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Abstract: Chestnut trees hold a prominent position in China as an economically significant forest
species, offering both high economic value and ecological advantages. Identifying the distribution of
chestnut forests is of paramount importance for enhancing efficient management practices. Presently,
many studies are employing remote sensing imaging methods to monitor tree species. However, in
comparison to the common classification of land cover types, the accuracy of tree species identifica-
tion is relatively lower. This study focuses on accurately mapping the distribution of planted chestnut
forests in China, particularly in the Huairou and Miyun regions, which are the main producing areas
for Yanshan chestnuts in northeastern Beijing. We utilized the Google Earth Engine (GEE) cloud
platform and Sentinel-2 satellite imagery to develop a method based on vegetation phenological
features. This method involved identifying three distinct phenological periods of chestnut trees:
flowering, fruiting, and dormancy, and extracting relevant spectral, vegetation, and terrain features.
With these features, we further established and compared three machine learning algorithms for
chestnut species identification: random forest (RF), decision tree (DT), and support vector machine
(SVM). Our results indicated that the recognition accuracy of these algorithms ranked in descending
order as RF > DT > SVM. We found that combining multiple phenological characteristics signifi-
cantly improved the accuracy of chestnut forest distribution identification. Using the random forest
algorithm and Sentinel-2 phenological features, we achieved an impressive overall accuracy (OA) of
98.78%, a Kappa coefficient of 0.9851, and a user’s accuracy (UA) and producer’s accuracy (PA) of
97.25% and 98.75%, respectively, for chestnut identification. When compared to field surveys and
official area statistics, our method exhibited an accuracy rate of 89.59%. The implementation of this
method not only offers crucial data support for soil erosion prevention and control studies in Beijing
but also serves as a valuable reference for future research endeavors in this field.

Keywords: chestnut; Google Earth Engine; Sentinel-2; time series analysis; machine learning;
multi-phase combination recognition

1. Introduction

Chestnut (Castanea mollissima Blume) is a deciduous tree belonging to Castanea of
Fagaceae, a species that is originally from China. It is a famous nut tree and one of the
earliest fruit trees domesticated and utilized in the country [1], with high economic value
and ecological benefits [2]. China’s chestnut is of excellent quality and rich in nutrients,
and its existing cultivation area and annual output rank first in the world [3,4]. Chestnut
is mostly distributed in mountainous and hilly areas, and the chestnut industry has been
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leading the market in the area, increasing agricultural efficiency and farmers’ income in the
mountainous regions of Beijing. Chestnut tree species have also demonstrated the effect of
increasing surface coverage, improving soil, and reducing soil erosion in many soil and
water conservation projects [4]. However, the planting density of the chestnut economic
forest is usually low, and carrying out weeding and other operations before the harvest
of the fruit easily leads to long-term exposure and loosening of the undergrowth land,
resulting in the degradation of vegetation and death of chestnut trees [4–6]. Therefore, it
is of great significance to establish an automatic remote sensing identification method for
chestnut forest distribution to improve the efficient management of economic forests and
help maintain China’s sustainable economic and social development.

