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Abstract: Monitoring of the water level and river discharge is an important task, necessary both
for assessment of water supply in the current season and for forecasting water consumption and
possible prevention of catastrophic events. A network of ground hydrometric stations is used to
measure the water level and consumption in rivers. Rivers located in sparsely populated areas in
developing countries of Central Asia have a very limited hydrometric network. In addition to the
sparse network of stations, in some cases remote probing data (virtual hydrometric stations) are
used, which can improve the reliability of water level and discharge estimates, especially for large
mountain rivers with large volumes of suspended sediment load and significant channel instability.
The aim of this study is to develop a machine learning model for remote monitoring of water levels in
the large transboundary (Kazakhstan-People’s Republic of China) Ili River. The optical data from the
Sentinel-2 satellite are used as input data. The in situ (ground-based) data collected at the Ili-Dobyn
gauging station are used as target values. Application of feature engineering and ensemble machine
learning techniques has achieved good accuracy of water level estimation (Nash–Sutcliffe model
efficiency coefficient (NSE) >0.8). The coefficient of determination of the model results obtained using
cross-validation of random permutations is NSE = 0.89. The method demonstrates good stability
under different variations of input data and ranges of water levels (NSE > 0.8). The average absolute
error of the method ranges from 0.12 to 0.18 meters against the background of the maximum river
water level spread of more than 4 meters. The obtained result is the best current result of water level
prediction in the Ili River using the remote probing data and can be recommended for practical use
for increasing the reliability of water level estimation and reverse engineering of data in the process
of river discharge monitoring.

Keywords: remote sensing data; Sentinel-2; machine learning; ensemble machine learning; water
level estimation; the Ili River

1. Introduction

Contemporary production and life-support systems are consumers of large quantities
of water. To meet these needs in Kazakhstan, located mainly in the arid zone, hundreds
of hydraulic structures and complexes, including dams, weirs, canals, reservoirs, etc., are
designed, constructed and operated. These facilities, as well as other constructions of
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considerable size, are a source of substantial danger, which increases in case of improper
design, operation and insufficient control of their current condition. Moreover, hydrotech-
nical facilities are operated under conditions of significant natural anomalies, which can
be aggravated by anthropogenic impacts. These factors lead to serious failures, including
those of catastrophic nature, significant damage and loss of human life. For example, in
Kazakhstan, catastrophic floods associated with dam failures, including those in neigh-
boring countries, resulted in the deaths of several dozen people and material damage
of several tens of millions of dollars [1]. There is a need for more detailed monitoring
of river discharge, water conditions, dams, etc., to prevent catastrophic events and to
improve the quality of operation of equipment and structures [2]. At the same time, the
increase in manual monitoring leads to significant costs. Nevertheless, there are examples
of application of satellite data for assessment of water quality [3–5], drainage volumes [6,7],
forecasting of possible flood damage [8,9], assessment of sediment load [10] and landslide
dams [11] on the basis of statistical methods. There are also examples of applying machine
learning methods for water quality assessment [12,13] on the basis of remote probing of the
earth’s surface, detection of hydraulic structures failures [14], etc. In this regard, it seems
reasonable to evaluate the possibility of using machine learning to determine the level and
associated water flow in rivers based on satellite images.

It is particularly interesting to develop appropriate methods for relatively small (from
the point of view of satellite monitoring) meandering rivers flowing through sparsely pop-
ulated areas with a sparse network of hydrometric monitoring stations and characterized
by significant variability of water consumption. The transboundary (PRC-Kazakhstan) Ili
River, which is about 1400 km long and has a basin area of 140,000 km2 and flows into Lake
Balkhash, is one such river. Depending on the weather conditions, the water level in the
river (Ili-Dobyn hydrometric station) can vary by more than 4 m, which is accompanied by
variations in water consumption from about 80 to 2300 m3/s.

In this study, we aim to describe a method for determining the river level using an
approach that has been referred to in the literature as a space hydraulic station [15] or virtual
station [16]. The meaning of this concept is the application of data of remote probing of the
earth’s surface for solving the tasks that are traditionally performed by the hydrometric
stations installed on the river. One of these tasks is to determine the water level in the river,
which is closely related to the task of estimating the water discharge. It should be noted
that during the warm season, which is important for water level estimation, cloud cover in
the south of Kazakhstan is insignificant. This provides favorable conditions for the use of
satellite data of optical range. As noted above, as the object of the study we have chosen
the transboundary Ili River (PRC-Kazakhstan), which is the largest river in the Xinjiang
Uygur Autonomous Region (XUAR) of China and plays an important role in water supply
in the south-east of Kazakhstan. The river is the main tributary of the large Balkhash Lake,
with a water mirror area of about 16 thousand km2.

Our contribution to the current state of the research field is as follows:

• We obtained the state-of-the-art results in the problem of determining the water level
in the Ili River using the optical remote sensing data and machine learning methods.

• We compared the machine learning algorithms and found that ensemble machine
learning methods (Random Forest, eXtreme Gradient Boosting (XGBoost) and Light-
GBM) demonstrated the best and most robust water level estimation results.

• A set of input variables and corresponding feature engineering techniques is identified,
which allows significant improvement of the original result and a good value of the
Nash–Sutcliffe model efficiency coefficient.

• For the proposed model, the input parameters that ensure its stability depending on
the volume and quality of input data were identified.

The paper consists of the following sections:

• Section 2 briefly describes the study area.
• The current state of the research area is discussed in Section 3.
• In Section 4, we describe the proposed method.
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• Section 5 describes the results.
• Section 6 is devoted to discussion of the results.
• Finally, we refer to the limitations of the proposed approach and formulate the objec-

tives of future research.

2. Study Area

The Ili River, flowing in the territory of Kazakhstan along the dry plain terrain
(Figure 1), was chosen as the study area in the present research.
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Figure 1. The Ili River basin. The study area is marked with a rectangle.

It should be noted that modeling of discharge and water level of the Ili River arouses
natural interest of researchers due to its high importance in the hydrological system of
southern Kazakhstan. Much attention is paid to the Ili biosystem, the effects of climate
change and the state of glaciers, water use, etc. [17–24]. For example, in one study [25] the
productivity (net primary productivity-NPP) of the Ili River is considered. The proposed
model of the spatial temporal distribution of NPP showed high efficiency with a coefficient
of determination equal to 0.65. The author of [26] modeled the relationship between the
state of wetland biomass in the delta of the Ili River and changes in the water level in Lake
Balkhash. The accuracy of the achieved forecast amounted to 76%. In another study [27],
the task of hydrological monitoring of the Ili River is considered on the basis of assessment
of the water mirror of the Kapshagai reservoir on the Tekes River, which is the main
tributary of the Ili River in the upper part of the basin in the territory of China. Due to
the meager network of hydrometric stations, the task of remote monitoring of the water
level of the Ili River is very urgent. Further, we consider the methods of solving a similar
problem described in the literature.

