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Abstract: As the degradation factors of remote sensing images become increasingly complex, it be-
comes challenging to infer the high-frequency details of remote sensing images compared to ordinary
digital photographs. For super-resolution (SR) tasks, existing deep learning-based single remote
sensing image SR methods tend to rely on texture information, leading to various limitations. To fill
this gap, we propose a remote sensing image SR algorithm based on a multi-scale texture transfer
network (MTTN). The proposed MTTN enhances the texture feature information of reconstructed im-
ages by adaptively transferring texture information according to the texture similarity of the reference
image. The proposed method adopts a multi-scale texture-matching strategy, which promotes the
transmission of multi-scale texture information of remote sensing images and obtains finer-texture
information from more relevant semantic modules. Experimental results show that the proposed
method outperforms state-of-the-art SR techniques on the Kaggle open-source remote sensing dataset
from both quantitative and qualitative perspectives.

Keywords: remote sensing; multi-scale; texture transfer; super-resolution; deep residual network

1. Introduction

Remote sensing is an important ground observation technology that has developed
rapidly in recent years. Given its unique advantages of extensive coverage, regular temporal
regularity, and high accessibility, it has been widely used in disaster detection and early
alerting [1], resource exploration [2], and land cover classification [3–6]. There are broad
application prospects in environmental testing and other fields [7–12]. Due to space imaging
equipment and communication bandwidth limitations, the resolution of images captured
from satellite sensors is limited. In addition, the image quality is subject to various factors,
including atmospheric turbulence, imaging process noise, and motion blur, leading to
further reduced resolution and quality. Super-resolution (SR) algorithms can enhance
acquired remote sensing images, thus, bypassing hardware limitations.

In the past few decades, SR technology has been widely applied to enhance the quality
and resolution of remote sensing images. Existing remote sensing SR methods can be catego-
rized into two main types: methods based on traditional algorithms [13] and methods based
on deep learning [14,15]. The traditional learning-based super-resolution methods can
learn prior knowledge from a data sample library by constructing learning models, thereby
establishing a mapping relationship between low-resolution (LR) and high-resolution (HR)
images. This process generates high-frequency details and texture information lost during
the downscaling. Zheng et al. [16] first applied sparse representation theory to the field
of remote sensing image SR, establishing overcomplete coupled high–low resolution dic-
tionaries and solving sparse coefficients using an orthogonal matching pursuit strategy.
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Hou et al. [17] introduced a global joint dictionary model and non-local self-similarity for
global and local constraints, establishing the intrinsic connections between image blocks
and global information. Zhang et al. [18] proposed a sparse residual dictionary learning
method, directly reconstructing residual images with a residual dictionary to alleviate the
ringing effects of unstructured pixel-domain high-low resolution dictionaries. Wu et al. [19]
proposed a SR framework based on a multi-feature dictionary, constructing multiple LR
dictionaries for representation and overlay in the HR space.

With the widespread use of convolutional neural networks (CNN) in SR tasks, the deep
learning-based remote sensing SR method has become the mainstream research direction
of image SR methods. Deep learning-based methods usually learn complex mapping
functions between LR and HR patches through CNN. Considering its outstanding learning
ability, Shi et al. [20] built a sub-pixel CNN that builds a mapping mechanism from LR
to HR. Kim et al. [21] proposed a novel network method with deep residual learning to
ease the training process. Lai et al. [22] designed a pyramid network that fuses multi-scale
residuals in the feature domain. Luo et al. [23] achieved excellent results by replacing zero
paddings with self-similarity to prevent useless information. Wang et al. [24] proposed
an SR method that preserves the temporal correlation between frames. Ledig et al. [25]
introduced perceptual loss and proposed an SR method for generative adversarial networks
(GAN) to obtain images with more realistic textures. The generation network guides image
reconstruction with a perceptual loss so that the reconstruction result is close to the original
HR image. The discriminant network compares the reconstructed image to the original HR
image, and the reconstructed image is output if it can pass the discriminant network.

Current SR methods primarily target natural images, but they fall short when applied
to the diverse shooting angles and multi-scale characteristics present in large-scale remote
sensing data. Existing methods lack consideration for these factors, making it crucial to
develop an SR method specifically tailored for accurately reconstructing remote sensing
images with intricate textures. Drawing inspiration from the effectiveness of multi-angle
priors in enriching prior information [26], this paper introduces reference images (Ref)
to enhance the prior information of training samples. The algorithm is adapted for the
reconstruction of remote sensing images by aligning feature texture information. The pro-
posed network initially matches local texture information between the Ref image and the
LR image, then conveys the identified texture features to the reconstruction network via
the depth residual module. The final output is high-quality remote sensing images with
detailed texture information. Extensive experimental results demonstrate the algorithm’s
superiority over other state-of-the-art methods, both quantitatively and qualitatively.

We summarize the major contributions of this work as follows:
(1) We propose a novel remote sensing image RefSR method based on a multi-scale

texture transfer network (MTTN), which can effectively address the issue of insufficient
texture detail information in the reconstruction process of the single remote sensing image
SR method.

(2) We propose a novel multi-scale texture transfer method. The proposed method
uses residual blocks with different convolution kernel sizes to extract texture information of
different scales from LR and Ref remote sensing images and take advantage of the texture
details provided by Ref images to facilitate the reconstruction of LR images.

(3) We conduct extensive experiments on the challenging Kaggle open dataset, and the
experimental results demonstrate the effectiveness and adaptability of our suggested
MTTN method. In addition, the results also point to its great potential in subsequent
remote sensing image classification tasks.

The remainder of this article is structured as follows. Section 2 presents related
work, including existing SISR of remote sensing images and reference-based SR methods.
Section 3 describes the principal method of this model in detail. Section 4 introduces the
experimental results. Section 5 concludes this study and Section 6 discusses future work.
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2. Related Work

Over the past decades, deep learning-based SR methods have demonstrated excel-
lent reconstruction performance in evaluation indicators or visual quality compared to
traditional methods. This section introduces the single image super-resolution (SISR) and
reference-based super-resolution (RefSR) of remote sensing images.