Compared with traditional field monitoring, remote sensing image identification
of tree species distribution has the advantages of large spatial range and flexible time-
frequency, which can cover forest areas that are difficult for human beings to enter. Remote
sensing imaging methods have been widely used in tree species monitoring [7–9]. Op-
tical remote sensing data are the mainstream data currently used in the classification of
ground objects, and they can be divided into three categories according to spatial reso-
lution: medium-resolution data (250–1000 m), high-resolution data (less than 10 m) and
medium- and high-resolution data (10–250 m). For example, moderate resolution imaging
spectrometer (MODIS) data have been widely used in regional-scale mapping, and the
producer’s accuracy is usually low [10–12] due to the serious mixed pixel effect. The
details of high-resolution data are clearer, but the limited space–time coverage and high
cost make it difficult to realize large-scale applications [13–16]. Among the medium- and
high-resolution data, Sentinel-2 series images have high spatial resolution, rich spectral
information, many selectable phases, and free access, which can support accurate and wide
spatial coverage and long-term plant monitoring. Many studies have reported the success-
ful implementation of classification mapping [17,18] with Sentinel-2 data on a regional scale.
Based on Sentinel-2A multi-temporal images, Li et al. used an RF algorithm to identify
and classify tree species in Dagujia Forest Farm [19]. Gu et al. made full use of the rich
information of Sentinel-2 data in the red edge band and used a variety of vegetation indices
to combine them into a time series for crop classification [20]. Jiang et al. put forward a
remote sensing comprehensive classification scheme [21] that is suitable for coniferous
forests in the Tianshan mountains using a comprehensive analysis of the shadow distri-
bution temporal characteristics, classification characteristics, and classifier selection based
on two Sentinel-2 images with great differences in solar altitude and azimuth. However, a
single-phase image can only extract limited spectral characteristics of vegetation, some of
which are similar between different forests.

More and more researchers have begun to explore multiple-phase images to derive
high-resolution and high-precision species mapping [22,23]. In our study, compared with
the common classification of land cover types, it became more challenging to identify
tree species. It is not enough to only use the differences in spectral and spatial texture in
a single phase between the target tree species and other ground objects. Hence, we try
to fully explore the differences in seasonal curves and phenological characteristics from
multiple-phase images to better understand this distinction.

Regarding the requirement of large-scale and long-time series of remote sensing im-
ages in vegetation phenology analysis, the GEE (Google Earth Engine) Cloud Platform is
considered to be a great software for this matter [24,25]. It stores publicly available remote
sensing image data such as Sentinel/Landsat in Google’s disk array so that GEE users can
conveniently extract, call, and analyze massive remote sensing big data resources [26,27].
Yang et al. automatically generated winter wheat training samples with the temporal and
spectral characteristics of Sentinel-2 images on the GEE platform and used the OCSVM
classification method to draw the winter wheat planting area map of Jiangsu Province in
China in different seasons [28]. Tian et al. proposed a pixel-based phenological feature
composite method (Ppf-CM) to reduce the spatial variability of phenology but also enhance
the spectral separation between Spartina alterniflora and native species by superimposing
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two unique phenological features [29].Ni developed enhanced Ppf-CM (Eppf-CM) in the
GEE platform to make full use of several representative phenological stages of rice and
obtained one of the rice maps with the highest spatial resolution of 10 m on the regional
scale in Northeast China [30]. Currently, just a few studies in the field are focused on
remote sensing extraction of chestnut forests. Some domestic researchers have relied on
high-resolution WorldView imagery to identify the distribution of chestnut trees scat-
tered within agricultural and urban environments [14,15] and used the optimal temporal
phase and classification features for chestnut forest extraction by integrating MODIS and
Landsat data [21]. However, there is still a lack of research concerning the utilization of
Sentinel-2 imagery’s advantages for extracting vegetation phenology features to identify
chestnut forests.

Hence, this study leverages the high temporal and spatial resolution of Sentinel-
2 images to extract multiple classification features, including vegetation phenological
characteristics. Consequently, we employed the Google Earth Engine (GEE) platform to
establish and optimize a machine learning model, aiming to develop a high-precision
method for automatically identifying planted chestnut forests and generating accurate
distribution maps in northeastern Beijing. The implementation of this method not only
offers crucial data support for soil erosion prevention and control studies in Beijing but
also serves as a valuable reference for future research endeavors in this field.