3. Related Works

As indicated above, the task of calculating the river discharge is of considerable interest
not only from the point of view of estimating the water reserves, but also for predicting the
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excessive discharge that may cause catastrophic events [28]. A common practice of river
runoff volume estimation is the use of hydrometric models estimating the discharge level
on the basis of data from hydrometric stations. Such models are based on both the level
and width of the river beds [29].

In addition to hydrometric models, machine learning (ML) methods have been suc-
cessfully applied to solving such problems. For instance, in one study [30] the artificial
neural networks (ANN) were used to forecast the water level in the Bedup River. The
accuracy of the forecast was 83.5%. ANNs were also used in [31] to anticipate the water dis-
charge and water level in the Ramganga River catchment of the Ganga Basin (India). In the
studies [32,33], a multilinear regression and long short-term memory (LSTM) model was
applied to predict water levels in the Guam River and the Han River, South Korea. In the
latter case, it was possible to forecast the water level one hour ahead in the tidal section of
the river with a fairly high accuracy (RMSE = 0.08 m). However, the accuracy of the forecast
dropped significantly when forecasting for a twenty-four-hour period (RMSE = 0.28 m).
A Gaussian process regression (GPR) model was applied to forecast the daily levels of
the Durian Tunggal River in tropical peninsular Malaysia [28]. Models based on classical
machine learning algorithms were used in the study [34] to simulate the water level in the
tidal zone of the rivers of this peninsula.

To forecast the river discharge of the Hunza River, Pakistan D. Hussain et al. [35]
performed a comparison of multilayer perceptron (MLP), support vector regression (SVR)
and random forest (RF) algorithms. These models showed the following results: R2 = 0.910,
0.831 and 0.993, respectively. An in situ dataset of historical river flow data for the period
from 1962 to 2008 was used to train the models. In [36], RF showed the results closest to
the results of the GR2M rainfall-runoff model, which justifies the possibility of applying
ML in areas for which there are no physical characteristics of the basin and hydrological
information. Thanh, H.V. et al. [37] reconstructed the average daily discharge in the Mekong
River megadelta, Vietnam. They used RF, Gaussian process regression (GPR), support
vector regression (SVR), decision tree (DT), least squares support vector machine (LSSVM),
and multivariate adaptive regression spline (MARS) models. RF and MARS showed the
best results (MAE = 517, 722, 200 m3/s, for year-round, flood and dry months, respectively).

As can be seen, in all of the above cases, ground data collected over a long (several
years) period of time were used to train and test ML models.

Due to the widespread reduction in hydrometric stations, remote sensing data are
becoming increasingly popular for assessing the river discharge regimes [38]. In general,
the use of satellite data increases the accuracy of calculation [39], reconstructing [40] and
forecasting the volume of water discharge with a sufficiently high value of the Nash–
Sutcliffe model coefficient of efficiency (NSE), such as in [41], where the value of NSE = 0.8
was achieved.

To solve the latter task, both optical and microwave data are used, including satellite
altimetry [42,43], which is practically applicable on large water surfaces due to low spatial
resolution [44]. It is noted that microwave radiometric data have a spatial resolution of
about 25 km [45]. In other words, the use of such data is possible only for the largest
rivers [46], lakes or reservoirs with an accuracy in the range of 0.2 to 1.05 meters [47]. The
additional disadvantage of satellites with radar altimetry is their relatively low periodicity
from 10 (Jason-2,3) to 35 days (SARAL/AltiKa). The satellite products based on Synthetic
Aperture Radar (SAR) are considered as the most viable methods for observing the extent
and level of flooding [48]. A number of studies have considered the use of SAR for
estimating the lake levels with decimeter accuracy [49]. It was even reported that if the
CryoSat-2 satellite trajectory mapping to the Earth surface is perpendicular to the channel
or river bed, such accuracy is ensured even for river beds only a few meters wide [50].

Recently, the use of hybrid approaches, combining both hybrid machine learning mod-
els and a combination of different data sources, has been gaining popularity for estimating
the water level and discharge volumes. For example, in [51], a method using several data
sources (satellite-derived, climate mode indices and ground-based meteorological obser-
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vations) and hybrid deep learning models for forecasting the water level of the Murray
River (Australia) was proposed. Due to this, a high forecasting result was obtained (mean
error—0.020 meters, accuracy 98%). The authors used data from 19 hydrometric stations. A
hybrid approach of a slightly different kind is also described in the study [16]. The authors
combined the hydrometric model GR6J with the ML model (LSTM) to simulate discharge
in the vicinity of the virtual stations on the Yangtze River. The model is calibrated using
Gravity Recovery and Climate Experiment (GRACE) data. The method is recommended
for flood monitoring in the areas where no ground hydrometric stations are available.

One study [52] deals with calibration and validation of the suspended sediment and
discharge models for the Tisza and the Maros rivers (Hungary) based on Sentinel-2 data.
The developed models are to be used to estimate sediment discharge at engaged periods,
since such measurements at the hydrometric stations are made once a month. The RF
and combined models showed the suspended sediment concentration (SSC) results where
R2 = 0.87, 0.82 for the specified rivers, respectively.

The problem of determining the water level in the Ili River was first considered in the
study [53], where an empirical step dependence between the test fragment of the river bed
and the data of the hydrometric station “164 km” was formed. The results of the analysis
showed a rather high Pearson correlation coefficient (0.9). Recent work [54] used shoals on
the river bed as indicators of water level and provides NSE value equal to 0.74, but with
limitations in the range of water levels (not more than 280 centimeters).

The results of the literature analysis are summarized in Table 1.

Table 1. Machine learning methods and remote sensing technology in the water monitoring tasks.

Task Study Area Machine Learning
Methods

Remote Sensing
Data Result Ref.

1 Ramganga River catchment of the
Ganga Basin, India ANN - Ac = 83.5% [30,31]

1 Guam River and the Han River, South
Korea

multilinear
regression and LSTM - RMSE = 0.08 m [32,33]

1 Catchment located in the east coast of
tropical peninsular Malaysia SVR - NSE = 0.986 [28,34]

1 Murray River, Australia CNN, LSTM, BiLSTM MODIS Ac = 98% [51]

2 Lakes or reservoirs - satellite altimetry accuracy in the range of 0.2 to 1.05
meters [42–44]

2 Lakes or reservoirs - satellite SAR decimeter accuracy [49]

2 Ili River - Sentinel-2 NSE = 0.74 [54]

3 Hunza River, Pakistan MLP, SVR, RF NSE = 0.993 [35]

3 Mekong River megadelta, Vietnam RF, GPR, SVR, DT,
LSSVM, MARS - MAE = 200 m3/s for dry month [37]

4 Brahmani River basin, India ANN, RF, SVR Aqua-MODIS,
Landsat NSE > 0.85 [38]

4 Midstream Yangtze River basin LSTM, RF - NSE = 0.69 [16]

5 Tisza and the Maros rivers, Hungary RF and combined
model Sentinel-2 NSE = 0.87 [52]

Note. Task 1—Water level prediction problem; 2—water level estimation; 3—forecast of the river discharge;
4—river discharge estimation; 5—sediment discharge estimation.

