding this
result to the original feature vector [45]. All the minority classes (+CG, −CID, +CID, IC)
were oversampled to the majority class (−CG) number of instances in the training subset,
meaning the test subset was kept unchanged. Because of this, the training subset remains
imbalanced, hence we use the F1-score to evaluate the model’s performance.

Class Activation Map

The Class Activation Map (CAM) helps us to interpret class-specific characteristics in
the dataset, indicating the possibly discriminative regions used by the Convolutional-based
approaches (FCN and ResNet) to identify certain classes. For a given time series, Sk(t)
represents the activation of the k filter in the last convolutional layer at the point t in time.
The weight of the final softmax function for the k filter output for each class is represented
by wc

k. The CAM is defined by the following equation, where Mc stands for the CAM for
each class c for each t point in time:

Mc = ∑
k

wc
kSk(t)

CAM offers a natural way to explain how convolutional networks work in specific
datasets, and with specific configurations. CAM is used in this paper to analyze the best
classifier’s performance, and to infer its behaviors.

3. Results

The accuracy, precision, recall, and F1-score metrics are shown for all the approaches.
However, we use the macro-averaged F1-score to say which model performed better.
Most previous works on the same topic [20,21] evaluate the performance of their models
mostly using accuracy and, as stated before, it neglects the differences between the types
of misclassifications. In other words, the difference in performance between classes are
neglected by the accuracy score, hence it is hard to know when a certain class performs
poorly. Additionally, looking only at the accuracy may introduce bias in the classifier. The
F1-score is a balance between precision and recall and considers TP, FP, TN, and FN, which
makes a more robust metric for a multiclass approach.

We assessed the influence of different windows (recorded length) on the classification
performance. The window or recorded length of the lightning electric field waveform is
a choice of the system designer. The classification algorithm can be implemented with
different recorded lengths. For instance, Zhu et al. [21] used a window of 100 µs, which is a
relatively short time window. On the other hand, Wang et al. [20] used 1000 µs. In both
studies, the performance accuracy of the models was higher than 90%. Hence, different
time windows can reach satisfactory results. However, if the algorithms are intended to
be used in real time, short windows are better. By real time, we mean that the model will
classify the LEMPs as they are recorded by the LDWSS. The models can also work in an
offline mode, that is, a previously recorded LEMP dataset will be classified at a future time.
For instance, we can run the classifier once every day. It is important to note that there is
no difference in the algorithm used in “real time” or “offline”.

In order to evaluate the computational effort for each model, we measured the average
waveform classification time. The models were executed on a 64-bit Windows 10 laptop
(processor: AMD Ryzen 5 5600H at 3.3 GHz) using Tensorflow and Keras in a Jupyter
open-source web-based interactive development environment. According to the whole
dataset, the average time required for the model to execute the classification algorithm for
25,901 lightning waveforms was measured. The results are shown in Tables 4–7. The time
shown in Tables 4–7 refers only to the classification time, not including the preprocessing
time. The fastest model was the MLP across all the different time windows.
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Table 4. Accuracy, precision, recall, and F1-score for 100 us time window.

Model Precision Recall F1-Score Accuracy Classification Time (ms)

SVM 66.59 60.53 60.59 86.94 1.12

MLP 92.54 94.21 93.35 97.88 1.23

FCN 79.93 35.75 37.48 55.14 1.49

ResNet 82.28 48.85 53.27 54.12 2.26

SVM_SMOTE 64.09 86.52 69.37 86.5 2.84

MLP_SMOTE 88.8 94.38 91.34 97.34 1.13

FCN_SMOTE 79.72 94.48 83.85 93.9 1.56

ResNet_SMOTE 88.82 50.35 55.21 68.83 2.19

Table 5. Accuracy, precision, recall, and F1-score for 200 µs time window.

Model Precision Recall F1-Score Accuracy Classification Time (ms)

SVM 67.59 61.08 61.04 86.89 1.74

MLP 92.16 92.37 92.22 97.86 1.11

FCN 91.15 67.41 74.23 87.2 1.73

ResNet 90.52 84.87 87.27 92.22 2.86

SVM_SMOTE 63.01 86.26 68.42 85.45 4.14

MLP_SMOTE 89.39 94.04 91.53 97.49 1.09

FCN_SMOTE 79.48 94.42 84.24 94.92 1.75

ResNet_SMOTE 91.98 88.96 90.35 96.58 2.77

Table 6. Accuracy, precision, recall, and F1-score for 450 µs time window.