2. Materials and Methods
2.1. Study Area

Huairou and Miyun districts in Beijing are selected as the study area (Figure 1).
Situated within the Yanshan Mountains, these districts constitute the primary chestnut-
producing region, and the majority of chestnut forests are artificially planted. Within the
geographical coordinates of 40◦13′~41◦4′N and 116◦17′~117◦30′E. The area is located at the
juncture of the Yanshan mountainous region and the North China Plain in the Northeast of
Beijing. Its territory is low in the south and high in the north, with an altitude of 34 m to
1705 m. It has a warm temperate semi-humid climate, with an average annual temperature
of 9~13 ◦C and an average annual precipitation of 600~700 mm, mainly in June and August.
Huairou District has a total area of 2123 km2, and more than 89% of the land in the area
is hilly and mountainous, which is suitable for planting chestnuts. Therefore, Huairou
District has a large planting area and is known as the “hometown of chestnuts in China”.
Currently, its chestnut output and export account for 70% of the city. Miyun District
in Beijing, with a total area of 2230 km2, is the largest district in the capital. Driven by
economic interests and other factors, chestnut has also become the most widely distributed
and planted economic forest species in Miyun District, mainly distributed in the shallow
mountainous areas of towns and villages such as Dachengzi, Beizhuang, Fengjiayu, and
Bulaotun in the upper reaches of the reservoir, generally concentrated and contiguous, with
less sporadic distribution. The most suitable areas for chestnut growth in Huairou North
and South Gully include Jiuduhe Town, Bohai Town, and Yugou Village in Qiaozi Town.

2.2. Data Source and Processing
2.2.1. Sentinel-2 Time Series Images

The Sentinel-2 data used in this research were obtained from the GEE platform (https:
//code.earthengine.google.com (accessed on 10 January 2022)). The dataset includes
12 images, collected monthly from June 2020 to June 2021. Spectral bands with 10 m ground
resolution were selected to enable high-frequency, continuous, and dynamic monitoring of
the Earth’s surface [16]. To improve the quality and usability of the data, we performed
atmospheric correction, cloud removal, resampling, and other preprocessing steps to
mitigate the effects of atmospheric and illumination factors on ground object reflection.

https://code.earthengine.google.com
https://code.earthengine.google.com
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Figure 1. Geographical location of the study area.

2.2.2. DEM Data

It is understood that the planting altitude of chestnuts in mountainous areas is gen-
erally less than 400 m, and chestnut trees prefer light, so it is best to plant them on sunny
slopes, and all slopes within 45 degrees can be planted. Hence, it is concluded that the
distribution of chestnut forests has a great relationship with topographic factors. To an-
alyze the topographic factors, we utilized DEM (digital elevation model) data from the
2011 Advanced Land Observation Satellite (ALOS) phased array L-band SAR. The data,
which had a spatial resolution of 12.5 m, were obtained from the public resource website
https://earthdata.nasa.gov/ (accessed on 10 January 2022).

To calculate the slope and aspect features, the DEM data were uploaded onto the
GEE platform. Bilinear interpolation functions were then applied on the GEE platform
to resample the ALOS DEM data to a resolution of 10 m. This was carried out to ensure
consistency between its resolution and that of the remote sensing data.

2.2.3. Field Survey Sample Data

In order to fully understand the types of ground objects in the study area and grasp the
spatial location information of typical samples, investigators conducted field investigations
in Huairou and Miyun District of Beijing in the summer of 2021. The latitude and longitude
coordinates of representative plots were measured with a hand-held GPS and the corre-
sponding land types and vegetation types were recorded. The land cover in the study area
is divided into six categories: cultivated land, chestnut forest land, deciduous forest land
(including shrub and deciduous vegetation, accounting for a small proportion), evergreen

https://earthdata.nasa.gov/
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forest land, water area, and construction land. A total of 41,236 pixels of Sentinel-2 images
in 440 regions of interest were selected as the sample data for machine learning, and the
training and verification samples were randomly divided according to the ratio of 7:3
(see Table 1).

Table 1. Training samples and verification samples.