For medium-sized and small meandering rivers flowing through sparsely populated or
inaccessible territories and having, as a consequence, a very limited network of gauging sta-
tions, the solution of the problem of determining water levels and water discharge volumes
from satellite data remains a difficult task. Application of the paradigm of space gauging
stations, virtual stations or virtual gauging stations is one of the ways to solve this problem.
At the same time, when using optical range data, it is important to select the distinctive
locations on the riverbed that determine the water level with high accuracy [15,55].
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4. Method

In the flat part of Kazakhstan, the Ili River bed has a width of 100 meters or more,
which allows using Sentinel-2 satellite data with a resolution of ten meters to monitor the
riverbed filling with water. In its turn, filling of the bed makes it possible to assess the
water level in the river and the subsequent calculation of the volume of the river discharge.

In the present work, we have extended the scope of the approach proposed in stud-
ies [53,54]. The basic idea of the method is quite natural and consists in using the area of the
river bed filled with water within some section as a water level indicator. Additionally, the
assumption is made that the use of river banks for a given river can improve the accuracy of
the estimation within some water level boundaries. It is assumed that under the conditions
of relatively low water, the shoals are in a stable state and that their overwater area varies
sufficiently with water level. In this case, the area of the shoals can be estimated using
space images. It is quite reasonable to expect that within a certain water level boundary,
the change in the area of the shoals is linearly related to the water level in the river [54].
However, at high water levels, shoals may disappear and the riverbed sections may change.
Moreover, the previous studies did not investigate the stability of the method under signifi-
cant changes in water level and variations in model input parameters. In this paper we
cover this gap and show that the use of ensemble machine learning together with satellite
spectral canal data gives a good result under significant water level variations in the river
and, in addition, gives a slightly worse but still good result without the use of river shoals,
the area of which varies significantly from year to year. We use some preprocessing and
feature engineering techniques to achieve the best and the most stable result of water level
forecasting.

The proposed method includes the following steps (Figure 2):

1. Formation of Sentinel-2 satellite imagery dataset.
2. Preprocessing and features engineering.
3. Training and tuning of machine learning models.
4. Evaluation of results using a specified set of quality metrics.
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Figure 2. The structure of the proposed method.

Figure 3 shows the investigated part of the Ili River’s bed from the China–Kazakhstan
border to the Ili-Dobyn gauging station, which is approximately 40 km long. The river, flow-
ing through gravelly sandy sediments, is characterized by a variable riverbed morphology,
where shoals and bed sections are formed, transformed and disappear.

To estimate such a variable object, it is quite natural to apply not only linear methods
of water level reconstruction based on water surface area, but also a wider range of machine
learning methods.
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4.1. Generation of the Dataset

In the supervised learning tasks, it is important to select a target variable or target
column of data, which is matched with one or several input columns (input variables) or
features. If features and target variables are defined, the further research scheme is quite
trivial: the machine learning algorithm looks for a relationship between the inputs in the
target variable. As a target column in our task, we used ground data on the water level in
the Ili River obtained at the hydrometric station “Ili-Dobyn” (43◦45′31.15′′N; 80◦13′53.04′′E)
of the “Kazhydromet” system.

The hydrometric station measures the water level as the distance between the water
line (in a measuring well connected to the river) and the “zero” mark of the station. This
value characterizes the river’s water content (water flow) at the time of measurement, at
8 a.m. and 8 p.m. (manual measurement, year 2022) or at 8 a.m., 12 p.m., 4 p.m. and 8 p.m.
(automatic measurements, years 2016–2021). This water flow is considered representative
for the transit part of the river bed where there is no additional water inflow. Satellite
data (spectral characteristics of the channel) are obtained as an instantaneous picture at the
moment of passage of Sentinel-2 (a solar synchronous satellite with a local time of passage,
approximately at 11.50). The average water speed in the river varies between 2–4 m/sec,
depending on the water flow, in other words, water passes through the analyzed fragment
of the channel in approximately 3–6 hours. The gauging station is located in the lower
part of the test section of the channel (see Figure 3); therefore, the satellite estimates the
amount of water that passes through the test section from approximately 9 a.m. to 12 p.m.
(high water) or from 6 a.m. to 12 p.m. (low water). In such conditions, it seems correct to
compare the satellite data obtained at 11.50 with the average water level obtained at 8 a.m.
and 12 p.m. Therefore, the target column was formed as an average of the gauging station
readings at 8 a.m. and 12 p.m.
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4.1.1. Method of Data Preparation

The input data were generated in a such way that the water surface area was used as
a main input parameter. In the first case, the input parameter was the water surface area
measured at the specially selected locations along the riverbed (Dataset-1). These selected
zones are shown in Figure 4.
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mirror area was determined. Water flow is directed from right to left.

The assumption was made that at average seasonal water levels the morphology of the
river bed is stable and that the river bed shoulders with average inundation rates between
45 and 85% can be used as water level markers. Such areas are highlighted in Figure 4 with
colors. The water surface on space images was distinguished using Modified Normalized
Difference Water Index (MNDWI1) [56,57]. The third and eleventh channels of satellite
images were used to calculate the index:

MNDWI1 = (B3 − B11)/(B3 + B11) (1)

where: B3—third (559 nm); B11—eleventh (1610 nm) channels of Sentinel-2.
To separate land from water, we used the threshold value MNDWI1 = +0.25 (Figure 5).
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In the course of preliminary experiments, different MNDWI1 threshold values were
tested on a separate test site based on 2019 data. It was found that the best correlation
between the number of “water” pixels in the shoals mask and the water level in the river,
according to the Ili-Dobyn gauging station, is given by the threshold MNDWI1 = +0.25.
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In the second case, for comparative experiments and assessing the influence of expert
marking on the result of water level prediction, a “simplified” dataset was developed in
which the entire river channel was used as an initial one without identifying the “sensi-
tive” zones.

Once the water surface of the riverbed was extracted (Figure 6), its area was calculated
and used as one of the model input parameter (Dataset 2).
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In addition to calculating the total number of water pixels, averaged values of spectral
indices of space images from B1 to B12 were additionally calculated for the selected riverbed
sections. Taking into account the fact that vegetation can significantly affect the channel
outline, NDVI vegetation index was additionally calculated.