2.1. SISR of Remote Sensing Images

The SISR method for remote sensing images has recently drawn increasing attention
due to the unique value of high-quality remote sensing images in application scenarios. In ad-
dition to relying on advanced hardware, the SR method offers an efficient way to enhance
the quality of remote sensing images. Recently, with the rapid popularity of convolutional
neural networks in acquiring high-quality images, many researchers have proposed a large
number of deep learning-based SISR methods for remote sensing images. Lei et al. [27]
designed a CNN-based network framework to learn the local details and global prior in-
formation of remote sensing images. Xu et al. [28] proposed a deep memory connection
network that reconstructs high-quality remote sensing images through local and global mem-
ory connections, so the reconstruction performance of remote sensing images is effectively
improved. Lu et al. [29] employed a novel multi-scale residual neural network method. This
method extracts image blocks of different sizes as multi-scale information and then fuses
multi-scale high-frequency information to reconstruct images. Jiang et al. [30] designed an
edge enhancement-based SR network to enhance the features of remote sensing images using
edge detail information extracted by the network. Dong et al. [31] designed a multi-sensory
attention method to obtain multi-level information of remote sensing features through the
proposed feature extraction module. Haut et al. [32] designed a network to extract more
related features through combining residual units and skipping connections. Qin et al. [33]
designed a deep gradient-aware network with image-specific enhancement to preserve more
gradient details in reconstructed images. Zhang et al. [34] proposed a novel attention module
to capture finer remote sensing image texture information through this module. Lei et al. [35]
created a new remote sensing image SR framework by introducing a transformer to extract
multi-level features and better fuse the features of different dimensions. Liu et al. [36] de-
signed a graph neural network (GNN) based SISR method, which can better consider the
ill-conditioned phenomena in remote sensing images.

Despite the great progress in aforementioned SISR methods, most of these methods rely
on paired images and local information. However, when confronted with certain specific
and complex textures, they fail to capture sufficient prior information. Therefore, the SISR
methods that handle remote sensing imagery have been criticized for their limitations in
handling multi-source data.

2.2. Reference-Based Super-Resolution

In contrast to the SISR method, the RefSR method achieves the SR reconstruction
process by introducing other related images. For the Ref image to effectively aid the SR
reconstruction process, texture information similar to the LR image is typically required.
Consequently, the Ref image is usually selected from related video frames [37,38] or photos
taken from various angles [39]. Recently, SR methods based on Ref images have made great
progress in general image methods. Zheng et al. [40] used cross-scale warping to create an
end-to-end fully convolutional deep neural network. This network improves the accuracy
of reconstructed images by performing end-to-end spatial alignment at the pixel level.
Zhang et al. [41] employed a novel RefSR model that restores the target image through
texture migration of the Ref image. Xie et al. [42] designed a matching and exchange
module for the RefSR task to extract similar texture and high-frequency features from the
Ref image by appropriately assigning the gradient to the previous feature encoding module.
Yang et al. [43] designed a novel texture transformer model that transmits HR texture from
the Ref image through a texture converter and attention module. Huang et al. [44] proposed
a novel RefSR framework, which includes a texture extraction module and a texture transfer
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module to more fully transfer textures in an adaptive manner. Dong et al. [45] employed
a GAN-based RefSR network, mainly using the relevant attention module that improves
the network’s reconstruction ability through gradient-assisted alignment. Cai et al. [46]
designed a texture transformer for remote sensing image SR algorithm, which reduces the
SR model’s dependence on Ref images through U-Transformer.

The above-mentioned RefSR method introduces a new perspective for addressing
remote sensing SR tasks. While the RefSR method offers more possibilities for remote
sensing image super-resolution compared to SISR methods, existing RefSR methods often
overlook the spatial diversity features of remote sensing images. These features contain
valuable information that can significantly benefit remote sensing SR tasks. To address this
gap, we have developed an innovative multi-scale texture transfer model to enhance the
performance and robustness of RefSR. By extracting texture information from reference re-
mote sensing images, this model further aids in extracting multi-scale information from the
original low-resolution images, thereby reconstructing more refined remote sensing images.

3. Method

The main idea of the proposed method is to reconstruct SR images ISR from LR
remote sensing images ILR and similar Ref images IRe f , and then synthesize a reasonable
texture subject to IRe f , while maintaining consistency with the ILR content. The proposed
model’s overall network structure is shown in Figure 1. The multi-scale texture transfer
method takes into account the semantic and textural similarity of ILR and IRe f images and
can better suppress irrelevant textures while transferring related remote sensing image
texture features.

Figure 1. Framework of the proposed multi-scale texture transfer network (MTTN). The specific
structure of RBsA, RBsB, and RBsC are shown in Figure 2.

Figure 2. Illustration of the residual blocks (RBs) in the proposed MTTN model. The RBsA, RBsB,
and RBsC represent RBs with different convolution kernel sizes.



Remote Sens. 2023, 15, 5503 5 of 17

3.1. Feature Swapping

The first step in our MTTN is to swap remote sensing image features. The design
algorithm searches the entire remote sensing reference image for locally similar multi-scale
textures, and these extracted multi-scale textures can be used to exchange the texture
features of ILR with enhanced remote sensing SR image reconstruction. The multi-scale
texture is then transferred directly to the final output ISR via feature search in HR space
coordinates. Specifically, we first extract the corresponding feature map on the ILR, and then
sample the extracted feature map twice to obtain an enlarged LR image ILR↑ with the same
resolution as the IHR. We also apply the same upscaling factor for IRe f before performing
bicubic interpolation sampling to obtain a Ref image block IRe f ↓↑ matching the up-sampled
ILR↑. As the LR and Ref images’ data sources may differ, we compute texture similarity
in the high-resolution feature space φ(I) to emphasize structure and texture information,
and we apply the inner product method to compute feature similarity between image pairs:

hi,j =

〈
Ki
(
φ
(

ILR↑)), Ki(φ(IRe f ↓↑))
‖Ki(φ(IRe f ↓↑))‖

〉
, (1)

where Ki() denotes the i-th patch obtained from the high-resolution space, ‖‖ denotes
feature normalization. The Ref feature block performs the best matching for the reference
image features through a normalization function. Then we calculate the similarity between
image pairs via convolution operations on the LR patch. The kernel operation expression
of the Ref patch follows:

Nj = φ
(

ILR↑) ∗ Kj(φ(IRe f ↓↑))
‖Kj(φ(IRe f ↓↑))‖ , (2)

where Nj represents the Ref patch’s similarity graph. Nj(x, y) represents the texture simi-
larity between LR and Ref. We represent LR texture patches based on similarity scores by
creating swapped feature maps. The image patches in the feature map are represented as:

Kω(x,y) = Kj∗
(

φ
(

IRe f
))

, j∗ = arg max
j

Nj(x, y), (3)

where ω() corresponds to the patch center and the patch index. Note that while IRe f ↓↑ is
used for matching (Equation (2)), the original Ref IRe f is used for exchange (Equation (3))
to retain the high-frequency feature information. The final generated swap feature map is
then fed to the subsequent multi-scale texture transfer by calculating the average between
the swap feature maps.

