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Abstract: Following consecutive years of governance efforts, there has been a substantial reduction
in sediment transport in the Yellow River, resulting in significant changes in its water–sediment
dynamics. This necessitates precise monitoring of sediment-bearing tributary inflows, a crucial
requirement for effective governance strategies on the Loess Plateau’s current developmental stage.
While satellite remote sensing technology has been widely used to estimate suspended particulate
matter concentration (CSPM) in open water bodies like oceans and lakes, its application in narrow
rivers presents challenges related to hybrid pixel and proximity effects. As a result, the effectiveness
and competence of satellite remote sensing in monitoring CSPM in such confined river environments
are reduced. This study attempted to use unmanned aerial vehicle (UAV) remote sensing with multi-
spectral technology to invert CSPM in the Wuding River, a sediment-bearing Yellow River tributary.
A novel CSPM concentration inversion model was introduced for highly turbid river settings. The
results showed that the accuracy of the new band ratio model in this study is significantly improved
compared with the existing models. The validation dataset had a coefficient of determination (R2) of
0.83, a root mean square error (RMSE) of 3.73 g/L, and a mean absolute percentage error (MAPE) of
44.95% (MAPE is 40.68% at 1–20 g/L, and 12.37% at >20 g/L). On this basis, the UAV also monitored
the impacts of heavy rainfall on the CSPM, resulting in a rapid rise and fall in CSPM over a period
of ten hours. This study demonstrated the potential of UAV remote sensing for CSPM monitoring
in extremely turbid narrow rivers (tens to tens of meters), especially before and after rainfall sedi-
ment production events, which can provide technical support for accurate sediment management
and source identification in the main tributaries of the Yellow River and help realize the goal of
high-quality development of the Yellow River Basin.

Keywords: DJI P4 multispectral UAV; multispectral imagery; the Wuding River; suspended particulate
matter concentration; inversion models

1. Introduction

The Yellow River is a prototypical sediment-bearing river on a global scale, charac-
terized by a paucity of water relative to sediment. Its distribution of water and sediment
exhibits a pronounced imbalance. In the middle reaches, the Loess Plateau grapples with
severe soil erosion, leading to a substantial inflow of sediment into the primary channel of
the Yellow River via its tributaries [1]. As a consequence, there is a discernible escalation in
sediment content in both the middle and lower reaches of the main stem. This phenomenon
not only complicates the effective utilization of water resources in the middle reaches but
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also causes an elevation of the riverbed in the lower reaches, culminating in the formation
of a ‘secondary overhanging river’ [2]. Such a situation poses a substantial threat to both
lives and property. Consequently, the issue of sediment management in the Yellow River
has emerged as a pivotal and highly relevant research focus.

Traditional river sediment monitoring predominantly relies on station observations
and field sampling and measurements. In the middle reaches of the Yellow River, there
are more than 500 hydrological stations at various levels capable of providing accurate
sediment content data at a daily scale. Nonetheless, these hydrological stations demand
high operational and maintenance costs. Furthermore, taking field measurements is a time-
consuming and labor-intensive process, and the data acquired from these stations are limited
to specific points, failing to precisely represent the spatial dynamics of river sediment.

After decades of long-term management of the Yellow River, sediment transport in
the main stream has significantly decreased. This reduction in sediment transport has
transitioned into a new phase of precision management, necessitating ongoing spatial
monitoring of the primary sediment tributaries to accurately pinpoint sediment sources.
Suspended Particulate Matter (SPM) concentration, denoted as CSPM, serves as a key
indicator of suspended sediment content, concluding clay and silt particles with a diameter
of less than 2 mm [3]. SPM induces noticeable alterations in optical signals at specific
wavelengths on the water surface, rendering satellite remote sensing a successful method
for monitoring CSPM dynamics in various open water bodies, such as oceans, lakes, and
reservoirs [4,5].

Nevertheless, the Yellow River tributaries exhibit distinct characteristics; they tend to
be narrower and longer than the main channel, typically spanning only tens of meters in
width. Satellite sensors, constrained by their spatial resolution, often encounter challenges
in accurately capturing data in these tributaries. This limitation results in mixed pixels
at the boundary between land and water bodies, and the interference caused by adjacent
pixel effects becomes conspicuous. Furthermore, short-term heavy rainfall stands as one
of the primary contributors to sediment production in the middle reaches of the Yellow
River [6]. However, satellites frequently face difficulties in acquiring effective data due
to the influence of adverse weather conditions. The rapid advancements in UAV remote
sensing technology present a promising solution to these issues. UAVs offer distinct advan-
tages, including high spatial resolution, reduced susceptibility to weather and atmospheric
interference, and the flexibility to acquire remote sensing images as needed. Consequently,
UAV-based remote sensing holds considerable potential for effectively monitoring CSPM in
the primary sediment-bearing tributaries of the Yellow River [7,8].