Type
Training Sample

Polygon/Pixel
Number

Verification Sample
Polygon/Pixel

Number

Total Polygon/Pixel
Number

Chestnut forest land 76/6920 32/2965 108/9885
Cultivated land 50/5031 21/2175 71/7206
Deciduous forest land 54/5815 23/2472 77/8287
Evergreen forest land 60/4327 26/1804 86/6131
Water area 27/2904 11/1234 38/4138
Construction land 42/3918 18/1671 60/5589

2.2.4. Accuracy Verification Data

To verify the spatial distribution classification accuracy of chestnut forests, deciduous
forests, evergreen forests, cultivated land, water area, and construction land, besides
verification samples obtained from the ground investigation, we also collected the official
statistical data of the total area of chestnut forests in the study area in 2020, the forest
resources survey data, and cultivated land statistical data. With the help of 10 m global
land use data [31] provided by ESRI in 2020 (https://www.arcgis.com/ (accessed on
10 January 2022)), these data were used to verify the classification accuracy.

2.3. Methods
2.3.1. Feature Selection and Construction

(1) Terrain Characteristics
Terrain factors such as elevation, slope, and aspect can affect plants under the compre-

hensive action of light, temperature, rainfall, wind speed, soil texture, and other elements,
thus causing changes in the ecological relationship between plants and the environment
and affecting the planting area of chestnut. Therefore, we selected elevation, slope, and
aspect to classify the ground objects, and the factors obtained from the DEM data of Miyun
District and Huairou District in Beijing are normalized to be the terrain characteristics.

(2) Spectral Characteristics
Spectral feature is the most direct and important interpretation element in remote

sensing image recognition, which shows different pixel gray values in remote sensing
images, so the difference between pixel gray values of various ground objects can be used
as the basis for ground object recognition. In this study, Sentinel-2A satellite images with
10 m and 20 m spatial resolution bands are selected, including blue band (B2), green band
(B3), red band (B4), red edge bands (B5, B6, B7, B8a), near-infrared band (B8), and shortwave
infrared bands (B11, B12), totaling 10 spectral characteristics (see Table 2).

Table 2. Selected band parameters of Sentinel-2A satellite.

Band Wave Length/µm Spatial Resolution/m

Band2 (Blue) 0.490 10
Band3 (Green) 0.560 10
Band4 (Red) 0.665 10
Band5 (Red Edge 1) 0.705 20
Band6 (Red Edge 2) 0.740 20
Band7 (Red Edge 3) 0.783 20
Band8 (Near-infrared) 0.842 10
Band8A (Red Edge 4) 0.865 20
Band11 (Shortwave Infrared 1) 1.610 20
Band12 (Shortwave Infrared 2) 2.190 20

https://www.arcgis.com/
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(3) Vegetation Characteristics
In the traditional sense, the band reflectivity is usually used as the remote sensing

distinguishing feature of designated objects. However, in reality, not all working bands
are effective enough for chestnut recognition. Thus, we considered adding some extended
features, such as multiple vegetation indices, to participate in the extraction of chestnut
planting areas and evaluate the performance of each extended feature in chestnut recog-
nition. Sentinel-2 images contain three visible bands and two shortwave infrared bands,
which are very effective for monitoring vegetation health information. According to the
vegetation-sensitive bands unique to Sentinel-2 data, 10 targeted vegetation indices were
selected for classification. The specific index calculation is shown below in Table 3.

Table 3. Vegetation indices selected for this study.

Vegetation Index Calculation Formula Full Name

NDVI NDVI = (NIR − Red)/(NIR + Red) [32] Normalized difference vegetation index
MNDWI MNDWI = (Green − SWIR)/(Green + SWIR) [33] Modified normalized difference water index
NDBI NDBI = (SWIR − NIR)/(SWIR + NIR) [34] Normalized difference build-up index

REP REP = 705 + 3 [0.5(Red + RedEdge3) −
RedEdge1]/(RedEdge2 − RedEdge1) [35] Red-edge position index