Model Precision Recall F1-Score Accuracy Classification Time (ms)

SVM 67.87 61.47 61.32 86.85 3.68

MLP 94.48 92.49 93.46 97.99 1.07

FCN 86.69 55.16 60.88 70.24 2.26

ResNet 91.95 76.28 81.91 87.36 3.65

SVM_SMOTE 62.84 86.2 68.26 85.31 8.57

MLP_SMOTE 89.25 95.45 92 97.82 1.08

FCN_SMOTE 82.83 92.09 86.5 92.61 2.28

ResNet_SMOTE 94.81 92.76 93.72 97.68 3.64

We chose four different windows, 1100 µs, 450 µs, 200 µs, and 100 µs, with the peak of
the waveform located at 100 µs, 50 µs, 50 µs, and 50 µs, respectively. Figure 8 shows one
example of a LEMP in the four windows.

Figure 9 shows the F1-score versus the classification time for all models, where different
colors indicate different time windows. The best performances, characterized by higher
values of the F1-score, are related to a long time window (1100 µs). This is highlighted
in the green region of Figure 9. However, for the models trained with the shortest time
window (100 µs), the performance of the models can be widely different, varying the
F1-score from 37 to 93. This is highlighted in the blue region of Figure 9. In other words, a
good performance does not depend only on the recorded time window, it also depends
on which learning model is being used. Therefore, for offline applications, one can use the
model that has the best performance regardless of the classification time. However, for
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real-time applications, a balance must be considered between good performance and how
long the algorithm takes to perform the classification.

Table 7. Accuracy, precision, recall, and F1-score for 1100 µs time window.

Model Precision Recall F1-Score Accuracy Classification
Time (ms)

SVM 92.99 91.44 92.18 97.29 2.05

MLP 93.51 94.8 94.12 97.93 1.12

FCN 95.24 96.93 96.04 98.63 3.78

ResNet 96.33 97.07 96.67 98.86 7.37

SVM_SMOTE 95.72 90.94 93.05 97.74 3.39

MLP_SMOTE 93.17 94.81 93.96 97.92 1.10

FCN_SMOTE 94.09 96.21 95.08 98.44 4.02

ResNet_SMOTE 94.68 96.47 95.54 98.67 7.69
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In Tables 4–7, we summarize the results of the metrics. In general, F1-scores are higher
when we apply data balance with SMOTE, mainly for shorter windows (450 µs, 200 µs,
and 100 µs). For instance, in Table 4, the F1-score for the FCN model increased from 37.5
to 83.9 when using the SMOTE technique. This same trend was not observed in the MLP
model. For MLP, when we use SMOTE the F1-score is lower. In Table 7, which shows the
metrics for the models trained with a 1100 µs time window, the only model that increased
its performance (F1-score) due to the use of SMOTE was the SVM. So, the use of data
balancing with SMOTE did not bring many benefits in performance for models that use a
long time window.

Figure 10a illustrates how the F1-score changes over the different time windows for
all models. A performance leap between 450 µs and 1100 µs time windows can be seen
in the SVM, FCN, and ResNet classifiers. The leap can be related to how the models
deal with the input time-series data. The SVM classifier depends on the separation of the
dataset by hyperplane sets and can suffer alteration if we change the arrangement of the
input data. FCNs and ResNets are commonly used in deep learning and big data, so it is
expected that the more data we feed the model, the better its performance. However, it
also depends on the relevance of the input data. If it is not important for learning, this can
reduce performance. They both work with convolutional layers, which use filters to extract
information from the input data. The difference in the input waveform length can lead to a
different characteristic extraction, and then a variability in the performance of the network.