Given the substantial impact of CSPM on the spectral signals of water bodies, re-
searchers both domestically and internationally have proposed several well-established
inversion methods, encompassing empirical, semi-empirical, and semi-analytical models
as summarized in Table 1. Empirical and semi-empirical models operate by deriving CSPM
concentrations through the selection of optimal spectral bands or band combinations using
specific mathematical techniques. These models establish empirical–statistical relationships
directly between remotely sensed data and measured CSPM values [9]. Previous research
has demonstrated that single-band models can yield satisfactory results when character-
istic bands of the spectral curve are distinct [10,11]. Alternatively, some researchers have
employed the band ratio method to select the input parameter that exhibits the highest
correlation with CSPM among all possible band combinations [12]. Semi-analytical meth-
ods, on the other hand, are rooted in modeling the varying absorption and scattering
characteristics of water bodies. For instance, Jiang [13] categorized water bodies into four
types—clear, moderately turbid, highly turbid, and extremely turbid—by comparing re-
mote sensing reflectance (Rrs) at wavelengths 490, 560, 620, and 754 nm. Leveraging the
distinct relationships between CSPM and backward scattering coefficients (bbp) in each type,
a semi-analytical approach was employed to formulate unique inversion models for each
water body category. However, it is noteworthy that the CSPM concentrations in the existing
models generally span from tens to thousands of mg/L. In contrast, the Yellow River and its
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major sediment-bearing tributaries can experience concentrations in the tens of thousands
of mg/L in a short timeframe following heavy rainfall events. Consequently, there exists
uncertainty regarding the applicability of current inversion models to the exceptionally
turbid river conditions encountered in this study.

Table 1. Existing empirical and semi-analytical models for inverse CSPM.

Algorithm Form References Area CSPM Range Data Source

Single band

CSPM ∝ Rrs(840)

[14] Donghu Lake, China 0–60 mg/L UAV multispectral image

[15]
The Paranoá and the

Corumbá IV
reservoirs, Brazil

0–180 mg/L UAV multispectral image

CSPM ∝ Rrs(440) [16] Lake Trasimeno, Italy 2–6 mg/L Airborne hyperspectral data

CSPM ∝ Rrs(705) [17] Mississippi River,
United States 0–50 mg/L Airborne hyperspectral data

CSPM ∝ Rrs(733) [18] Chongming Island, China 4–280 mg/L UAV hyperspectral image

Band ratio

CSPM ∝
Rrs

(
700∼900

visible

) [19] The Gironde estuary, France 10–2000 mg/L SPOT1, 2, 3/Landsat7

CSPM ∝ Rrs

(
650
560

)
[20] The Solimoes River, Peru 20–240 mg/L MODIS

CSPM ∝ Rrs

(
475
668

)
[21] Human-made ponds,

United States 0–8 mg/L UAV multispectral image

CSPM ∝
Rrs

(
500−670
500+670

) [22] Luoshan County Reservoir
in Henan Province, China 6–12 mg/L UAV hyperspectral image

Three-band
algorithm

CSPM ∝
Rrs

(
650+730

560

) [12] Qingshan Lake, China 10–70 mg/L UAV multispectral image

QAA CSPM = Abbp + B [13]

Nile River, AmazonRiver,
and Yangtze River; Lake
Victoria, Lake Qinghai,

Lake Turkana, and Lake
Kasumigaura

1–1000 mg/L MERIS, OLCI

Nechad

CSPM =
AρρW

1− ρW
Cρ

+ Bρ,

ρW = πRrs

[11] Southern North
Sea, Belgium 0–100 mg/L MERIS, MODIS

Therefore, the Wuding River, recognized as one of the principal sediment-laden
tributaries of the Yellow River, was chosen as the study area. An experiment was conducted
both before and after a summer rainfall event using multispectral UAV remote sensing
technology in conjunction with in situ sampling, enabling CSPM inversion in this context.
This study aims to address the following inquiries: What is the suitability and accuracy
of existing CSPM inversion models when applied to the Wuding River, characterized by
its extreme turbidity? How to develop a new high-precision inversion model if existing
models have proved unsuitable? And, what are the spatial and temporal patterns of CSPM
in the Wuding River before and after the occurrence of a heavy rainfall?

By addressing the aforementioned questions, we offer valuable technical and method-
ological insights into UAV remote sensing monitoring of CSPM in such challenging water
bodies. These findings are expected to provide critical support for achieving precise sed-
iment management in the Yellow River and contributing to the objective of high-quality
development within the Yellow River Basin.
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2. Materials and Methods
2.1. Study Area

The Wuding River, a primary tributary of the Yellow River, is situated in the northern
region of Shaanxi Province, China. It spans approximately 491 km, coursing through
multiple counties, including Dingbian, Jingbian, Mibi, Suide, and Qingjian before merging
into the Yellow River in a northwest to southeast direction. The Wuding River Basin
occupies a transitional zone between the Mao Wusu Desert and the Loess Plateau, with
a watershed area accounting for 4.2% of the Yellow River Basin. It is characterized by
loose soil, sparse vegetation, and extensive soil erosion, making it a significant source of
coarse sediment to the Yellow River [23]. Despite its relatively limited runoff, averaging
1.53 billion m3 annually, which accounts for only 2.4% of the entire Yellow River Basin, the
sediment transport from the Wuding River contributes significantly to the Yellow River’s
sediment load, constituting 27.8% (calculated from the sediment transport data at the
Dingjiagou and Longmen Stations). Notably, sediment transport within the Wuding River
follows a predominantly seasonal pattern, with the majority occurring during the summer,
amounting to 83% of the annual total.