NDVI =
B5 − B4

B4 + B5
, (2)

where B5—Band 5, Near-Infrared (0.85–0.88 nm), B4—Band 4, Red (0.64–0.67 nm).

4.1.2. Datasets

As a result of the actions described above, two datasets (Dataset-1 and Dataset-2) were
generated, each of which is based on two initial sets of data (Tables 2 and 3).

Table 2. Water levels and area of selected river bed sections (in pixels).

Mean Date pixelCount pixelCount_Clo

235 1 March 2017 35,928 24,580.00

228.5 4 March 2017 12,125 6105.00

272 21 March 2017 31,851 41,113.00

294 10 April 2017 33,249 41,113.00

334.5 3 May 2017 34,572 0.00

. . . . . . . . . . . .

273 30 November 2021 35,983 0.00

Table 2 contains the following indicators:

• Mean—average water level obtained from 8 a.m. and 12 p.m. measurements (target value).
• Date—date of measurements.
• pixelCount—number of pixels in the river mask.
• pixelCount_Clo—number of pixels in the image distorted by cloudiness.

A total of 276 low-cloud images (with a 10 m resolution) from the Sentinel-2 image
archive for the period from 2017 to 2021 were selected.
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Table 3. Sentinel-2 satellite spectral data averaged over the area of the selected water areas.

Date NDVI B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12

6 March 2017 −0.133 0.1591 0.1368 0.1267 0.1327 0.1340 0.1113 0.1129 0.1027 0.0406 0.0026 0.0743 0.0538

29 March 2017 0.0188 0.6219 0.6118 0.5793 0.6180 0.6302 0.6395 0.6554 0.6413 0.4458 0.1065 0.4236 0.3761

5 April 2017 0.0077 0.1860 0.1634 0.1524 0.1649 0.1721 0.1707 0.1787 0.1674 0.0768 0.0312 0.1130 0.0937

28 April 2017 −0.021 0.1931 0.1759 0.1694 0.1765 0.1801 0.1787 0.1894 0.1738 0.0753 0.0151 0.1373 0.1090
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30 November 2021 −0.306 0.167 0.14 0.119 0.104 0.097 0.069 0.066 0.06 0.033 0.002 0.034 0.024

Note. B1, B2, . . ., B12—Band 1, Band 2, . . ., Band 12 of satellite Sentinel-2 [58] (see Appendix A Table A1).

Dataset-1 is obtained by using expert-identified zones on the riverbed (Figure 5). The
pixelCount value is the sum of the water surface areas of these zones. The parameters
described in Table 2 are the average values of the spectral ranges obtained over the area of
these zones.

Dataset-2 uses, instead of selected zones, the entire riverbed in the 40-kilometer
section under consideration (Figure 6). The pixelCount value is the water surface area of
this riverbed section. As in the previous case, the average values of spectral ranges are
calculated for this area.

In the process of computational experiments, some the data were considered as data
with anomalous values. Firstly, these are data for the year 2017, when abnormally high
volumes of river flow were observed. Secondly, a large disproportion between the value
of pixelCount and mean (a large value of pixelCount and a small value of mean and vice
versa) may be caused by an error in the estimation of pixelCount. Data rows with such
values were excluded in some experiments. This process is described below in Section 5.1.

4.2. Machine Learning Models

Deep learning methods are highly effective in solving many practical problems. How-
ever, such methods either require large amounts of labeled data for training or the avail-
ability of a pre-trained model that can be tuned using the transfer learning technique [59].
In the current case, neither of the above features are not available. Therefore, we decided
to compare several types of models of the conventional architecture, including ensemble
machine learning models (gradient boosting [60] and bagging technique), support vector
machines and classical regression algorithms. Machine learning models are summarized in
Table 4, which slightly extends the version of the table presented in the paper [61].

Table 4. Machine learning models.

Regression Model Abbreviation About Method References

Linear regression LR Method is based on linear approach [62]

Lasso regression Lasso Based on the use of a regularization mechanism that not only helps in
reducing over-fitting but it can help in feature selection [63]

Ridge regression Ridge The regularization mechanism is used to prevent over-fitting [64,65]

Elastic net ElasticNet Hybrid of ridge regression and lasso regularization [66]

XGBoost XGB Ensemble learning method based on the gradient boosted
trees algorithm [67]

LightGBM LGBM Ensemble learning method based on the gradient boosted
trees algorithm [68–70]

Random forest RF Ensemble learning method based on bagging technique [71]

Support vector machines SVM Method is based on the kernel technique [72]

Artificial neural network or
multilayer perceptron ANN or MLP Feed forward neural network [73,74]
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Linear regression models generally minimize the cost function in the form:

J(θ) = min
1

2m

[
∑m

i=1 (hθ

(
x(i)

)
− y(i))

2
+ λ ∑n

j=1 θ2
j

]
,

where m is the set of training examples; x(i) is values of parameters or properties (features)
for the i-th object; y(i) is the actual value of the target variable for the i-th example; λ
is the regularization factor; hθ is the hypothesis function in the form hθ = θ0 + θ1x1 +
θ2x2 + · · · + θnxk, k is the number of input parameters and θ0, θ1, θ2, ..θn ∈ Θ are the
regression parameters.

Lasso and ridge regressions differ depending on the setting of the regression parameter.
The XGB, LGBM models implement the technique of boosting using an ensemble of

algorithms of the same type (ensemble learning method based on the gradient boosted
trees algorithm). The ensemble algorithms are selected so that each next algorithm is
trained taking into account the error gradient of the previous ones. In other words, the
next algorithm (b) is tuned so that the target value is the antigradient of the error function

of the previous algorithm: −L′(y(i), hθ

(
x(i)

)
)

m

i=1
, meaning that when training algorithm b,

instead of the traditional pairs
(

x(i), y(i)
)

we use the pairs (x(i),−L′
(

y(i), hθ

(
x(i)

))
, where

hθ(x) is the previous algorithm’s hypothesis function.
The RF model implements the bootstrap aggregation technique. The idea is that for

each random subsample of the training dataset, a separate decision tree is built based
on only part of the features. Then, voting is performed between the trees to form the
final result.

The well-known SVM algorithm implements a technique based on changing the
parameters of the function (core) that determines the distance between objects of different
classes. The general expression of the SVM cost function is as follows:

J(Θ) = C ∑m
i=1 y(i)S1(Θ

T , fk
(i)
(

x(i)
)
) +

(
1− y(i)

)
S0

(
ΘT , fk

(i)
(

x(i)
))

+
1
2 ∑m

j=1 θ2
j ,

where S1 and S0 are functions, which are usually piecewise linear functions and fk is a core
function that determines the significance of the objects of the training set in the feature

space. A very popular Gaussian function fk
(i)
(

x(i)
)

= exp( |x−x(i)|2
2δ2 ), which for any x

allows estimating its proximity to the “marker” object x(i) and thus forming boundaries
between classes by setting the value of δ, C being the regularization parameter (C = 1/λ).