GNDVI GNDVI = (NIR − Green)/(NIR + Green) [36] Green normalized difference vegetative index
WDRVI WDRVI = (0.2NIR-Red)/ (0.2NIR + Red) [37] Wide dynamic range vegetation index
MTCI MTCI = (RedEdge2 − RedEdge1)/(RedEdge1 − Red) [38] Meris terrestrial chlorophyll index
SAVI SAVI = 1.5(NIR − Red)/(NIR + Red + 0.5) [39] Soil-adjusted vegetation index
PSRI PSRI = (Red-Blue)/RedEdge2 [40] Plant senescence reflectance index
EVI EVI = 2.5 (NIR − Red)/(NIR + 6Red − 7.5Blue + 1) [41] Enhanced vegetation index

(4) Phenological Characteristics
The NDVI vegetation index of the corresponding position used in this study was

obtained from Sentinel-2 images, and the NDVI time series curves of six typical ground
objects in the study area were obtained through drawing. Then, a Savitzky–Golay (SG)
filter [42] was implemented to smooth the contour and facilitate the analysis of the time
series variation characteristics of NDVI and help determine the key phenological period
of chestnut. The smoothing window parameter of SG was set to 10, and the degree of
smoothing polynomial was set to 2.

The phenological characteristics of chestnut trees were outlined by analyzing and
selecting the significant spectral characteristics and vegetation index characteristics of
different key phenological periods. First, the median composite image containing abundant
phenological information was generated for each cloudless pixel in all Sentinel-2 images in
different phenological periods. With that, we could obtain the reflectance curves of spectral
bands in three phenological periods of chestnut trees. The combination of phenological
periods and spectral bands is selected according to the difference between the reflectance of
chestnut woodland in different spectral bands and other land types. Then, according to the
Sentinel-2 images, the vegetation indices in different phenological periods were extracted,
and the distribution characteristics of the vegetation indices in different phenological
periods were analyzed by making box charts. Finally, we selected the vegetation indices
with a large scale in different phenological periods and constructed the phenological
characteristics.

2.3.2. Machine Learning Classification Method

According to various classification feature combinations of the input phenological
features, three machine learning algorithms including SVM (support vector machine), DT
(decision tree), and RF (random forest) algorithms were used to identify and compare land
types. The machine learning algorithm with the best fitting effect was selected to extract
chestnut forest. In the process of classification using three machine learning methods, 70%
of the sample data were selected as training samples to train the model, and 30% of the
samples were used as test samples to evaluate the model’s accuracy.
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(1) SVM Algorithm
SVM is a kind of generalized linear classifier that classifies data using supervised

learning. Its decision boundary is the hyperplane with the maximum side distance for
learning samples [43]. In this study, we implemented the SVM algorithm by calling the
ee.Classifier.libsvm () function on the GEE platform, in which the input of the key parameter
kernel function type determines the classification performance of SVM. The kernel functions
of the algorithm include the linear kernel function (SVM-L), polynomial kernel function
(SVM-P), Gaussian radial basis kernel function (SVM-R), and S kernel function (SVM-S).
SVM-L was selected to carry out the remote sensing identification of chestnut forest land.

(2) DT Algorithm
The DT classification algorithm is a nonparametric supervised classification method

that classifies remote sensing image pixels according to the segmentation threshold [44].
At present, it includes three common types: ID3, C4.5, and CART. The CART algorithm
was used to perform the surface feature classification in the study area and we used the
ee.Classifier.smileCart() function of the GEE platform to perform its training. The two key
parameters were the maximum number of leaf nodes and the minimum number of samples
contained in each leaf node. The parameter values used in this study were set to their
default settings for the method.

(3) RF Algorithm
RF is a classifier that consists of multiple decision trees, with the final output class being

determined by the mode of the classes output by individual trees. Using this algorithm
and combining the decisions of multiple trees, it is possible to enhance the accuracy and
stability of classification [45]. Therefore, the RF algorithm has the advantages of avoiding
overfitting and high algorithm precision. We used the ee.classifier.smileRandomForest()
function on the GEE platform to implement it and set two key parameters: the number
of decision trees T and the number of node splitting features M, which has an important
impact on the model training effect. Generally, increasing T can effectively reduce the
generalization error of the model, but it can also reduce the computational efficiency. M
is the decisive factor in the classification performance of a single decision tree and has an
impact on the correlation between trees.