In this study, we focused on a 4 km segment of the lower Wuding River, which
serves as a representative sediment transport tributary of the Yellow River. This segment
is situated in Yulin City, Shaanxi Province, precisely located at coordinates 110◦4′30′′E,
37◦51′40′′N. Field data collection took place from 18 August to 22 August 2022, primarily
involving the acquisition of multispectral UAV images and in situ water sampling. A total
of 105 sampling points were uniformly distributed within the river, as depicted in Figure 1.
Detailed sampling information is provided in Table 2. Throughout the UAV flights, sky
irradiance measurements were conducted using an ASD HandHeld 2 ground spectrometer
(Analytica Spectra Devices., Inc., Boulder, CO, USA) to facilitate the calculation of UAV
remote sensing reflectance.

Table 2. Sampling points and weather information.

Date Samples Weather Precipitation in 24 h
(mm)

18 August 2022 3 Rainy day 16.5

19 August 2022 24 Overcast sky 0

20 August 2022 28 Cloudy day 0

21 August 2022 30 Rainy day 11.2

22 August 2022 20 Sunny day 0
Note: Rainfall data are derived from the daily values of basic meteorological elements for national ground
meteorological stations in China.

2.2. Methods

The methodological process of this study primarily comprises field UAV data acquisi-
tion and in situ ground sampling, computation of remote sensing reflectance for river water
bodies, laboratory determination of CSPM at designated sample points, model calibration
and validation, and subsequent CSPM inversion and spatial–temporal variation analysis, as
illustrated in Figure 2.

2.2.1. In Situ Sampling

Ground sample points were evenly distributed longitudinally along the river. Water
samples were collected at the riverbank and bridge edges using a 5 L metal water collector,
while samples from the central river were obtained using an unmanned aerial vehicle
(UAV). All collected samples were preserved in plastic bottles and promptly stored at 4 ◦C.
Simultaneously, the coordinates of each sample point were recorded using a handheld
GPS device.
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Figure 2. Flowchart of the CSPM inversion methodology for this study ((a) is water body extraction
result by NDWI, and (b) is the result by NDWI and Rrs(650)).

On the day of collection, water samples were filtered using pre-burned and pre-
weighed GF/F membranes and stored at −20 ◦C. In the laboratory, CSPM measurements
were conducted by drying the membranes in an oven at 105 ◦C for four hours, followed
by precise weighing using an electronic balance. Sample CSPM values were calculated by
subtracting the weight of the blank membrane from the final weighing result, expressed
in g/L.

2.2.2. UAV Data Acquisition and Processing
UAV Multispectral Image

We selected the DJI Phantom 4 multispectral UAV as the airborne platform for image
data acquisition. This UAV is equipped with a frame sensor featuring five multispec-
tral channels: Blue (450 ± 16 nm), Green (560 ± 16 nm), Red (650 ± 16 nm), Red Edge
(730 ± 16 nm), and Near Infrared (840 ± 26 nm). A multispectral cosine sensor was used
to measure the downwelling irradiance and record it within the image file.

Before the flight plan beginning, two distinct reference boards were manually pho-
tographed for in situ Remote Sensing Reflectance (Rrs) calibration. Throughout the ex-
periment, a total of 3672 single-band images were acquired, resulting in a grand total of
18,360 images. These images possessed a resolution of 9 cm/pixel, effectively covering
a river length of 3.92 km. The detailed instrument parameters and flight parameters are
provided in Table 3.
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Table 3. Instrument parameters of the UAV and sensors.

Item Parameters

Instrument parameters

Weight 1.5 kg
Maximum flight altitude 6000 m
Maximum flight speed 50 km/h

Endurance 27 min
Pixel 1600 × 1300

Flight parameters

Flight height 170 m
Flight speed 14 m/s

Spatial resolution 0.09 m/pixel
Longitudinal overlap 70%

Sidewise overlap 50%

Computing of Rrs of Water Bodies from Drone Data

Geometric correction, radiometric calibration, and mosaic were initially conducted
using DJI Terra software. Subsequently, we derived terrestrial reflectance (ρ) from the
images, relying on the downwelling irradiance data recorded by the cosine sensor within
the images.

Furthermore, we calculated the water remote sensing reflectance ratio (Rrs) based
on ρ, applying the water remote sensing reflectance formula. This calculation proceeded
as follows:

Rrs = Lw/Ed (1)

where Rrs represents the remote sensing reflectance (sr−1), Lw represents the off-water
irradiance (W·sr−1·m−2), and Ed is the downwelling irradiance (W·m−2).

Lw is calculated using the following formula:

Lw = Lsw − rLsky (2)

where Lsw is the total signal acquired by the UAV sensor (W·sr−1·m−2) and r is the Fresnel
coefficient, which takes the value of 0.025. Lsky is the scattered light from the sky, which is
measured by the FieldSpec HandHeld 2 ground spectrometer during the flight progress
of the UAV. We selected multiple points and calculated the mean value to participate in
the calculation.

Then, the above equation could be changed to:

Rrs = (Lsw − rLsky)/Ed (3)

When extracting the water body range, it was observed that the NDWI threshold
segmentation method yielded unsatisfactory results for watershed extraction in the study
area. To improve accuracy, this study incorporated the NDWI and red band (650 nm) Rrs
for water body extraction.