3.2. Multi-Scale Texture Transfer

Our multi-scale texture transfer method merges the transferred texture data into the
generation network of various feature layers corresponding to various scales after the layer-
by-layer transfer of the feature maps extracted from the feature extraction network and
high-resolution reference images. The above-described procedure builds the exchanging
feature map Ml for multi-scale layer l, where the texture encoder ψl corresponds to the
scale being used.

To build the fundamental generative network, we use residual blocks (RBs) with
various convolution kernel sizes. The output φl of layer l can be recursively expressed as:

ψl = [Res(ψl−1∇Ml−1) + ψl−1]↑2×, (4)

where Res() represents the RBs, ∇ represents the channel cascade, and ↑2× represents the
use of sub-pixel convolution layer for 2×magnification. The remote sensing reconstruction
image is generated once the L layer has reached the desired HR resolution:

ISR = Res(ψl−1∇Ml−1) + ψl−1. (5)
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Unlike the traditional SISR method that only considers the texture difference between
ISR and IHR, the proposed MTTN network considers the texture variation between ISR

and IRe f . In other words, the texture of ISR must be similar to the swap feature map Ml .
Therefore, we define the texture loss Ltex as:

Ltex = ∑
l

λl
∥∥Gr

(
φl
(

ISR)× N∗l
)
− Gr

(
Ml × N∗l

)∥∥
F, (6)

where Gr() calculates the gamma matrices, and λl is the normalized exponent of the l layer.
N∗l represents the weight map of the input LR remote sensing image patch. The difference
between this weight map and ILR is the fact that texture owns a lower weight, leading to
lower texture loss. Thus, the texture transferred from IRe f to ISR can be enforced adaptively
based on the image quality of Ref image, resulting in more robust texture features.

3.3. Loss Function

To improve the visual quality of remote sensing reconstructed images, we design four
loss functions. In addition to introducing texture loss Ltex, our algorithm also introduces
reconstruction loss Lrec, perceptual loss Lper, and adversarial loss Ladv. The Lrec is a com-
monly used loss function in SR, and the Lper and the Ladv are the losses introduced by
the generation confrontation network in order to reconstruct a more realistic image. We
describe these loss functions below.

3.3.1. Reconstruction Loss

The Lrec is typically defined by the mean square error. The function aims to achieve a
higher peak signal-to-noise ratio (PSNR), and the L1-norm is adopted:

Lrec =
∥∥IHR − ISR

∥∥
1, (7)

3.3.2. Perceptual Loss

Many SR networks have introduced perceptual loss to achieve more realistic visual
quality. Therefore, our network also uses the perceptual loss function (Lper):

Lper =
1
V

C
∑

i=1

∥∥φi
(

IHR)− φi
(

ISR)∥∥
F, (8)

where V and C denote the volume and channel of the feature map, respectively. φi indicates
the i-th channel of the output feature map, and ‖‖F represents the Frobenius norm.

3.3.3. Adversarial Loss

The Ladv function can improve the sharpness of SR reconstructed images. Our network
uses the improved Ladv function in WGAN [26]:

Ladv = −EIHR

[
log
(

D
(

IHR, ISR
))]
−EISR

[
log
(

1− D
(

ISR, IHR
))]

, (9)

where D is a relativistic average discriminator [47].

4. Experiements

This section mainly introduces the experiments of the proposed MTTN network,
including the dataset in Section 4.1, the evaluation indicators in Section 4.2, the implemen-
tation details of the experiments in Section 4.3, the quantitative and qualitative analyses
with different methods in Section 4.4, and the ablation studies in Section 4.5.
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4.1. Dataset

In this study, we use the Kaggle open-source remote sensing competition dataset (https://
www.kaggle.com/c/draper-satellite-image-chronology/data). For the RefSR-based remote
sensing image problem, the texture similarity between input remote sensing image pairs
poses a significant impact on the SR results. In general, for training and evaluating RefSR
algorithms, Ref images with various similarities to LR images are preferred. However,
the Kaggle open-source dataset contains a wide variety of numbers and subject matter,
including 324 different scenarios. Therefore, we constructed a dataset of reference images
with various similarities based on the Kaggle dataset. We use the SIFT [48] feature-matching
method to collect image pairs with different similarities. This feature-matching method
collects Ref remote sensing images that are consistent with local texture-matching targets.
We also segment these images with a size of 320× 320, leading to a total of 1200 remote
sensing images, of which 600 are used as input images, and the other 600 are used as
reference images for training. Note that the Ref image fed to the algorithm is the same
scene as the input image but with different angles. Figure 3 presents some selected samples
of our dataset.

Figure 3. Selected samples of RefSR remote sensing datasets. (High-resolution image (left) and
Reference image (right)).

4.2. Evaluation Indicators

In this experiment, we use five popular objective evaluation metrics, including peak
signal-to-noise ratio (PSNR), structural similarity (SSIM) [49], feature similarity (FSIM) [50],
visual information fidelity (VIF) [51], and relative dimensionless global error in synthesis
(ERGAS) [52].

Peak Signal-to-Noise Ratio (PSNR), with decibel (dB) as unit, evaluates the similarity
between two images from the pixel similarity level. It is one of the most commonly used
objective measures to evaluate image quality:

PSNR = 10log10

(
2N − 1

)2

MSE
(10)

https://www.kaggle.com/c/draper-satellite-image-chronology/data
https://www.kaggle.com/c/draper-satellite-image-chronology/data
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MSE =
1

H ×W

H

∑
i=1

W

∑
j=1

[X(i, j)−Y(i, j)]2 (11)

where MSE is the mean square error between the original image X and the reconstructed
image Y, N is the number of bits of image pixels (most general optical images have 8 bits).
The image’s width and height are denoted by W and H, respectively. The PSNR ranges
from [0,+∞], where a higher value indicates more similarity between the images.

Structural Similarity (SSIM) is an objective evaluation index designed based on the
human visual system. By decomposing the image, it comprehensively evaluates the degree
of similarity between two images based on image brightness, contrast, and structure.
For images Ix and Iy, SSIM can be calculated as:

SSIM
(

Ix, Iy
)
=

(
2µIx µIy + C1

)(
2σIx Iy + C2

)
(

µ2
Ix
+ µ2

Iy
+ C1

)(
σ2

Ix
+ σ2

Iy
+ C2

) (12)

where µIx and µIy are the mean and luminance components between image pairs, re-
spectively, and σ2

Ix
and σ2

Iy
are the variance and contrast components of the two images,

respectively. σIx Iy is the covariance of images Ix and Iy, used for structural contrast com-
ponents. C1, C2, and C3 are the balance parameters. The value range of SSIM is [0, 1].
The larger the value, the greater the degree of image similarity.