The following metrics are widely used to assess the quality of the regression mod-
els [75–77]: Mean Squared Error (MSE), Mean Absolute Error (MAE) and correlation
coefficient (R). To evaluate the hydrological models, the Nash–Sutcliffe model efficiency
(NSE) coefficient [78] is widely used, the formula for calculating of which coincides with
the formula for calculating the coefficient of determination (R2) (Table 5).

According to [79], a forecast model is considered to be good (NSE ≥ 0.80), satisfactory
(0.36 ≤ NSE < 0.80) or not satisfactory (NSE < 0.36). However, it is recommended in [80]
to compare the model with alternative models to evaluate the model. The results of such
comparisons are summarized in the next section.

Since the amount of data is relatively small, the method of cross-validation of random
permutations (ShuffleSplit) was employed for the model estimation, as it was used in [76].
To achieve a statistically significant result, splitting the data into test and training set is
performed 100 times with averaging of the obtained result.

In other words, during the computational experiments, the dataset was randomly
divided 100 times into training (90%) and test (10%) sets. Each time, machine learning
models were trained and the results were evaluated. The resulting machine learning model
score is the average of these evaluations.
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Table 5. Evaluation metrics of regression models.

Evaluation Index Equation

Mean Absolute Error MAE =
∑n

i=1|y(i)−h(i)|
n

where n is sample size;

Mean Squared Error MSE =
∑n

i=1 (y
(i)−h(i))
n

2

Nash–Sutcliffe model efficiency (or determination coefficient)
NSE = 1− ∑n

i=1 (y
(i)−h(i))

2

∑n
i=1 (y

(i)−y)
2 ,

where y = 1
n ∑n

i=1 y(i).

Linear correlation coefficient (or Pearson correlation coefficient)
R(y, h) = ∑n

i=1(h(i)−h)(yi−y)

∑n
i=1(yi−y)2 ∑n

i=1(h(i)−h)
2 ,

h = 1
n

n
∑

i=1
h(i)

Computational experiments were performed using a specially developed program
in Python with the use of such libraries as numpy, sklearn, matplotlib, pandas, statistics,
xgboost, pickle, time, shap, which provides reading, preprocessing of initial data, formation
of dataframes, application of machine learning models, output of results and evaluation
of the impact of input parameters. The computational experiments were performed on a
computer with an Intel(R) Core(TM) i7-10750H processor, equipped with 32 GB of RAM
and discrete video card Nvidia GeForce GTX 1650 Ti.

The purpose of the computational experiments is not only to select the most accu-
rate algorithm, but also to evaluate its robustness under different combinations of input
parameters and dataset content.

5. Results
5.1. Preprocessing and Features Engineering

The preliminary experiments performed using Dataset-1 showed that using pixel-
Count as input data and Mean as a target column gives a relatively low result (NSE =
0.46). To improve it, the initial values were pre-processed and additional input values were
generated. First of all, “pixelCount_Clo”, “month”, “year”, season (1—spring, 2—summer,
3—autumn), gradient of water mirror area change, day number in a year and the value of
the area in the previous measurement were used as input values in addition to pixelCount.
Secondly, we removed anomalous values, which include those in which pixelCount is high
and mean water level is low and vice versa. We believe that such errors were made in
the pixel count calculation process. Moreover, the area-averaged spectral ranges of the
Sentinel-2 satellite were added (Table 2). These measures made it possible to increase
the coefficient of determination by two times. The process of computational experiments
was carried out in such a way that the new input variables were sequentially added and
measures were taken to clean the input data from the anomalous values:

• Columns “pixelCount_Clo”, “month”, “year” were added (NSE = 0.79).
• The values for the year 2017 were removed, since many anomalous values (NSE = 0.81)

were found. The records were cleared of anomalous values in the following way. First,
the average pixelCount values were calculated. Then, there were removed those rows
in which the pixelCount value is high (by γσ sigma is greater than the mean) and the
level is low (by γσ sigma less) and vice versa, where σ is the variance of the values, γ
is the empirical coefficient controlling the allowable spread of the data (the best value
of NSE is obtained at γ = 0.5).

• Gradient of total river surface area values (sign of the difference between the cur-
rent pixelCount and the previous one), season (1—spring, 2—summer, 3—autumn)
(NSE = 0.87) were added.

• pixelCount value for previous date was added (NSE = 0.881).
• Area-averaged values of spectral ranges was added (NSE = 0.892).
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The process of tuning parameters of machine learning models, the obtained opti-
mal parameters of the models, and the process of obtaining the final result are given in
Appendix B.

The results obtained by using Dataset-1 are summarized in Table 6.

Table 6. Quality metrics for machine learning models.

Regression Model MAE MSE NSE R Variance of MAE Variance of
NSE Duration, sec.

XGB 12.457 277.378 0.892 0.948 2.211 0.001 26.6537

RF 13.093 313.232 0.876 0.939 2.447 0.001 63.1779

LR 16.47 487.59 0.808 0.906 3.527 0.003 0.2334

Lasso 15.898 459.063 0.819 0.911 3.27 0.003 0.2753

ElasticNet 16.824 509.744 0.798 0.9 3.559 0.003 0.2084

LGBM 13.316 316.898 0.875 0.938 2.524 0.002 15.0877

Ridge 14.189 363.815 0.855 0.929 2.829 0.003 0.432

SVM 14.767 406.513 0.839 0.92 3.482 0.003 1.1559

Table 6 shows the mean values of MAE, MSE, NSE and R, as well as the variance of the
estimates. It can be seen that the best results are demonstrated by boosting (XGB, LGBM)
and bootstrap aggregation (RF) models. The mean error of water level estimation does not
exceed 12.46 cm. Good results are also shown by the models based on linear regression. The
results presented in Tables 5–9 obtained by using cross-validation of random permutations
methods as mentioned in Section 4.

5.2. Robustness Analysis

In practice, incoming data may not be cleared of anomalous values, or anomalous
values may not be due to physical reasons (disappearance or appearance of new shoals at
high and low water levels, non-linear nature of changes in the area of the river bed, etc.).

Additional experiments were performed to check the stability of the algorithms
(Appendix C):

(a) Using the full dataset for the period from 2017 to 2021

1. Without removal of anomalous values (277 records)
2. Removal of anomalous values at γ = 1.0 (270 records)
3. Removal of anomalous values at γ = 0.5 (270 records)

(b) Using a reduced dataset for the period 2018 to 2021

4. No removal of anomalous values (244 records)
5. Removal of anomalous values at parameter γ = 1.0 (244 records)
6. Removal of anomalous values at parameter γ = 0.5 (232 records)
7. Additionally, all records with water levels greater than 280 cm were deleted.