In the preliminary extraction results of the water body obtained using the NDWI
thresholding method, the NDWI was calculated using the following formula:

NDWI = (Rrs(560) − Rrs(840))/(Rrs(560) + Rrs(840)) (4)

To address the issue of roads and bridges being misidentified and partially confused
with the water body (as shown in Figure 2a), we initially applied the NDWI threshold of
NDWI ≥ 0.1 for water extraction. Subsequently, we utilized Rrs(650) to refine the water
body range, setting a threshold value of 0.17 ≤ Rrs(650) ≤ 0.21. The results demonstrated a
substantial enhancement in the accuracy of the extracted water body boundaries, effectively
mitigating misclassifications involving roads, bridges, and bare land near the water body
(as depicted in Figure 2b).
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2.2.3. CSPM Model Development

Based on assessing the applicability of existing models, we proceeded to establish a
more suitable CSPM inversion model based on the reflectance characteristics of each band
in the UAV multispectral data. Subsequently, we validated this new model using the same
methodology. Since the CSPM varies greatly from day to day, based on the 105 in situ
sampling points, we divided the daily measured data into 70% for model development
and 30% for model validation. This way, the model development and validation data can
basically cover all concentration ranges.

Five existing empirical CSPM models, including single bands and band ratios, and one
semi-analytical model were selected, including Liu’s [14], Doxaran’s 1 [19], Doxaran’s 2 [19],
Espinoza-Villar’s [20], Ying’s [12], and QAA [13]. Their applicability was evaluated in the
study area, with the model calibration using data from the sampling points in this study.

By analyzing the characteristics of the UAV reflectance curves and CSPM changes
in this study, we attempted to develop a CSPM inversion model with six different input
variables. These variables included two single bands, Single Band 1 (SB1) and Single Band 2
(SB2); one two-band combination, Two Band (TB); one band ratio, Band Ratio (BR); and
two three-band combinations, Three Band 1 (TB1) and Three Band 2 (TB2).

2.2.4. Accuracy Evaluation

The coefficient of determination (R2), root mean square error (RMSE), and mean
absolute percentage error (MAPE) were used for accuracy evaluation in this study [24]. The
calculation formulas are:

R2 = 1− ∑(yi − ŷi)
2

∑(yi − y)2 (5)

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (6)

MAPE =
1
n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣× 100% (7)

where y is the average of the measured dataset, yi denotes the measured value of the ith
sample, and ŷi is the estimated value.

3. Results
3.1. Measured CSPM and Spectral Characterization Analysis

Figure 3 shows the results of the laboratory measurements of CSPM of the sampling
points, with an overall range of 1.27–31.18 g/L and a significant difference within five days.
The highest CSPM was recorded on 22 August, with some of the sample points exceed-
ing 30 g/L. On that day, the concentration varied widely among sample points, with a
maximum of 31.18 g/L, a minimum of 19.08 g/L, and a mean concentration of 25.31 g/L,
as summarized in Table 4. Conversely, the lowest CSPM was found on 21 August, with
a narrower concentration range and less variability among sample points. Specifically,
the maximum value and the minimum were 3.24 g/L and 1.27 g/L, and the mean value
was 2.12 g/L.

The multispectral UAV Rrs results, shown in Figure 4, were significantly higher at
650 nm, 730 nm, and 840 nm than at 450 nm and 560 nm. With the increase of the CSPM at
the sample point, the Rrs increased in all bands, and the curve was elevated overall.
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Table 4. Statistics of CSPM results.

Date in 2022 Samples
CSPM (g/L) Variance

(g/L)Max Min Mean

18 August 3 3.53 1.997 2.74 0.39
19 August 24 10.92 5.09 7.91 2.79
20 August 28 3.59 1.92 2.74 0.21
21 August 30 3.24 1.27 2.12 0.16
22 August 20 31.18 19.08 25.31 11.60
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Figure 4. Rrs obtained from UAV images at each sample point. The color of the folded line represents
the high or low CSPM at the point, which transitions from light yellow to reddish black with increasing
concentration. The gray curve is the Rrs derived from the HH2 spectrometer. The reflectance trends
of the UAV and HH2 roughly match, so the UAV Rrs can be used for subsequent modeling studies.
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3.2. CSPM Inversion Model Accuracy Evaluation
3.2.1. Existing CSPM Inversion Models

Six existing models were selected for evaluation, and the expressions and accuracy of
the models after calibration are presented in Table 5. The results showed that the accuracy
of Liu’s single band and Doxaran’s band ratio models were better, while the semi-analytical
model QAA exhibited the lowest performance (R2 was 0.24 and RMSE was 10.09 g/L).
Doxaran’s 1 model was the most effective, with an R2 value of 0.75, corresponding to an
RMSE of 4.52 g/L and a MAPE of 82.29%.

Table 5. Calibration results for six existing empirical and semi-analytical models.