Feature Similarity Index Mersure (FSIM) uses low-level image features to replace
image statistical features in SSIM and evaluates the feature similarity between two images
from three feature levels of image phase consistency and gradient magnitude. For images
Ix and Iy, FSIM can be are calculated as follows:

FSIM
(

Ix, Iy
)
=

∑ (Ix ,Iy)∈ΩSL
(

Ix, Iy
)
· PCm

(
Ix, Iy

)
∑ (Ix ,Iy)∈ΩPCm

(
Ix, Iy

) (13)

where Ω represents the pixel domain of the whole image, PCm(·) and SL(·) represent the
phase consistency and fusion similarity of the two images, respectively. The value range of
FSIM is [0, 1]. The higher the value, the more similar the images are.

Visual Information Fidelity (VIF) is based on statistical models of natural scenes, image
distortions, and the human visual system. For images Ix and Iy, VIF can be calculated as:

VIF
(

Ix, Iy
)
=

∑ I
(
C̄N ; F̄N | SN)

∑ I(C̄N ; ĒN | SN)
(14)

where I
(
C̄N ; F̄N | SN) and I

(
C̄N ; ĒN | SN) represent the information extracted from specific

subbands of the input image. N is the number of sub-bands in the wavelet domain, C is
the set of random vector fields, E is the random coefficient vector of the wavelet sub-band
of the original image, F is the random coefficient vector of the wavelet sub-band of the
distorted image, and S is an independent scalar factor.

The Erreur Relative Globale Adimensionnelle de Synthèse (ERGAS) provides a global
fusion evaluation. The smaller the value (the closer to zero), the better the performance.
ERGAS is defined as:

ERGAS = 100
h
l

√√√√ 1
p

L

∑
i=1

(
RMSE2(i)
MEAN(i)

)
(15)

where h and l represent the spatial resolution of the panchromatic image and the multispec-
tral image, respectively, P represents the number of bands of the fusion map, MEAN(i)
is the i-band of the mean Ref multispectral image, and RMSE(i) is the Ref image and the
fusion map MSE.
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4.3. Experimental Details

In this study, we adopt VGG19 [53] as the pre-training model of the network and
design an end-to-end remote sensing SR network. We first downsample the original remote
sensing images to LR images of 40× 40 pixels, and then perform data augmentation by
random horizontal flipping and 90-degree rotation during training, and adopt a learning
rate decay strategy during training. The batch size of the network is set to 9, and the
learning rate is initially set to 1× 10−4 with the reduction rate of each epoch of 0.9. We use
the ADAM optimizer [54] for network optimization, and the momentum parameter is set
to β1= 0.9 and β2= 0.999.

For training and testing, we use a server with NVIDIA 1080Ti GPU and Intel I7-8700
CPU. Our MTTN network is implemented based on the TensorFlow framework under
Ubuntu 16.04, CUDA 8.0 and CUDNN 5.1 systems. In our experiments, it takes about 20 h
to train our model with a 1080Ti GPU under the above settings for 50 epochs.

4.4. Quantitative and Qualitative Comparison with Different Methods

To demonstrate the superiority of MTTN, we compare it to recent SISR and RefSR
remote sensing imagery algorithms. The SR methods to be compared include Bicubic,
SRCNN [55], VDSR [21], SRResnet [25], SRFBN [56], SRRFN [57], SEAN [58], HAN [59],
MHAN [34], SRNTT [41], DLGNN [36], and HSENet [60]. Among them, DLGNN [36]
and HSENet [60] are the latest remote sensing SR algorithms that demonstrate great recon-
struction results. The competing algorithm also includes a RefSR method, i.e., SRNTT [41],
a classic RefSR method.

All of the competing methods were trained and tested on the Kaggle public dataset
that was recreated in this study to ensure a fair comparison. Table 1 displays the objective
evaluation indicators for all the algorithms, and the best outcomes are highlighted in red.
It can be seen from Table 1 that the proposed MTTN shows great performance on the five
objective evaluation indicators, i.e., PSNR, SSIM, FSIM, VIF, and ERGAS.

The above results prove that certain SR models designed for natural images are not
suitable for remote sensing images. The multi-scale texture transfer network we designed
is more effective in learning the texture and structure of remote sensing images, as it uses
texture information from Ref remote sensing images to assist in reconstructing texture
detail information in LR images.

Figures 4 and 5 presents a visual comparison of the experimental results and further the
advantage of the proposed MTTN network. We selected typical scenes, including playgrounds,
parking lots, ports, airports, buildings and roads, to evaluate the superiority of the MTTN
network. From the zoomed-in details in Figures 4 and 5, we notice the CNN-based approach
can reconstruct some texture details. However, as some models are directly transferred to
remote sensing SR tasks, the reconstructed remote sensing images contain notable blurred
contours. The GAN-based method presents better visual effects, but the generated artifacts
deteriorate the reconstructed remote sensing image. In comparison, our proposed MTTN
algorithm produces sharper edges and finer details than other competing algorithms. We also
observe that the proposed MTTN further enhances the visual performance of the reconstructed
image by combining the multi-scale residual information of Ref images.

4.5. Ablation Studies
4.5.1. Effectiveness of Reference Image

To verify the effectiveness of Ref images on MTTN networks, we set up ablation
experiments with different configurations. Table 2 lists the experimental results of various
ablation experiments. The SISR model performs worse than the original network by 0.17 dB
in terms of PSNR. However, our model still achieves comparable performance to some
SISR algorithms without introducing Ref into remote sensing images. The MSE comparison
chart in Figure 6 shows that after adding Ref remote sensing images, the reconstructed
remote sensing images present richer texture details, indicating that SR performance can be
enhanced when incorporating Ref images.
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Table 1. Comparison of average PSNR, SSIM, FSIM, VIF, and ERGAS results obtained from the
Kaggle Open Source dataset. ↑means that the larger the value, the better the reconstruction effect. ↓
means that the smaller the value, the better the reconstruction effect.