First, we optimized two key parameters and then input sample data to establish an RF
model for classification. In the RF algorithm, the upper limit of parameter T is generally
set to 1000, and M is the quadratic root of the number of features by default (taking a root
of 66 and the result is about 8). Therefore, when constructing the RF algorithm, we set
the value range of parameter T as 1–1000 and parameter M as 2, 4, 6, 8, and 10. Based on
the training samples, the random forest ground object classification under all parameter
combinations is carried out and the out-of-pocket error is used as the evaluation basis. The
operation efficiency and stability of the algorithm were comprehensively considered to
finally determine the optimal values of the parameters T and M.

2.3.3. Accuracy Evaluation

In order to test the stability and accuracy of the model, the samples were divided
according to the proportion of 7:3 [46,47]. We used 70% samples as the training set for
establishing the model, and 30% samples were used as the test set for evaluating the model.
We also set four commonly used evaluation indicators, namely, the producer’s accuracy
(PA), user’s accuracy (UA), overall accuracy (OA), and Kappa coefficient, to evaluate the
accuracy of model classification. PA is the ratio between the correct prediction of a certain
category and the actual number of such categories, reflecting the degree of missing points
of a certain category; UA is the ratio of a certain type of wrong prediction to the actual
quantity, reflecting the degree of wrong classification of a certain type; OA is the proportion
of correctly predicted samples to all samples, reflecting the overall accuracy of algorithm
classification; and Kappa is a measure of the consistency between the predicted value and
the actual value. Kappa is often used to assess the reliability of classification accuracy, with
the value ranging from −1 to 1. A value of 0.75–1 means very good consistency, 0.4–0.75
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means good consistency, 0–0.4 means poor consistency, and negative values mean less
consistency than contingency.

The accuracy evaluation index is calculated by constructing the confusion matrix, and
the total number of each column of the confusion matrix represents the number of data
predicted for this category. Furthermore, each row represents the real category of data,
and the total number of data in each row represents the number of data instances of that
category. The numerical values in each column are the numbers of real data predicted
as such. The calculation formulas of PA, UA, OA, and Kappa coefficients based on the
confusion matrix are as follows [48]:

PA =
xii
x∗i

(1)

UA =
xii
xi∗

(2)

OA =
∑k

i=1 xii

x
(3)

Kappa =
x∑k

i=1 xii −∑k
i=1 xi∗x∗i

x2 −∑k
i=1 xi∗x∗i

(4)

where x is the total number of pixels, k is the number of categories classified, xii is the
number of pixels on the diagonal of the confusion matrix, and xi∗ and x∗i are the total
number of pixels in row i and column i, respectively.

3. Results
3.1. Phenological Characteristic Construction

Generally, the growth period of Chinese chestnut (that is, from germination to defo-
liation) is 245 days. It usually sprouts at the end of the first ten days, produces leaves in
the middle ten days, and produces new shoots in the last ten days of March. Male flowers
are exposed and gradually elongate in the first ten days, and female flowers appear in
the second ten days of April. The flowers bloom in May and fade in early June, and the
shell begins to expand and harden and their seed growth period is from July to August.
The nuts mature in early September, and leaves fall in early November and then enter
dormancy. The NDVI time series curve (Figure 2) obtained in this study reflects the growth
and development of Chinese chestnut in a year, as well as significant differences with
other surface feature types. In the whole time series, the NDVI value of evergreen forest is
relatively high, and the NDVI value of water bodies is mostly negative. Chinese chestnut
has a relatively similar NDVI value to that of cultivated land and deciduous forest land.
However, in the early and late growth stages, we observed a significantly different change
compared to other ground objects.