(164 records).

The experimental results are grouped in Figure 7, where the corresponding experi-
ments from 1 to 7 are color-coded.

It is evident that the most robust results for all variants of data processing are demon-
strated by the XGB and LGBM boosting algorithms. The smallest mean error (10.25 cm) is
provided by the RF algorithm, but with a significantly reduced set of input values (164).

In the second experiment, the “simplified” dataset (Dataset-2) was used. A simplified
dataset was generated based on the water surface of the entire 40-kilometer section of the
river bed (Figure 6). Despite such a “simplified” approach, the XGB model results are in the
“good” category (R2 ≥ 0.80) (Table 7). All statistical results of computational experiments
mentioned in Tables 7–9 are presented in Supplementary Materials.
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Figure 7. Comparative results of machine learning algorithms (R2) under different data preprocessing
parameters.

Table 7. Quality metrics of the “simplified” model.

Regression Model MAE NSE R

XGB 17.088 0.812 0.907

RF 17.427 0.776 0.887

LR 34.667 0.28 0.569

Lasso 34.61 0.282 0.57

ElasticNet 34.665 0.29 0.571

LGBM 18.858 0.764 0.879

Ridge 28.191 0.493 0.719

SVM 28.941 0.415 0.687

MLP 31.728 0.393 0.697

The simulation results obtained by using the simplified approach can be slightly
improved by performing the data cleaning with parameter γ = 1.0 (30 out of 277 records
are marked as erroneous) (Table 8).

Table 8. Quality metrics of the “simplified” model after cleaning the input data from the anoma-
lous values.

Regression Model MAE NSE R

XGB 14.039 0.827 0.914

RF 14.256 0.808 0.904

LR 30.52 0.223 0.529

Lasso 30.43 0.231 0.534

ElasticNet 30.598 0.241 0.532

LGBM 15.499 0.788 0.891

Ridge 23.385 0.516 0.735

SVM 24.374 0.429 0.701

MLP 19.075 0.642 0.831
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6. Discussion

The results obtained are illustrated in Figures 8 and 9. Figure 8 shows a scatterplot of
the water level measured and predicted by XGB for Dataset-1. The diagonal (red) line in
the figure shows the optimum line, where the prediction value coincides with the actual
value (y).
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Figure 9. Comparison predicted (red line) and actual (black) water level.

Figure 9 shows the dynamics of changes in the water level measured at the gauging
station (black line) and the predicted values (red line). Calculations were performed using
the XGB model without removing extreme water level values.

Overall, the ensemble machine learning models demonstrated good stability results,
providing an NSE value close to 0.8 using datasets 1 and 2. At the same time, the linear
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models show the results that significantly depend on the preliminary marking of the river
bed and data preprocessing. If the riverbed is marked by an expert (Dataset-1) and the
set of input data is significantly reduced (extreme water level values are removed), linear
models show a good result (NSE > 0.8). Linear models show unsatisfactory results (NSE =
0.36) (with the exception of ridge regression) if the markup is not performed (Dataset-2)
and extreme data are not removed. The markup of the riverbed may be required quite
often due to annual changes in the morphology of the Ili River channel. Therefore, the
obtained results allow us to recommend the ensemble machine learning models for further
use since they are more accurate and less dependent on expert marking of the river bed.

Part of the process of analyzing the output of machine learning models is to rank
the input parameters based on their contribution to the model output. This allows us to
identify the most influential parameters, the accuracy of which is of the most importance.

The estimation of the impact of the model input parameters was performed using the
well-known agnostic model SHAP [81], which is a part of the group of explainable machine
learning algorithms [82]. In contrast to the widely used Gini index, SHAP allows estimating
the direction of influence and can work in the case of multicollinearity (Appendix D).

Figure 10 summarizes the results obtained. Input parameters are ranked by their
influence on the modeling result.
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Figure 10. Level of influence of input parameters of the “simplified” model.

The most influential input parameter is PixelCountRiver (water surface area). The
least influential input parameter is season. The value of each parameter affects the model
outputs to a greater or lesser extent. For example, high values of PixelCountRiver (red)
and low values of B12 (blue and light blue) are associated with a high value of the target
variable (mean—average water level). High water level is more specific for the second
half of the year (high value of daysOfYear), etc. We can see, that in some cases the high
value of feature means a high water level (daysOfYear, B2, B3, B1), but in other cases
it is the other way around (B12, B11). It should be noted that input variables affect the
result in the aggregate, so simple removal of some insignificant variables can lead to a
sharp deterioration of the result. The quality of the obtained level estimates is close to that
demonstrated by the satellite altimetry and methods based on SAR data with a marginal
accuracy of about 1 decimeter. The developed method is sufficiently robust to variations of
input parameters and significantly exceeds the results described in publications [53,54].

The developed method was used to predict the discharge of the Ili River. For this
purpose, the same riverbed section was used, but the value of daily river discharge was
used as the target value of the model. The obtained results are summarized in Table 9.
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Table 9. Quality metrics of machine learning models predicting the Ili River discharge.

Regression Model MAE NSE R

XGB 37.219 0.766 0.88

RF 38.169 0.756 0.876

LR 53.537 0.528 0.746

Lasso 54.367 0.515 0.738

ElasticNet 62.273 0.431 0.688

LGBM 40.808 0.72 0.854

Ridge 47.68 0.586 0.779

SVM 49.489 0.585 0.779
Once again, the ensemble machine learning (XGB, RF, LGBM) demonstrates the best results (highlighted in bold).

Once again, the ensemble machine learning (XGB, RF, LGBM) demonstrates the best
results (highlighted in bold). The results are close to good in accordance with [79] (R2 close
to 0.8).

The average error is about 37 cubic meters per second. In the available dataset, the
average discharge value is 378 cubic meters per second and the maximum discharge value
is 904 cubic meters per second.

However, in general, the quality indicators of the model are lower than for water level
forecasting. It can be assumed that forecasting the discharge requires a longer bed length
or a threshold function MNDWI1 as a function of suspended material content in the water.
The large amount of waterborne suspended sediment changes the typical MNDWI1 values
for the water mirror.

Despite the good results, the proposed method has certain drawbacks. The following
main limitations of the method can be identified:

• Limited spatial resolution, making the method suitable only for relatively large rivers.
• Dependence on the state of the atmosphere. The method does not allow determining

the water level in case of significant cloud cover.
• Limited applicability of the model for other regions with different riverbed morphology.
• High accuracy of the method depends on expert marking of the riverbeds.