Figure 10b shows how the classification time changes over the different time windows
for all models. The classification times for both MLP and MLP_SMOTE are very similar
regardless of the time window used. The differences between classification time in MLP
models for 200 µs, 450 µs, and 1100 µs time windows are not statistically significant
(assuming two times the standard error as a criterion). There is a small difference if we
compare the MLP models that use 200 µs, 450 µs, and 1100 µs time windows with the MLP
models of a 100 µs window. In general, comparing each individual learning model, with
and without the use of SMOTE, they all show similar trend lines. The solid and dashed
lines tend to overlap. The only model in which this does not happen is the SVM, which
maintains the same tendency, such as increasing the classification time from a 100 µs to a
450 µs window and reducing it from a 450 µs to a 1100 µs window. However, the lines do
not overlap.
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The SVM, FCN, and ResNet models notably benefit from training with the oversam-
pled dataset, especially when trained with shorter time windows. The MLP model performs
at its best when trained with the original training subset. All the models trained with the
1100 µs time window did not benefit from training with the oversampled training subset.
SMOTE justifies its use when the time windows are shorter.

In summary, the ResNet trained with no data augmentation (SMOTE) and with a time
window of 1100 µs had the best performance overall with an F1-score = 96.67. For the
shortest time window (100 µs), the best model was the MLP, with an F1-score = 93.35. In
terms of processing time, the MLP (100 µs) is about 6 times faster than ResNet (1100 µs).
For a real-time application, the MLP (100 µs) should be considered even though its perforce
is 3 percentage points lower than ResNet (1100 µs). In Figures 11 and 12, we show the
confusion matrix for these two models, MLP (100 µs) and ResNet (1100 µs), respectively. As
expected, the confusion matrices show that both models perform the worst in the minority
classes (+CG and +CID), where there were fewer data points to train from. Figure 13 shows
the box plot of the Resnet (1100 µs) model’s F1-score. It is interesting to note that in the
minority classes (+CG and +CID) there is more variation in performance (F1-score), and in
the majority classes (−CG and IC) it is the opposite.

In [31], the authors encourage the exploration of the ResNet structure in more complex
and larger datasets, since it is a very high-capacity model and tends to overfit in smaller and
less complex datasets. Our experiments showed that reducing the dataset time window
from 1100 µs to 100 µs leads the ResNet to overfit the training data. This behavior is
identified by the growing distance between validation and training loss scores, as well as
the fluctuation in validation loss values for the 100 µs time window model in contrast to
the steady curve for the 1100 µs time window model depicted in Figure 14a,b.
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4. Discussion

To assess how the added noise in the test subset impacts the performance of the
models, we introduced three different noise levels (5%, 10%, and 15%) in our LEMPs and
tested them against all the models. Examples of LEMPs in the 1100 µs and 100 µs windows
with 5%, 10%, and 15% white noise added are shown in Figures 15 and 16, respectively. We
chose the relative F1-score to compare the models. The relative F1-score is the ratio between
the F1-score of models tested with noisy LEMPs and the F1-score of models tested with
LEMPs without noise added. A relative F1-score equal to 1 means that the added noise in
the test subset did not affect that specific model and a relative F1-score below 1 means that
the performance of the model decreased as we introduced the noise.
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Figure 17 shows how the relative F1-score changes with the addition of noise in the
LEMPs. We also computed what we called the “noise robustness index”, which is the
F1-score times the relative F1-score for the models tested with the highest level of noise
(15%) added. A high noise robustness index indicates that the model is robust against noisy
LEMPs because the high initial F1-score is maintained as we increase the noise level. The
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noise robustness index for all models (in ascending order) is shown in Figure 18. The main
observations when introducing noise on the test subset are as follows:

• Overall, as we increase the noise level, the models tend to perform worse. However,
the worst-performing models maintained suboptimal performance (e.g., FCN (100 µs)
and the SVM).

• In general, models that work with longer time windows performed worse against
noise. In other words, we observed bigger drops in performance as we increased the
noise level for the models with longer time windows.