Three key phenological periods with high discrimination were determined by analyz-
ing the NDVI time series curve: 1© the flowering period of Chinese chestnut (1 April to 31
June): During this time, the NDVI curve of cultivated land, Chinese chestnut forest, and
deciduous forest exhibit distinct variations due to their different flowering characteristics.
2© Chinese chestnut fruiting period (15 August to 31 October): At this time, the Chinese

chestnut forest and deciduous forest are relatively dense. Most vegetation in the cultivated
land has been picked in preparation for the Chinese chestnut harvest, but the deciduous
and evergreen forests still have strong vegetation growth. 3© Dormancy period of Chinese
chestnut (1 December to the end of February): The NDVI value of evergreen forest is signif-
icantly higher than that of other ground objects during this period, owing to its distinctive
vegetation cover.
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Figure 2. Time series change curve of NDVI in the study area.

The reflectance curves of spectral bands of three phenological periods of Chinese
chestnut were generated based on the Sentinel-2 median composite images of different
phenological periods of flowering, fruiting, and dormancy of Chinese chestnut (Figure 3).
The reflectance of the red band (Band 4), the nearinfrared band (Band 8), and the shortwave
infrared band 2 (Band 12) of different land cover types during the flowering period of
Castanea mollissima are highly distinguishable. The reflectance of the red band (Band 4) is
mainly different in chestnut forest land, deciduous forest land, and cultivated land. The
near-infrared band (Band 8) plays a major role in distinguishing non-vegetation areas, and
the reflectance of the shortwave infrared band 2 (Band 12) is more distinguishable for six
surface feature types. However, the reflectivity of other bands in the flowering period of
Chinese chestnut has cross convergence, and there is no obvious difference among various
ground features. The blue band (Band 2), green band (Band 3), and narrow and red edge
band 4 (Band 8A) of the chestnut fruit stage are relatively distinct, which can be used
as the classification spectral characteristics of the fruit stage. The reflectance of the blue
and green bands in cultivated and construction land is higher than that of other surface
features, while the reflectance of the red edge band 4 (Band 8A) in chestnut forest land is
significantly higher than that of other land covers. In addition, during the dormancy period
of Chinese chestnut, the red edge band 1 (Band 5), red edge band 2 (Band 6), red edge band
3 (Band 7), and shortwave infrared band 1 (Band 11) reflectance of the ground objects are
significantly different.
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We extracted the vegetation index in different phenological periods and outlined the
box graph according to the Sentinel-2 images. Based on the median, mean, quarter, and
three-quarter values of the box graph, we analyzed the distribution characteristics of the
vegetation index in different phenological periods and selected the optimal vegetation
index characteristics under different phenological periods to construct the phenological
characteristics. The analysis results are shown in Figure 4. The distribution characteristics
of the EVI, NDVI, PSRI, and MTCI vegetation indices in the flowering period of Chinese
chestnut are quite different from those of other land types. Furthermore, the distribution
characteristics of the MNDWI, WDRVI, and REP vegetation indices in the fruiting period
are also different from those of other land types. There are also considerable differences in
the distribution characteristics of the GNDVI, NDBI, and SAVI vegetation indices in the
dormancy period of other land types.
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Based on the above analysis of spectral band reflectance and vegetation index values of
each phenological period, we listed 20 characteristic factor combinations of three chestnut
phenological periods to outline the phenological characteristics. The flowering period
corresponded to seven key indicators, the fruiting period corresponded to six key indicators,
and the dormancy period corresponded to seven key indicators, as shown in Table 4.

Table 4. Phenological combinations and their corresponding indicators.