Algorithm/Metrics PSNR/dB ↑ SSIM ↑ FSIM ↑ VIF ↑ ERGAS ↓
Bicubic 24.73 0.6972 0.7544 0.2558 2.7915

SRCNN 26.56 0.7675 0.8292 0.3368 2.2890

VDSR 27.20 0.8001 0.8461 0.3759 2.1461

SRResnet 26.42 0.7790 0.8480 0.3634 2.3560

SRFBN 28.02 0.8264 0.8617 0.4121 1.9713

SRRFN 28.61 0.8415 0.8794 0.4350 1.8559

SEAN 28.41 0.8374 0.8716 0.4261 1.8852

HAN 28.02 0.8259 0.8743 0.4157 1.9714

MHAN 27.86 0.8265 0.8687 0.4106 2.0071

SRNTT 30.28 0.8983 0.9243 0.6207 1.5731

DLGNN 28.04 0.8246 0.8609 0.4106 1.9688

HSEnet 28.42 0.8357 0.8746 0.4275 1.8907

MTTN (Ours) 30.48 0.9020 0.9333 0.6352 1.5355

Figure 4. Subjective comparison of our method with other algorithms on the Kaggle open dataset
(playgrounds, parking lots and ports). From left to right, top to bottom, they are the result of
Bicubic, SRCNN [55], VDSR [21], SRResnet [25], SRFBN [56], SRRFN [57], SEAN [58]), HAN [59],
MHAN [34], SRNTT [41], DLGNN [36], and HSEnet [60], proposed methods and HR. Best view via
zoomed-in view.
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Figure 5. Subjective comparison of our method with other algorithms on the Kaggle open dataset (air-
ports, buildings and roads). From left to right, top to bottom, they are the result of Bicubic, SRCNN [55],
VDSR [21], SRResnet [25], SRFBN [56], SRRFN [57], SEAN [58]), HAN [59], MHAN [34], SRNTT [41],
DLGNN [36], and HSEnet [60], proposed methods and HR. Best view via zoomed-in view.

Figure 6. The MSE maps display the disparities between reconstructions and ground truths in various
ablation experiments. The color of the MSE map corresponds to the magnitude of the error, which
varies as the images’ dissimilarity increases or decreases.
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Table 2. Comparative results of different modes of ablation experiments on the Kaggle Open Source
dataset with a scale factor of 4.

Algorithm/Metrics PSNR/dB ↑ SSIM ↑ FSIM ↑ VIF ↑ ERGAS ↓
MTTN without Ref images 30.31 0.8977 0.9319 0.6319 1.5866

MTTN without texture loss 30.10 0.8958 0.9314 0.6259 1.6130

MTTN without perceptual loss 29.73 0.8919 0.9268 0.6311 1.7056

MTTN (Ours) 30.48 0.9020 0.9333 0.6352 1.5355

4.5.2. Effectiveness of Loss Function

Our proposed MTTN model uses a novel texture loss, making it distinct from most
SR methods. Different from other texture transfer methods, the MTTN network transfers
the most relevant texture of the reference image to the target image. Specifically, the local
matching method maintains the texture consistency of remote sensing images; the adaptive
neural migration improves texture transfer; and the spatial regularization achieves better
global spatial consistency. The test results for texture loss are shown in Table 2. The PSNRs
of MTTN with and without texture loss tested on the Kaggle dataset are 30.48 dB and
30.10 dB, respectively. It proves that the texture information from Ref cannot be effectively
transferred to the target image without texture loss.

We also incorporate perceptual loss into this network to enhance the visual appeal of
reconstructed remote sensing images. To verify the effectiveness of this loss, we conducted
relevant ablation experiments. The experimental results are shown in Table 2. Regarding
the test PSNR results on the Kaggle dataset, the PSNR values after introducing perceptual
loss are significantly higher than the test results without perceptual loss. From Figure 6, we
notice that the two loss functions in our proposed MTTN effectively reduce the disparity
between SR images and the corresponding ground-truth images.

4.5.3. Effectiveness of Residual Blocks

In this study, we extract multi-scale texture information from remote sensing images
using different numbers of residual blocks (RBs). Similar to other works [61,62], in order to
make full use of the multi-scale texture information of remote sensing images, our different
residual blocks adopt a combination of different convolution kernel sizes, and the specific
structure is shown in Figure 2. According to the experience sharing of other work [41],
we set the number of RBs at different scales to different numbers (3× 3 convolution uses
16 RBsA, 5× 5 convolution uses 8 RBsB and 7× 7 convolution uses 4 RBsC), which proves
that the MTTN network can ensure that the parameter quantity of the network does not
increase additionally, and at the same time, it also guarantees a good reconstruction ability
of the network. To verify the effects of different numbers of design methods of RBsA
on the performance of MTTN, we designed a set of ablation experiments. As shown in
Figure 7, the reconstruction performance of our network decreases as the number of residual
blocks increases. Therefore, considering the network’s parameters and the reconstruction
performance of remote sensing images, the MTTN network adopts the above settings to
obtain better reconstruction performance when transmitting texture information.

4.5.4. Effectiveness of Remote Sensing Scene Classification

The SR algorithm for remote sensing images is considered a pre-processing step for
some downstream tasks, e.g., change detection and semantic segmentation. To further
support the efficacy of the suggested MTTN, we evaluate the reconstruction outcomes of
various networks using an unsupervised semantic segmentation algorithm (ISODATA).
We set the number of categories to five and the maximum number of iterations to five [63].
It is particularly challenging for ISODATA to obtain precise classification results because
the results of the comparison experiments show significant spectral distortions and fuzzy
patterns. The comparison of the experimental results of the classification algorithm is



Remote Sens. 2023, 15, 5503 13 of 17

shown in Figure 8. In particular, we notice the misclassification of ships and the lack of
texture information from the results of DLGNN and HSEnet, while SRNTT fails to recover
detailed ship edge information. The results demonstrate that the reconstructed images by
the MTTN network contain fine details, evidenced by the ISODATA classification results.

Figure 7. Performance comparison of MTTN with the number of RBsA.
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Figure 8. The classification outcomes achieved by various algorithms using the ISODATA classifica-
tion method.

5. Conclusions

In this study, we propose MTTN, a novel RefSR method for remote sensing images
with multi-scale residual transfer. Specifically, the proposed MTTN extends the prior infor-
mation of training samples by introducing additional texture information from reference
images. In addition, the use of multi-scale methods to transfer texture information also
enriches the prior information required by the network at different stages. The MTTN
network introduces multi-scale residual blocks to enhance the image edge and texture
information. We perform a comprehensive evaluation of the experimental results in the
Kaggle remote sensing competition dataset. Extensive experimental results demonstrate
that MTTN can enhance the texture details and visual effects of reconstructed images.
Quantitatively, the MTTN network outperforms other competing algorithms in all selected
objective evaluation metrics. The self-reference ablation experiments demonstrate that
MTTN achieves outstanding reconstructed results with and without reference images.