7. Conclusions

Changes in the volume of river discharge not only have a significant impact on
economic activity but can lead to catastrophic events. For this reason, estimation of the
water level in rivers and calculation of discharge volumes are important tasks that are
widely performed at hydrometric stations. In the case of a sparse network of hydrometric
stations or their absence in inaccessible or sparsely populated areas, it is possible to use
the remote sensing data as a temporary or relatively permanent measure of water level
control. The use of such virtual gauging stations reduces costs, increases the reliability of
level measurements and allows implementation of the reverse analysis of data, which is
important in reconstructing events resulting in emergency situations. For mountain rivers
with meandering beds, this method of water level estimation is additionally justified by
the fact that the installation of permanent hydrometric stations on the constantly changing
channel is difficult, and the accuracy of measurements is not guaranteed. In this paper, a
relatively simple method of water level estimation based on the use of machine learning is
proposed; its advantages are satisfactory accuracy (NSE > 0.80) and robustness in a wide
range of values of input parameters. The obtained results are the best ones for today in the
task of predicting the water level in the Ili River using the remote sensing data.

At the same time, the implementation of the virtual stations requires calibration of
the remote sensing data using the information from ground hydrometric stations, which
is limited by the frequency of satellite flights, spatial resolution of images, temporal syn-



Remote Sens. 2023, 15, 5544 18 of 25

chronization of satellite flights with measurements at the station and weather. Despite the
limitations, the proposed method of the river water level estimation using the ensemble
machine learning provides acceptable accuracy for the practice; it is quite stable and can be
used as a duplicate in case of a limited number of hydrological gauging stations. In the
future it is planned:

• To assess the applicability of the methods for other large rivers of South Kazakhstan.
• To evaluate the possibility of using SAR data to improve the accuracy of estimating

the width of the river bed.
• To apply the methods of image processing using deep learning models, for exam-

ple, convolutional networks, which will require a significant increase in the set of
input data.

• To investigate the relationship between the length of the virtual gauging station and
the accuracy of the forecast.

• More precise tuning of parameters and hyperparameters of machine learning models
using, for example, evolutionary programming.
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Appendix A

Table A1. Spectral ranges Sentinel-2.

Sentinel-2 Bands

Sentinel-2A Sentinel-2B

Central Wavelength
(nm) Bandwidth (nm) Central Wavelength

(nm) Bandwidth (nm) Spatial Resolution
(m)

Band 1—Coastal aerosol 442.7 21 442.2 21 60

Band 2—Blue 492.4 66 492.1 66 10

Band 3—Green 559.8 36 559.0 36 10

Band 4—Red 664.6 31 664.9 31 10

Band 5—Vegetation red edge 704.1 15 703.8 16 20

Band 6—Vegetation red edge 740.5 15 739.1 15 20

Band 7—Vegetation red edge 782.8 20 779.7 20 20

Band 8—NIR 832.8 106 832.9 106 10

Band 8A—Narrow NIR 864.7 21 864.0 22 20

Band 9—Water vapor 945.1 20 943.2 21 60

Band 10—SWIR—Cirrus 1373.5 31 1376.9 30 60

Band 11—SWIR 1613.7 91 1610.4 94 20

Band 12—SWIR 2202.4 175 2185.7 185 20

Appendix B. Tuning Parameters and Hyperparameters of Machine Learning Models

Several steps were preceded obtaining the final result characterizing the quality of the
machine learning models.

(1) At the first step, we searched for the optimal combination of input parameters of the
models. For this we used the MLextend library [83,84].

(2) In the second step, hyperparameters were configured using the GrigSearch() method.
The custom algorithms were trained by splitting the dataset once into training and
testing. Table A2 lists the tunable hyperparameters of the regression models and their
best combinations found using GrigSearch().

Table A2. Hyperparameters of regression models and their best combinations found using
GrigSearch().

Regression
Model Model Parameters Best Params

RF
‘max_depth’: [32, 16, 8, 4, 2],

‘n_estimators’: [50, 100, 400, 1000],
‘max_features’: [4, 7, 14]

max_depth = 16,
max_features = 4,

n_estimators = 100

SVR
‘kernel’: [‘linear’,’rbf’],

‘C’: [0.015, 0.03, 0.05, 0.025, 0.03, 1, 100, 1000, 2000,
3000], ‘gamma’: [0.01, 0.08, 0.1, 0.15, 0.2, 0.25, 1]

C = 1000,
Gamma = 0.2,
Kernel = ‘rbf’

LGBM

‘learning_rate’: [0.01, 0.1, 0.25, 0.6, 0.7],
‘max_depth’: [32, 16, 8, 4, 2],

‘n_estimators’: [1000, 400, 50, 100],
‘min_child_samples’: [2, 10, 20, 50],

‘min_child_weight’: [0.0001, 0.001, 0.01, 0.1, 1,2]

learning_rate = 0.01,
max_depth = 2, min_child_weight = 2,

min_child_samples = 2,
n_estimators = 1000

XGB

‘gamma’: [0, 0.1, 0.2, 0.8, 3.2, 12.8, 25.6, 102.4, 200],
‘learning_rate’: [0.01, 0.1, 0.25, 0.6, 0.7],

‘max_depth’: [32, 16, 8, 4, 2]
‘n_estimators’: [50, 100, 400, 1000]

‘colapse_bytree’: [0.1, 0.2, 0.4],
‘min_child_weight’: [2, 4, 6]

Gamma = 0.0,
learning_rate = 0.25,

max_depth = 8
n_estimators = 400

colapse_bytree = 0.1
min_child_weight = 2

(3) Then all algorithms were performed with a 50-fold split into training and test. Algo-
rithms with poor performance were excluded from their totality, the execution time
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of which was much (several times) above average (some regression models based on
SVM).

(4) At the last stage, the algorithms were again trained and tested with a 200-fold split
into training and test datasets, using the method of cross-validation of random per-
mutations (ShuffleSplit). The results obtained are shown in Tables 5–9.

For the LR, Lasso, Ridge, ElasticNet, SVM, MLP models, the input data was normalized
using MinMaxScaler().

Appendix C. Results of Computational Experiments at Different Processing of
Initial Data

Table A3. Experiment 1. The full dataset for the period from 2017 to 2021 is used (277 records).

Regression Model MAE MSE NSE R Variance of MAE Variance of
R2 Duration

XGB 15.024 425.157 0.845 0.924 3.881 0.002 28.9665

RF 16.884 561.712 0.795 0.897 3.609 0.004 73.8551

LR 21.171 846.091 0.691 0.842 5.241 0.007 0.2573

Lasso 20.934 816.489 0.702 0.847 5.194 0.006 0.2942

ElasticNet 22.077 846.867 0.692 0.842 5.312 0.005 0.2165

LGBM 16.258 473.927 0.827 0.913 3.435 0.003 17.3745

Ridge 17.877 631.565 0.767 0.885 5.53 0.015 0.4069

SVM 18.049 657.847 0.759 0.879 6.382 0.012 1.1061

Table A4. Experiment 2. The anomalous values at γ = 1.0 are removed from dataset (270 records are
used).