Model Spectral Index Algorithms R2 RMSE (g/L) MAPE

Liu’s Rrs(840) CSPM = 60.25× Rrs(840)− 0.61 0.71 4.87 42.76%

Doxaran’s 1 Rrs(650)
Rrs(560) CSPM = 0.0012× 314.95

Rrs (650)
Rrs (560) 0.75 4.52 82.29%

Doxaran’s 2 Rrs(840)
Rrs(560) CSPM = 0.49477× Rrs(840)

Rrs(560)

6.528 0.70 4.95 80.85%

Espinoza-Villar’s Rrs(840)
Rrs(650) CSPM = 48.59 Rrs(840)

Rrs(650) − 41.2 0.23 7.83 >100%

Ying’s Rrs(650)+Rrs(730)
Rrs(560) CSPM = 0.0012×20.14

Rrs (650)+Rrs (730)
Rrs (560) 0.61 5.66 92.08%

QAA bbp(840)

rrs =
Rrs(λ)

0.52+1.7Rrs(λ)

u(λ) = −g0+
√

g0
2+4×g1rrs(λ)
2g1

,

bbp(λ) =
u(λ)×a(λ)

1−u(λ) − bbw(λ)

CSPM = 0.651bbp(840) + 0.095

0.24 10.09 >100%

However, as can be seen from Figure 5, several points—although closer to the 1:1 line
in the high concentration range where CSPM is below 20 g/L—are more disrupt in the
extremely high concentration range above 20 g/L. This indicates that while the models
are applicable to the high concentration range, they are less accurate in the extremely high
range, and the concentrations of most of the sample points are underestimated.

3.2.2. CSPM Inversion Models Based on Multispectral UAV Data

This study aimed to propose CSPM inversion models with several different input
parameters, respectively, by analyzing the spectral characteristics of UAV. Firstly, 70% of the
measured sample points were employed as the calibration dataset, and the best forms of the
six models were determined by empirical regression. As illustrated in Figure 6, TB, SB1, SB2,
and TB1 had the better linear fit in each of the fitting forms, but their performance varied
greatly with the concentration range, and the fitting accuracy was poor in the extremely
high concentration range. The results were summarized as follows. The exponential fit was
the best among the fitting forms with TB2 as inputs, and the fitted model (TB2-EXP) with
TB2 and CSPM had a relatively higher accuracy on the prediction set, with an R2 of 0.91,
and a good correlation between high and extremely high concentrations. The results of the
model validation and accuracy evaluation are shown in Figure 7 and Table 6, which shows
that the TB2-EXP model validation accuracy is the highest (R2 of 0.83, RMSE of 3.73 g/L,
and MAPE of 44.95%), both in comparison with the other five new models and the existing
models in Section 3.2.1. Therefore, in this study, the TB2-EXP model was selected for CSPM
inversion. See Appendix A for details.
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Table 6. Expression of the CSPM inversion models based on multispectral UAV data and their accuracy
evaluation results.

Model Spectral Index Expressions R2 RMSE (g/L) MAPE

SB1-LINEAR Rrs(650) CSPM = 62.5Rrs(650)− 0.59 0.70 4.95 47.09%

SB2-LINEAR Rrs(730) CSPM = 71.8Rrs(730)− 1.26 0.71 4.85 55.37%

TB-LINEAR Rrs(560) + Rrs(840) CSPM = 38.67× (Rrs(560) + Rrs(840))− 0.82 0.72 4.59 48.34%
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Table 6. Cont.

Model Spectral Index Expressions R2 RMSE (g/L) MAPE

BR-POWER Rrs(650)
Rrs(450) CSPM = 0.055 Rrs(650)

Rrs(450)

5.28 0.74 4.44 70.82%

TB1-LINEAR (Rrs(560) + Rrs(650))
×Rrs(840)

CSPM = 68.09((Rrs(560) + Rrs(650))
×Rrs(840)) + 4.19 0.49 6.38 81.06%

TB2-EXP Rrs(650)+Rrs(840)
Rrs(560) CSPM =0.00081× 19.51

Rrs (650)+Rrs (840)
Rrs (560) 0.83 3.73 44.95%
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3.3. UAV Image Inversion Based on TB2-EXP Model

Using the TB2-EXP model, the UAV data for the five days from 18 to 22 August were
inverted to generate CSPM distribution maps for the entire river reach. As illustrated in
Figure 8 and summarized in Table 7, the temporal CSPM varied significantly from day to day,
with large differences in mean CSPM of 5.66 g/L, 6.01 g/L, 2.97 g/L, 1.86 g/L, and 10.73 g/L.
This can be attributed to the fact that there were two rainfall events during the sampling
process, which occurred on 18 August (16.5 mm) and 21 August (11.2 mm). The amount
of rainfall on the 21st was less than that on the 18th, but it was shorter in duration and
more intense. The CSPM exhibited an average increase of 0.35 g/L on 19 August, followed
by a gradual decrease in CSPM on the following two days, with the average concentration
on 21 August being the lowest in the five days. After a short period of intense rainfall
that occurred on 21 August, the mean CSPM was elevated by 8.87 g/L on 22 August. It
is evident that rainfall has a significant influence on CSPM, especially a short period of
heavy rainfall can cause a rapid and significant increase in CSPM in a short period of time,
and then gradually decrease in the following period of time. Spatially, the variation of
concentration in the whole study area was not apparent.



Remote Sens. 2023, 15, 5398 13 of 20

Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 20 
 

 

Figure 7. Validation results of estimated and measured values of six models based on multispectral 
UAV data (The input parameters are as follows. (a) Rrs(650); (b) Rrs(730); (c) Rrs(560) + Rrs(840); (d) 
Rrs(650)/Rrs(450); (e) (Rrs(560) + Rrs(650)) × Rrs(840); (f) (Rrs(650) + Rrs(840))/Rrs(560). N is the number 
of model validation points). 