6. Discussion

This paper has conducted relevant research on remote sensing super-resolution al-
gorithms based on reference images, laying a certain foundation for future related work.
However, in the practical acquisition scenarios of remote sensing images, the process of
obtaining low-resolution remote sensing images is complex, and there are factors such as
noise, downsampling, and blur, making existing methods unsuitable for direct application
in the super-resolution reconstruction of remote sensing images in real-world scenarios.
Therefore, future research directions may consider investigating remote sensing image
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super-resolution reconstruction in complex real-world scenarios, aiming to enhance the
model’s generalization capability and applicability.

Author Contributions: Conceptualization, Y.W., Z.S. and T.L.; methodology, Y.W., T.L. and J.W.;
software, Y.W. and Z.S.; validation, Y.W., J.W. and X.C.; formal analysis, Y.W., H.H. and X.Z.; investi-
gation, Y.W., J.W. and X.C.; resources, Y.W., Z.S. and T.L.; writing—original draft preparation, Y.W.
and J.W.; writing—review and editing, Y.W. and X.H.; visualization, H.H. and X.Z.; supervision, Z.S.
and T.L.; project administration, T.L.; funding acquisition, Z.S. All authors have read and agreed to
the published version of the manuscript.

Funding: This article is supported in part by the National Natural Science Foundation of China
(42090012), Guangxi Science and Technology Plan Project (Guike 2021AB30019), Hubei Province
Key R&D Project (2022BAA048), Sichuan Province Key R&D Project (2022YFN0031, 2023YFN0022,
2023YFS0381), Zhuhai Industry-University-Research Cooperation Project (ZH22017001210098PWC),
Shanxi Provincial Science and Technology Major Special Project (202201150401020), Guangxi Key
Laboratory of Spatial Information and Surveying and Mapping Fund Project (21-238-21-01), Opening
Fund of Hubei Key Laboratory of Intelligent Robot under Grant (HBIR202103), and Supported by
Hubei Provincial Natural Science Foundation of China (2023AFB158).

Data Availability Statement: The data that support the fndings of this study are available from the
corresponding author, upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bredemeyer, S.; Ulmer, F.G.; Hansteen, T.H.; Walter, T.R. Radar path delay effects in volcanic gas plumes: The case of Láscar

Volcano, Northern Chile. Remote Sens. 2018, 10, 1514. [CrossRef]
2. Li, C.; Ma, Y.; Mei, X.; Liu, C.; Ma, J. Hyperspectral unmixing with robust collaborative sparse regression. Remote Sens. 2016,

8, 588. [CrossRef]
3. Jiang, J.; Ma, J.; Chen, C.; Wang, Z.; Cai, Z.; Wang, L. SuperPCA: A superpixelwise PCA approach for unsupervised feature

extraction of hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4581–4593. [CrossRef]
4. He, N.; Fang, L.; Li, S.; Plaza, A.; Plaza, J. Remote sensing scene classification using multilayer stacked covariance pooling. IEEE

Trans. Geosci. Remote Sens. 2018, 56, 6899–6910. [CrossRef]
5. Fang, L.; Liu, G.; Li, S.; Ghamisi, P.; Benediktsson, J.A. Hyperspectral image classification with squeeze multibias network. IEEE

Trans. Geosci. Remote Sens. 2018, 57, 1291–1301. [CrossRef]
6. Li, R.; Zheng, S.; Duan, C.; Wang, L.; Zhang, C. Land cover classification from remote sensing images based on multi-scale fully

convolutional network. Geo-Spat. Inf. Sci. 2022, 25, 278–294. [CrossRef]
7. Zhang, S.; Shao, Z.; Huang, X.; Bai, L.; Wang, J. An internal-external optimized convolutional neural network for arbitrary

orientated object detection from optical remote sensing images. Geo-Spat. Inf. Sci. 2021, 24, 654–665. [CrossRef]
8. Shao, Z.; Wu, W.; Li, D. Spatio-temporal-spectral observation model for urban remote sensing. Geo-Spat. Inf. Sci. 2021, 24, 372–386.

[CrossRef]
9. Liu, J.; Xiang, J.; Jin, Y.; Liu, R.; Yan, J; Wang, L. Boost Precision Agriculture with Unmanned Aerial Vehicle Remote Sensing and

Edge Intelligence: A Survey. Remote Sens. 2021, 13, 4387. [CrossRef]
10. Ren, J.; Wang, R.; Liu, G.; Wang, Y.; Wu, W. An SVM-Based Nested Sliding Window Approach for Spectral–Spatial Classification

of Hyperspectral Images. Remote Sens. 2021, 13, 114. [CrossRef]
11. Bai, T.; Wang, L.; Yin, D.; Sun, K.; Chen, Y.; Li, W.; Li, D. Deep learning for change detection in remote sensing: A review. Geo-Spat.

Inf. Sci. 2022, 26, 262–288. [CrossRef]
12. Yu, X.; Pan, J.; Wang, M.; Xu, J. A curvature-driven cloud removal method for remote sensing images. Geo-Spat. Inf. Sci. 2023,

1–22. [CrossRef]
13. Li, X.; Hu, Y.; Gao, X.; Tao, D.; Ning, B. A multi-frame image super-resolution method. Signal Process. 2010, 90, 405–414.

[CrossRef]
14. Wang, J.; Shao, Z.; Huang, X.; Lu, T.; Zhang, R.; Ma, J. Enhanced image prior for unsupervised remoting sensing super-resolution.

Neural Netw. 2021, 143, 400–412. [CrossRef]
15. Wang, Y.; Shao, Z.; Lu, T.; Liu, L.; Huang, X.; Wang, J.; Jiang, K.; Zeng, K. A lightweight distillation CNN-transformer architecture

for remote sensing image super-resolution. Int. J. Digit. Earth 2023, 16, 3560–3579. [CrossRef]
16. Zhihui, Z.; Bo, W.; Kang, S. Single remote sensing image super-resolution and denoising via sparse representation. In Proceedings

of the 2011 International Workshop on Multi-Platform/Multi-Sensor Remote Sensing and Mapping, Xiamen, China, 10–12
January 2011; pp. 1–5.