Regression Model MAE MSE NSE R Variance of MAE Variance of
R2 Duration

XGB 15.068 432.232 0.838 0.92 3.301 0.002 26.9609

RF 16.46 540.478 0.792 0.894 3.876 0.004 73.702

LR 20.741 816.747 0.687 0.84 6.301 0.007 0.2575

Lasso 20.493 793.558 0.695 0.843 6.016 0.007 0.2713

ElasticNet 21.513 813.917 0.688 0.838 5.291 0.005 0.2077

LGBM 16.173 478.723 0.816 0.907 4.111 0.003 16.5896

Ridge 17.654 639.832 0.752 0.879 5.602 0.018 0.4608

SVM 17.887 670.769 0.741 0.871 5.114 0.016 1.1679

Table A5. Experiment 3. The anomalous values at γ = 0.5 are removed from dataset (270 records)
(270 records are used).

Regression Model MAE MSE NSE R Variance of MAE Variance of
R2 Duration

XGB 14.659 401.71 0.851 0.926 4.214 0.002 26.0439

RF 16.24 514.742 0.797 0.899 3.697 0.005 70.7347

LR 20.177 786.327 0.69 0.845 4.884 0.011 0.2214

Lasso 19.696 765.638 0.699 0.847 4.352 0.009 0.2673

ElasticNet 20.734 776.286 0.695 0.843 3.917 0.007 0.2154

LGBM 16.097 477.845 0.812 0.905 3.957 0.004 16.6644

Ridge 16.502 526.122 0.792 0.897 3.918 0.006 0.4448

SVM 17.013 569.296 0.776 0.888 4.308 0.006 1.1549
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Table A6. Experiment 4. The reduced dataset for the period 2018 to 2021 is used (244 records).

Regression Model MAE MSE NSE R Variance of MAE Variance of
R2 Duration

XGB 13.485 334.454 0.867 0.935 3.172 0.001 27.979

RF 14.91 413.625 0.837 0.919 4.017 0.003 68.1341

LR 19.406 726.094 0.711 0.857 6.697 0.012 0.2553

Lasso 18.865 688.109 0.726 0.863 6.663 0.011 0.356

ElasticNet 19.008 678.672 0.731 0.863 6.495 0.008 0.2832

LGBM 14.915 388.547 0.847 0.924 3.043 0.002 16.4032

Ridge 15.794 473.48 0.812 0.909 4.2 0.005 0.4099

SVM 16.517 509.542 0.8 0.9 5.605 0.004 1.0911

Table A7. Experiment 5. The anomalous values at parameter γ = 1.0 were removed (244 records
are used).

Regression Model MAE MSE NSE R Variance of MAE Variance of
R2 Duration

XGB 13.485 334.454 0.867 0.935 3.172 0.001 26.9818

RF 14.908 413.881 0.837 0.919 4.145 0.003 66.2989

LR 19.406 726.094 0.711 0.857 6.697 0.012 0.2304

Lasso 18.865 688.109 0.726 0.863 6.663 0.011 0.3212

ElasticNet 19.008 678.672 0.731 0.863 6.495 0.008 0.1995

LGBM 14.915 388.547 0.847 0.924 3.043 0.002 16.1009

Ridge 15.794 473.48 0.812 0.909 4.2 0.005 0.363

SVM 16.517 509.542 0.8 0.9 5.605 0.004 1.126

Table A8. Experiment 6. The anomalous values at parameter γ = 0.5 were removed (232 records
are used).

Regression Model MAE MSE NSE R Variance of MAE Variance of
R2 Duration

XGB 12.457 277.378 0.892 0.948 2.211 0.001 26.6537

RF 13.093 313.232 0.876 0.939 2.447 0.001 63.1779

LR 16.47 487.59 0.808 0.906 3.527 0.003 0.2334

Lasso 15.898 459.063 0.819 0.911 3.27 0.003 0.2753

ElasticNet 16.824 509.744 0.798 0.9 3.559 0.003 0.2084

LGBM 13.316 316.898 0.875 0.938 2.524 0.002 15.0877

Ridge 14.189 363.815 0.855 0.929 2.829 0.003 0.432

SVM 14.767 406.513 0.839 0.92 3.482 0.003 1.1559
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Table A9. Experiment 7. The reduced dataset for the period 2018 to 2021 are used. Additionally, all
records with water levels greater than 280 cm were deleted. (164 records are used).

Regression Model MAE MSE R2 R Variance of MAE Variance of
R2 Duration

XGB 10.267 192.933 0.882 0.943 3.021 0.003 24.6675

RF 10.253 196.141 0.879 0.942 2.84 0.004 54.0638

LR 12.432 288.842 0.823 0.916 3.572 0.007 0.2274

Lasso 12.663 274.545 0.832 0.92 2.764 0.005 0.2245

ElasticNet 13.607 308.322 0.812 0.909 3.294 0.005 0.1985

LGBM 11.423 232.186 0.858 0.931 3.157 0.004 12.1241

Ridge 11.269 232.433 0.857 0.932 3.045 0.003 0.3597

SVM 11.616 245.88 0.848 0.929 3.064 0.004 0.8737

Appendix D. The Difference between SHAP Value and Gini Impurity Index

In the group of machine learning methods using decision trees, the importance of a
feature can be computed as the total reduction in the criterion brought by that feature (Gini
importance). However, Gini importance does not allow us to specify in which direction
this property is affected when it is increased or decreased. Moreover, its main use is to
properly partition a decision tree into subtrees. At the same time, SHAP (Shapley Additive
exPlanations) allows estimating the direction of influence and can work in the case of a
significant dependence between the input parameters. It uses a game theory approach
to determine the feature importance in the machine learning models. Its essence is as
follows. We must assign an importance value to each property that reflects the impact on
model prediction when that property is enabled. To calculate this effect, the model f(S∪{i})
is trained with this property, and the other model—f(S)—is trained with the property
excluded. The predictions of these two models are then compared on the current input
signal f(S∪{i} (xS∪{i}))—fS (xS), where xS represents the values of the input properties in the
set S. Since the effect of eliminating a feature depends on other features in the model, the
specified difference is calculated for all possible subsets of S⊆n\{i}. The weighted average
of all possible differences is then calculated:

ϕi = ∑
S⊆{1,2,...,n}\{i}

|S|!(n− |S| − 1)!
n!

( f (S ∪ {i})− f (S)),

These quantities are called SHAP values. Having calculated these values for all
parameters, we can then compare them with each other to identify the most significant ones.
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