3.3. UAV Image Inversion Based on TB2-EXP Model 
Using the TB2-EXP model, the UAV data for the five days from 18 to 22 August were 

inverted to generate CSPM distribution maps for the entire river reach. As illustrated in 
Figure 8 and summarized in Table 7, the temporal CSPM varied significantly from day to 
day, with large differences in mean CSPM of 5.66 g/L, 6.01 g/L, 2.97 g/L, 1.86 g/L, and 10.73 
g/L. This can be attributed to the fact that there were two rainfall events during the sam-
pling process, which occurred on 18 August (16.5 mm) and 21 August (11.2 mm). The 
amount of rainfall on the 21st was less than that on the 18th, but it was shorter in duration 
and more intense. The CSPM exhibited an average increase of 0.35 g/L on 19 August, fol-
lowed by a gradual decrease in CSPM on the following two days, with the average concen-
tration on 21 August being the lowest in the five days. After a short period of intense rain-
fall that occurred on 21 August, the mean CSPM was elevated by 8.87 g/L on 22 August. It is 
evident that rainfall has a significant influence on CSPM, especially a short period of heavy 
rainfall can cause a rapid and significant increase in CSPM in a short period of time, and 
then gradually decrease in the following period of time. Spatially, the variation of concen-
tration in the whole study area was not apparent. 

 
Figure 8. Inversion results of CSPM for the UAV multispectral images. 

Table 7. Statistics of inversion results. 

Date 
Maximum 

(g/L) Minimum (g/L) Mean (g/L) Standard Deviation (g/L) 

18 August 8.76 2.77 5.66 0.92 
19 August 9.22 3.24 6.01 1.01 
20 August 3.15 2.80 2.97 0.09 
21 August 5.27 0.43 1.86 1.04 
22 August 27.65 1.12 10.73 4.73 

  

Figure 8. Inversion results of CSPM for the UAV multispectral images.

Table 7. Statistics of inversion results.

Date Maximum (g/L) Minimum (g/L) Mean (g/L) Standard
Deviation (g/L)

18 August 8.76 2.77 5.66 0.92
19 August 9.22 3.24 6.01 1.01
20 August 3.15 2.80 2.97 0.09
21 August 5.27 0.43 1.86 1.04
22 August 27.65 1.12 10.73 4.73

4. Discussion
4.1. Applicability of New Models

Empirical and semi-empirical CSPM models have been applied to various inland waters
with different concentration ranges and data sources, including satellite-based, airborne,
and in situ sensors. Most of the models initially identify the most suitable wavelengths by
CSPM and develop corresponding models to invert them accurately. However, these models
were developed using different in situ measurement datasets. For example, the single-band
model in [14] is suitable for the accurate estimation of CSPM in the range of 0–60 mg/L, so
these models may not be suitable for the estimation of other ranges of CSPM. In contrast,
the CSPM in this study was up to 30 g/L, and the extremely high CSPM is rarely found in
the existing literature. As verified using the dataset of this study, the existing models are
no longer applicable, likely due to the measured CSPM exceeding the range of applicability
of these models, so we established new models based on the spectral characteristics of the
water body in the case of extremely high CSPM.

Since the increase of CSPM will make the Rrs of the water body increase significantly
in the visible range, the visible band signal will be saturated after reaching a certain
concentration, and then the characteristic band that can reflect the CSPM will be red-shifted
to the near-infrared or even the mid-infrared band [25]. Therefore, using the near-infrared
band as the input parameter of the model can achieve better simulation accuracy in the
case of extremely high CSPM. This is corroborated by the relatively accurate performance of
established models when the input parameters include Rrs (840), such as Liu’s in Table 8.
The band ratio method can be an inverse modeling by selecting the reflectance ratio
calculation ratio of the band combination with the highest correlation among all possible
band combinations [26]. Moreover, based on the characteristics of the sample UAV spectral
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curve with CSPM, our TB2-EXP model uses the ratio of the higher Rrs of 650 nm to the lower
one of 560 nm, in addition to the Rrs (840), as model input parameters to highlight the
characteristics of the Rrs at extremely high CSPM, which makes the input parameters better
correlated with CSPM and suitable for model development.

Table 8. Prediction accuracies of the six existing models and the TB2-EXP model in different concen-
tration ranges.

Class Name
High CSPM (<20 g/L) Extremely High CSPM (>20 g/L)

R2 RMSE (g/L) MAPE R2 RMSE (g/L) MAPE

Existing
models

Liu’s 0.56 1.26 36.89% <0 13.50 17.02%
Doxaran’s 1 <0 2.42 77.06% 0.36 11.54 15.17%
Doxaran’s 2 0.45 2.94 76.89% 0.36 9.52 11.47%

Espinoza-Villar’s 0.03 1.93 >100% 0.02 16.38 24.95%
IMP-MPP 0.23 3.72 >100% <0 12.46 15.77%