17. Hou, B.; Zhou, K.; Jiao, L. Adaptive super-resolution for remote sensing images based on sparse representation with global joint
dictionary model. IEEE Trans. Geosci. Remote Sens. 2017, 56, 2312–2327. [CrossRef]

https://doi.org/10.3390/rs10101514
https://doi.org/10.3390/rs8070588
https://doi.org/10.1109/TGRS.2018.2828029
https://doi.org/10.1109/TGRS.2018.2845668
https://doi.org/10.1109/TGRS.2018.2865953
https://doi.org/10.1080/10095020.2021.2017237
https://doi.org/10.1080/10095020.2021.1972772
https://doi.org/10.1080/10095020.2020.1864232
https://doi.org/10.3390/rs13214387
https://doi.org/10.3390/rs13010114
https://doi.org/10.1080/10095020.2022.2085633
https://doi.org/10.1080/10095020.2023.2189462
https://doi.org/10.1016/j.sigpro.2009.05.028
https://doi.org/10.1016/j.neunet.2021.06.005
https://doi.org/10.1080/17538947.2023.2252393
https://doi.org/10.1109/TGRS.2017.2778191


Remote Sens. 2023, 15, 5503 16 of 17

18. Zhang, Y.; Wu, W.; Dai, Y.; Yang, X.; Yan, B.; Lu, W. Remote sensing images super-resolution based on sparse dictionaries and
residual dictionaries. In Proceedings of the 2013 IEEE 11th International Conference on Dependable, Autonomic and Secure
Computing, Chengdu, China, 21–22 December 2013; pp. 318–323.

19. Wu, W.; Yang, X.; Liu, K.; Liu, Y.; Yan, B. A new framework for remote sensing image super-resolution: Sparse representation-
based method by processing dictionaries with multi-type features. J. Syst. Archit. 2016, 64, 63–75. [CrossRef]

20. Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-time single image and video
super-resolution using an efficient sub-pixel convolutional neural network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883.

21. Kim, J.; Kwon Lee, J.; Mu Lee, K. Accurate image super-resolution using very deep convolutional networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654.

22. Lai, W.S.; Huang, J.B.; Ahuja, N.; Yang, M.H. Deep laplacian pyramid networks for fast and accurate super-resolution. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 624–632.

23. Luo, Y.; Zhou, L.; Wang, S.; Wang, Z. Video satellite imagery super resolution via convolutional neural networks. IEEE Geosci.
Remote Sens. Lett. 2017, 14, 2398–2402. [CrossRef]

24. Wang, Z.; Yi, P.; Jiang, K.; Jiang, J.; Han, Z.; Lu, T.; Ma, J. Multi-memory convolutional neural network for video super-resolution.
IEEE Trans. Image Process. 2018, 28, 2530–2544. [CrossRef]

25. Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al.
Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4681–4690.

26. Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A.C. Improved training of wasserstein gans. In Proceedings of
the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 5767–5777.

27. Lei, S.; Shi, Z.; Zou, Z. Super-resolution for remote sensing images via local–global combined network. IEEE Geosci. Remote Sens.
Lett. 2017, 14, 1243–1247. [CrossRef]

28. Xu, W.; Guangluan, X.; Wang, Y.; Sun, X.; Lin, D.; Yirong, W. High quality remote sensing image super-resolution using deep
memory connected network. In Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing
Symposium, Valencia, Spain, 22–27 July 2018; pp. 8889–8892.

29. Lu, T.; Wang, J.; Zhang, Y.; Wang, Z.; Jiang, J. Satellite image super-resolution via multi-scale residual deep neural network.
Remote Sens. 2019, 11, 1588. [CrossRef]

30. Jiang, K.; Wang, Z.; Yi, P.; Wang, G.; Lu, T.; Jiang, J. Edge-enhanced GAN for remote sensing image superresolution. IEEE Trans.
Geosci. Remote Sens. 2019, 57, 5799–5812. [CrossRef]

31. Dong, X.; Xi, Z.; Sun, X.; Gao, L. Transferred multi-perception attention networks for remote sensing image super-resolution.
Remote Sens. 2019, 11, 2857. [CrossRef]

32. Haut, J.M.; Paoletti, M.E.; Fernandez-Beltran, R.; Plaza, J.; Plaza, A.; Li, J. Remote sensing single-image superresolution based on
a deep compendium model. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1432–1436. [CrossRef]

33. Qin, M.; Mavromatis, S.; Hu, L.; Zhang, F.; Liu, R.; Sequeira, J.; Du, Z. Remote sensing single-image resolution improvement
using a deep gradient-aware network with image-specific enhancement. Remote Sens. 2020, 12, 758. [CrossRef]

34. Zhang, D.; Shao, J.; Li, X.; Shen, H.T. Remote sensing image super-resolution via mixed high-order attention network. IEEE Trans.
Geosci. Remote Sens. 2020, 59, 5183–5196. [CrossRef]

35. Lei, S.; Shi, Z.; Mo, W. Transformer-Based Multistage Enhancement for Remote Sensing Image Super-Resolution. IEEE Trans.
Geosci. Remote Sens. 2021, 60, 5615611. [CrossRef]

36. Liu, Z.; Feng, R.; Wang, L.; Han, W.; Zeng, T. Dual Learning-Based Graph Neural Network for Remote Sensing Image Super-
Resolution. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5628614. [CrossRef]

37. Liu, C.; Sun, D. A bayesian approach to adaptive video super resolution. In Proceedings of the CVPR 2011, Colorado Springs,
CO, USA, 20–25 June 2011; pp. 209–216.

38. Caballero, J.; Ledig, C.; Aitken, A.; Acosta, A.; Totz, J.; Wang, Z.; Shi, W. Real-time video super-resolution with spatio-temporal
networks and motion compensation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Honolulu, HI, USA, 21–26 July 2017; pp. 4778–4787.

39. Wang, Y.; Lu, T.; Xu, R.; Zhang, Y. Face Super-Resolution by Learning Multi-view Texture Compensation. In MultiMedia Modeling,
Proceedings of the 26th International Conference, MMM 2020, Daejeon, Republic of Korea, 5–8 January 2020, Proceedings, Part II 26;
Springer: Berlin/Heidelberg, Germany, 2020; pp. 350–360.

40. Zheng, H.; Ji, M.; Wang, H.; Liu, Y.; Fang, L. Crossnet: An end-to-end reference-based super resolution network using cross-scale
warping. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018;
pp. 88–104.