• The MLP models performed the best against noise. The model with the highest noise
robustness index is MLP SMOTE (1100 µs).
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For the MLP (100 µs) and ResNet (1100 µs) models, we assess how the classification of
different types of LEMPs is affected by the addition of white noise in the test subset (see
Figure 19). We chose these two models for these analyses because MLP (100 µs) was the best
model with the fastest performance for the 100 µs window and ResNet (1100 µs) was the
overall best model. For both models, +CG and −CID did not decrease their performance
much as we increased the noise level. The +CIDs performed worse in both models. Our
hypothesis is that the noise easily changes the unique narrow bipolar shape of +CIDs, and
then the main features that the MLAs use to classify them are lost. Even though the +CID
and −CID waveforms are very similar in the one-dimensional time-series representation,
they may manifest different behaviors in the high-dimensional space when fed to the
classification models. This can lead to easier or harder separation of these two classes
from the other ones, resulting in distinct performances between +CID and −CID when
evaluating the noise robustness of these classes. Based on Figure 19, the MLP (100 µs)
shows better capacity at separating and classifying +CID noisy test waveforms than ResNet
(1100 µs).

We applied CAM in the ResNet (1100 µs) model to examine what part of the lightning
electric field waveform was contributing more to the resulting model. Figure 3 shows
lightning electric field waveforms highlighted with CAM for all the classes used here. We
can notice that the model neglects the slow-transition parts of the waveforms. This is
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depicted by the dark blue parts of the lightning electric field waveforms, which indicates
no contribution to the classifier’s decision. The most important parts of the waveforms are
the fast transitions located at the peak or near the peak.
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Figure 19. Relative F1-score versus noise level for the 5 classes (−CG, +CG, −CID, +CID, and IC) for
MLP (100 µs) and ResNet (1100 µs) models.

Figure 20 shows lightning electric field waveforms for −CG recorded at different
distances highlighted with CAM. Note that we do not have distance information, but the
distance can be estimated based on the skywaves (peak following the ground wave or first
peak [46,47]). Even for lightning recorded from far distances in which the lightning electric
field waveform has multiple skywaves (multiple peaks), the most important parts of the
waveforms are the fast transitions located at the first peak (ground wave). The same trend
is seen in +CG, as shown in Figure 21, and for the intra-cloud events shown in Figure 22.
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Figure 22. Same as Figure 3, but only for CIDs. (a,b) −CIDs (upper level), (a) being recorded at a
closer distance than (b). (c,d) +CIDs (lower level), (c) being recorded at a closer distance than (d).

This finding is very important because we show for the first time that the MLAs are
interested in the ground wave (or direct wave in the case of ICs) of the lightning electric
field waveform. Hence, if the waveform is recorded at distances beyond 600 km or so at
which the ground wave is degraded, the classification algorithm will not work properly.

5. Summary

In this work, we explore the use of different Artificial Intelligence approaches to
classify Lightning Electromagnetic Pulses (LEMPs). We assess the performance (in terms of
F1-score) of different MLAs, including the SVM (Support Vector Machine), MLP (Multi-
Layer Perceptron), FCN (Fully Convolutional Network), and Residual Neural Network
(ResNet) in the task of LEMP classification. To test the different approaches, we use a dataset
composed of 25,901 LEMPs recorded by the Lightning Detection and Waveform Storage
System (LDWSS) in three different locations on the American continent. We also assessed
the influence of different windows (recorded length), noise level, and data balance using the
Synthetic Minority Oversampling Technique (SMOTE) on the classification performance.
The ResNet trained with no data augmentation (SMOTE), and with a time window of
1100 µs had the best overall performance, with an F1-score = 96.67. In terms of classification
speed, as expected, models trained with shorter time windows were faster. Among the
fastest models, the one that performed better was the MPL (100 µs), with an F1-score of
92.54. If classification time is a concern, for instance, in real-time applications, MPL (100 µs)
is the more appropriate approach to use. Regarding noise level, it was observed that models
that work with longer time windows performed worse against noise. Overall, MLP models
performed the best against noise. The model with the highest noise robustness index was
MLP SMOTE (1100 µs). We applied CAM to the ResNet (1100 µs) model to examine what
part of the lightning electric field waveform was contributing more to the resulting model.
We noticed that the model neglects the slow transition parts and gives more importance
to the fast transitions. We find that the MLAs are interested in the ground wave (or direct
wave in the case of ICs) of the lightning electric field waveform. Hence, if the waveform
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is recorded at distances beyond 600 km or so at which the ground wave is degraded, the
classification algorithm will not work properly.
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