QAA 0.03 2.74 42.45% <0 24.14 37.71%
TB2-EXP TB2-EXP 0.72 1.67 40.68% 0.65 6.20 12.37%

In this study, 70% of the data were used for inversion model calibration, and the
correlation with the Rrs was established by randomly sampling five days of measured
data. The aim is to make the CSPM range cover 1–30 g/L and to build a model that can be
applied to a wider range of concentrations to improve the applicability of the model. The
existing model used in Section 3.2.1 and the new model established in Section 3.2.2 were
validated in two concentration ranges—high concentration (CSPM < 20 g/L) and extremely
high concentration (CSPM > 20 g/L). The validation results, as shown in Table 8, indicated
that the highest R2 of the existing models in the high concentration range was 0.56, the
RMSE was 1.26 g/L, and the MAPE was 36.89%, while the R2 of the TB2-EXP model was
0.72, the RMSE was 1.67 g/L, and the MAPE was 44.95%. The highest R2 of the existing
model in the extremely high concentration range was 0.36, RMSE was 9.52 g/L, and MAPE
was 11.47%, while the R2 of the new model was 0.65, RMSE was 6.20 g/L, and MAPE was
12.37%. In comparison, the accuracy of the new model we developed was significantly
improved compared with the existing models, both overall and in the high and extremely
high concentration ranges. It is clear that the TB2-EXP model performs significantly better
than those in the existing literature and reflects the trend of CSPM well. It is worth noting
that MAPE in high concentration is 40.68% and in extremely high concentration is 12.37%.
After calculating the residuals (Figure 9), there are some overestimations in many of the
sample points in the high concentration range, leading to an overestimation in the overall
range. This suggests that the model has lost some of its ability to accurately predict in
a high concentration range in order to ensure prediction accuracy in an extremely high
concentration region. Therefore, in future research, we could first try developing the models
based on different CSPM gradients. In addition, expanding the sampling datasets would
be necessary. The summer rainy season period causes CSPM to peak throughout the year.
To build a widely applicable model, additional sampling in different seasons would be
needed to obtain measured data in different concentration gradients.

4.2. Advantages and Prospects of Remote Sensing on a UAV

The Yellow River, as one of the rivers with the highest sediment content in the world,
derives 90% of its sediment from the Loess Plateau in its middle reaches [27]. The wind-
formed loess, which can be up to tens or even hundreds of meters thick, has special
physicochemical properties. Although the soil structure has high strength when dry, it will
rapidly disintegrate when exposed to water, resulting in soil erosion. Thus, short-term
strong rainfall is the main sediment-producing mechanism in the middle reaches of the
Yellow River, and the effect of precipitation on sediment transport gradually increases
with the rising of precipitation intensity [23,28–31]. Therefore, it is of great significance
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to monitor the changes of CSPM in the Yellow River and its main sediment-producing
tributaries after rainfall events.
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Figure 9. Residuals of validation of TB2-EXP model.

This study shows that the occurrence of short-term heavy rainfall can lead to rapid
changes in river CSPM. Taking the Baijiachuan hydrological station of the Wuding River as
an example, Figure 10a illustrates the in situ sediment content dataset collected in August
2016, which shows that the daily change of sediment of the Wuding River is more obvious in
a month. The Sentinel 2 satellite can provide high spatial resolution (10 m) remote sensing
images, and its revisit cycle is five days. Assuming that it can successfully collect valid data
every five days and accurately monitor the sediment content, the data in Figure 10a were
resampled by Sentinel 2; the revisit cycle is shown in Figure 10b. However, the cloudless
available Sentinel 2 images actually downloaded from the ESA website are those of 7
and 27 August, and the sediment content obtained by the Sentinel 2 satellite is shown in
Figure 10c. Figure 10d and Table 9 demonstrate the sediment content of different sampling
principles. It can be seen that the reduction in datasets leads to a decline in monitoring
accuracy. Specifically, the maximum monitored sediment content dropped from 101 kg/m3

to 32.3 kg/m3, and the mean value was changed from 26.42 kg/m3 to 36.45 kg/m3, which is
a significant decrease in monitoring accuracy. Therefore, judging from the changes of river
sediment before and after rainfall in this study, if only satellite remote sensing is used for
monitoring, we should be careful of overestimation or underestimation of sediment content
on a monthly or annual scale due to the lack of data. On the contrary, UAV platforms
are not obscured by clouds, can acquire high-quality image data under cloudy conditions,
etc., and can be flown at daily or even hourly intervals as needed [32]. Thus, UAV remote
sensing becomes an effective method to provide an efficient means of monitoring rapid
changes in river sediment.

Table 9. Sediment transport statistics from field measurements and Sentinel 2 satellite monitoring.

Dataset Maximum
(kg/m3)

Minimum
(kg/m3)

Mean
(kg/m3) Sum (kg/m3)