41. Zhang, Z.; Wang, Z.; Lin, Z.; Qi, H. Image super-resolution by neural texture transfer. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 7982–7991.

42. Xie, Y.; Xiao, J.; Sun, M.; Yao, C.; Huang, K. Feature representation matters: End-to-end learning for reference-based image
super-resolution. In Proceedings of the European Conference on Computer Vision (ECCV), Glasgow, UK, 23–28 August 2020;
pp. 230–245.

https://doi.org/10.1016/j.sysarc.2015.11.005
https://doi.org/10.1109/LGRS.2017.2766204
https://doi.org/10.1109/TIP.2018.2887017
https://doi.org/10.1109/LGRS.2017.2704122
https://doi.org/10.3390/rs11131588
https://doi.org/10.1109/TGRS.2019.2902431
https://doi.org/10.3390/rs11232857
https://doi.org/10.1109/LGRS.2019.2899576
https://doi.org/10.3390/rs12050758
https://doi.org/10.1109/TGRS.2020.3009918
https://doi.org/10.1109/TGRS.2021.3136190
https://doi.org/10.1109/TGRS.2022.3199750


Remote Sens. 2023, 15, 5503 17 of 17

43. Yang, F.; Yang, H.; Fu, J.; Lu, H.; Guo, B. Learning Texture Transformer Network for Image Super-Resolution. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 5791–5800.

44. Huang, Y.; Zhang, X.; Fu, Y.; Chen, S.; Zhang, Y.; Wang, Y.F.; He, D. Task Decoupled Framework for Reference-Based Super-
Resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA,
18–24 June 2022; pp. 5931–5940.

45. Dong, R.; Zhang, L.; Fu, H. RRSGAN: Reference-based super-resolution for remote sensing image. IEEE Trans. Geosci. Remote
Sens. 2021, 60, 1–17. [CrossRef]

46. Cai, D.; Zhang, P. T3SR: Texture Transfer Transformer for Remote Sensing Image Superresolution. IEEE J. Sel. Top. Appl. Earth
Obs. Remote Sens. 2022, 15, 7346–7358. [CrossRef]

47. Jolicoeur-Martineau, A. The relativistic discriminator: A key element missing from standard GAN. arXiv 2018, arXiv:1807.00734.
48. Lowe, D.G. Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE International Conference

on Computer Vision, Kerkyra, Greece, 20–27 September 1999; Volume 2, pp. 1150–1157.
49. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE

Trans. Image Process. 2004, 13, 600–612. [CrossRef] [PubMed]
50. Zhang, L.; Zhang, L.; Mou, X.; Zhang, D. FSIM: A feature similarity index for image quality assessment. IEEE Trans. Image Process.

2011, 20, 2378–2386. [CrossRef]
51. Sheikh, H.R.; Bovik, A.C. Image information and visual quality. IEEE Trans. Image Process. 2006, 15, 430–444. [CrossRef]
52. Ranchin, T.; Wald, L. Fusion of high spatial and spectral resolution images: The ARSIS concept and its implementation.

Photogramm. Eng. Remote Sens. 2000, 66, 49–61.
53. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv arXiv:1409.1556 2014.
54. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
55. Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a deep convolutional network for image super-resolution. In Computer Vision—

ECCV 2014, Proceedings of the 13th European Conference, Zurich, Switzerland, 6–12 September 2014, Proceedings, Part IV 13; Springer:
Berlin/Heidelberg, Germany, 2014; pp. 184–199.

56. Li, Z.; Yang, J.; Liu, Z.; Yang, X.; Jeon, G.; Wu, W. Feedback network for image super-resolution. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3867–3876.

57. Li, J.; Yuan, Y.; Mei, K.; Fang, F. Lightweight and Accurate Recursive Fractal Network for Image Super-Resolution. In Proceedings
of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Republic of Korea, 27–28
October 2019; pp. 3814–3823.

58. Fang, F.; Li, J.; Zeng, T. Soft-Edge Assisted Network for Single Image Super-Resolution. IEEE Trans. Image Process. 2020,
29, 4656–4668. [CrossRef]

59. Niu, B.; Wen, W.; Ren, W.; Zhang, X.; Yang, L.; Wang, S.; Zhang, K.; Cao, X.; Shen, H. Single image super-resolution via a
holistic attention network. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020;
pp. 191–207.

60. Lei, S.; Shi, Z. Hybrid-scale self-similarity exploitation for remote sensing image super-resolution. IEEE Trans. Geosci. Remote
Sens. 2021, 60, 5401410. [CrossRef]

61. Wang, Y.; Shao, Z.; Lu, T.; Wu, C.; Wang, J. Remote sensing image super-resolution via multiscale enhancement network. IEEE
Geosci. Remote Sens. Lett. 2023, 20, 5000905. [CrossRef]

62. Wang, Y.; Lu, T.; Wu, Z.; Wu, Y.; Zhang, Y. Face super-resolution via hierarchical multi-scale residual fusion network. IEICE Trans.
Fundam. Electron. Commun. Comput. Sci. 2021, 104, 1365–1369. [CrossRef]

63. Chang, Y.; Yan, L.; Fang, H.; Zhong, S.; Liao, W. HSI-DeNet: Hyperspectral image restoration via convolutional neural network.
IEEE Trans. Geosci. Remote Sens. 2018, 57, 667–682. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TGRS.2020.3046045
https://doi.org/10.1109/JSTARS.2022.3198557
https://doi.org/10.1109/TIP.2003.819861
https://www.ncbi.nlm.nih.gov/pubmed/15376593
https://doi.org/10.1109/TIP.2011.2109730
https://doi.org/10.1109/TIP.2005.859378
https://doi.org/10.1109/TIP.2020.2973769
https://doi.org/10.1109/TGRS.2021.3069889
https://doi.org/10.1109/LGRS.2023.3248069
https://doi.org/10.1587/transfun.2020EAL2103
https://doi.org/10.1109/TGRS.2018.2859203

	Introduction
	Related Work
	SISR of Remote Sensing Images
	Reference-Based Super-Resolution

	Method
	Feature Swapping
	Multi-Scale Texture Transfer
	Loss Function
	Reconstruction Loss
	Perceptual Loss
	Adversarial Loss


	Experiements
	Dataset
	Evaluation Indicators
	Experimental Details
	Quantitative and Qualitative Comparison with Different Methods
	Ablation Studies
	Effectiveness of Reference Image
	Effectiveness of Loss Function
	Effectiveness of Residual Blocks
	Effectiveness of Remote Sensing Scene Classification


	Conclusions
	Discussion
	References