In situ 101 0 26.42 818.97
Systematic sampling 56.7 0 21.57 129.44
Available Sentinel 2 32.3 20.3 36.45 52.6
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When collecting UAV data, challenges such as sun glint, which can result from specular
reflection and water movement, may affect the calculation of Rrs [33]. Therefore, we try to
avoid direct sunlight at noon and select UAV flights with low wind speeds, but because it
is not possible to avoid sun glint completely, we need to try an effective method to remove
it. There are already many atmospheric correction methods that can improve this problem,
and they have been applied in many satellites [34–38]. However, most of the atmospheric
correction methods in the existing literature for satellite remote sensing are based on the
wavelength bands and optical parameters of the satellite sensors, which makes it difficult
to migrate them to UAVs. The theory of correction for sun glint is usually based on the
fact that the Rrs of water is close to zero in the ultraviolet and the near-infrared band of
800–900 nm, when non-zero values at these wavelengths are the result of sun glint [39].
Therefore, sun glint corrections can be made by this theory to obtain accurate spectra [40].
However, for the extremely turbid waters in our study, the reflectance at these wavelengths
is usually non-zero because of the presence of the water’s own spectral signal. It can also
be seen in the spectral curves in Figure 4 that the Rrs is over 0.1 at wavelengths around
840 nm. It is not reasonable to use this type of correction. In low-altitude UAV remote
sensing, the effect of atmospheric signals is almost negligible [41]. There are some sun glint
pixels in the UAV images; however, due to the uncertainty of the atmospheric correction
algorithms, the other normal pixels may be corrected and the overall accuracy may not be
as good as the uncorrected results. Since there is currently no suitable UAV atmospheric
correction algorithm to remove sun glint, we avoided selecting pixels with sun glint in both
sampling and model development so that the calibration of the model is not affected. In
future research, algorithms for solving sun glint issues have to be developed in order to
obtain more accurate CSPM mapping results [33].
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Another common challenge encountered in UAV data is the presence of bright and
dark stripes, as depicted in Figure 11. This phenomenon arises from the fact that when
a rotary-wing UAV is moving forward, the fuselage has a certain inclination (pitch an-
gle) in the horizontal direction in order to obtain forward power. When the UAV route
transforms, the solar altitude angle changes with respect to the plane where the cosine
sensor is located on the top and which is rigidly connected to the fuselage. This shift in
observational geometry of the sensor results in the appearance of bright and dark stripes in
the images. To minimize this effect, future route planning for data collection on sunny days
should consider positioning the UAV heading perpendicular to the solar azimuth, thereby
improving the quality of raw data.
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5. Conclusions

In this study, we conducted a CSPM inversion study in the extremely turbid Wuding
River using UAV multispectral remote sensing technology. The results showed that the
accuracy of the existing empirical or semi-analytical models was low due to the fact that
the CSPM was out of the applicable range, particularly in the case of extremely high con-
centration (CSPM > 20 g/L). The newly developed model TB2-EXP significantly improved
the accuracy of CSPM estimating (overall R2 of 0.83, RMSE of 3.73 g/L, MAPE of 44.95%).
And, the performance of the model was especially good under the condition of extreme
turbidity (CSPM > 20 g/L) (R2 of 0.65, RMSE of 6.20 g/L, MAPE of 12.37%). From the spatial
inversion results, the changes of CSPM in the study area were obvious within five days,
especially between 21 and 22 August, where the average CSPM increased significantly from
1.86 g/L to 10.73 g/L within ten hours after the heavy rainfall in the evening of the 21st

day. This demonstrates the effectiveness of UAVs in monitoring significant CSPM changes
over short durations, even under poor weather conditions. This study validated that the
new proposed CSPM inversion model is well suited for remote sensing monitoring of ex-
tremely turbid rivers, such as the main tributaries of the Yellow River, which demonstrated
the potential of multispectral UAVs in CSPM monitoring of narrow rivers. In the future,
the sampling point data can continue to be supplemented to increase the robustness and
applicability of the CSPM inversion model.
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Appendix A

Table A1. Fitting forms of the new models, including linear, power, and exponential.

Input Parameters (x) Models Expressions R2

Rrs(650)
linear CSPM = 62.5Rrs(650)− 0.59428 0.69
power CSPM = 58.64Rrs(650)0.99 0.68

exponential CSPM = exp 7.06236Rrs(650) 0.27

Rrs(730)
linear CSPM = 71.8Rrs(730)− 1.15 0.62
power CSPM = 68.56Rrs(730)1.03 0.6

exponential CSPM = 0.19× 108Rrs(730) 0.2

Rrs(560) + Rrs(840)
linear CSPM = 38.67(Rrs(560) + Rrs(840))− 0.8248 0.74
power CSPM = 36.34(Rrs(560) + Rrs(840))1.0 0.67

exponential CSPM = 28− 39.55× 0.025Rrs(560)+Rrs(840) 0.7

Rrs(650)
Rrs(450)

linear CSPM = 20.84 Rrs(650)
Rrs(450) − 43.4 0.63

power CSPM = 0.055 Rrs(650)
Rrs(450)

5.28
0.75

exponential CSPM = 1618− 1662× 0.99
Rrs (650)
Rrs (450) 0.63

(Rrs(560) + Rrs(650))
×Rrs(840)

linear CSPM = 68.09((Rrs(560) + Rrs(650))
×Rrs(840)) + 4.19

0.57

power CSPM = 1068((Rrs(560) + Rrs(650))× Rrs(840))−9.9 0.48
exponential CSPM = 238× 0.0187(Rrs(560)+Rrs(650))×Rrs(840)) 0.49

Rrs(650)+Rrs(840)
Rrs(560)

linear CSPM = 21.08 Rrs(650)+Rrs(840)
Rrs(560) − 54.11 0.69

power CSPM = 0.0039 Rrs(650)+Rrs(840)
Rrs(560)

6.87
0.73

exponential CSPM = 0.000806× 19.51
Rrs (650)+Rrs (840)

Rrs (560) 0.91
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