Phenological Period Indicators in Different Phenological Period Phenological Combinations

Flowering period B4, B8, B12, EVI, NDVI, PSRI, MTCI fB4, fB8, fB12, fEVI, fNDVI, fPSRI, fMTCI
Fruiting period B2, B3, B8A, MNDWI, WDRVI, REP uB2, uB3, uB8A, uMNDWI, uWDRVI, uREP

Dormancy period B5, B6, B7, B11, GNDVI, NDBI, SAVI rB5, rB6, rB7, rB11, rGNDVI, rNDBI, rSAVI

Note: The phenological combinations starting with “f” correspond to the flowering period. The phenological
combinations starting with “u” correspond to the fruiting period. The phenological combinations starting with “r”
correspond to the dormancy period.
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3.2. Comparison of Identification Methods of Chestnut Forest

This study mainly involved the identification and comparative analysis of chestnut
forests using various feature combinations and machine learning methods. Initially, four
feature combinations were created based on whether phenological features and topographi-
cal features were considered, as outlined in Table 5. Subsequently, a total of twelve methods
were formulated by combining these feature combinations with three different machine
learning models, i.e., SVM, DT, and RF. These twelve methods were then applied to identify
land cover in the Miyun and Huairou districts using Sentinel-2 images, and the results are
depicted in Figure 5 for reference.

Table 5. Characteristic combinations and their corresponding indicators.

Num Characteristic Combination Involved Indicators

1© spectral characteristics + vegetation
characteristics

B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12,
NDVI, MNDWI, NDBI, REP, GNDVI,
WDRVI, MTCI, SAVI, PSRI, EVI

2©
spectral characteristics + vegetation
characteristics + phenological
characteristics

fB4, fB8, fB12, fEVI, fNDVI, fPSRI, fMTCI,
uB2, uB3, uB8A, uMNDWI, uWDRVI,
uREP, rB5, rB6, rB7, rB11, rGNDVI,
rNDBI, rSAVI

3© spectral characteristics + vegetation
characteristics + terrain characteristics

B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12,
NDVI, MNDWI, NDBI, REP, GNDVI,
WDRVI, MTCI, SAVI, PSRI, EVI,
elevation, slope, aspect

4©
spectral characteristics + vegetation
characteristics + phenological
characteristics + terrain characteristics

fB4, fB8, fB12, fEVI, fNDVI, fPSRI, fMTCI,
uB2, uB3, uB8A, uMNDWI, uWDRVI,
uREP, rB5, rB6, rB7, rB11, rGNDVI,
rNDBI, rSAVI, elevation, slope, aspect

The accuracy results of each classification method (see Figure 6) show that the method
(i.e., the fourth combination of eigenvalues) based on spectral and vegetation characteris-
tics considering topographic and phenological features has the best effect. In particular,
considering phenological characteristics is evidently better than not considering phenolog-
ical characteristics in these recognition methods. Compared with the third combination
of eigenvalues, the overall accuracy and Kappa coefficient of the fourth combination of
eigenvalues are improved by 4.1%, 0.73%, 1.62%, and 0.0541, 0.0096, and 0.0198, corre-
sponding to the results of the SVM, DT, and RF algorithms, respectively. Among the three
machine learning algorithms, the RF algorithm has the highest accuracy. Under the fourth
eigenvalue combination, the overall accuracy and Kappa coefficient are increased to 98.52%
and 0.9820, and the user’s accuracy and producer’s accuracy of chestnut forest land are
increased to 97.25% and 99.46%, respectively.

Overall, the RF algorithm with spectral, vegetation, phenological, and terrain charac-
teristics had the best performance, achieving the highest evaluation accuracy. Therefore, we
selected this method to identify Chinese chestnut forests in the Miyun and Huairou Districts.

3.3. Identification Result and Accuracy Evaluation

The land cover map and the distribution map of Chinese chestnut forest land in the
Huairou and Miyun areas of Beijing were obtained through the RF algorithm considering
phenological and topographic characteristics. This map has a resolution of 10 m. The map
is shown in Figure 7.
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Figure 5. Comparison of results of different classifiers and different methods. Different rows represent
three machine learning algorithms, and different columns represent different recognition methods.
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and phenological characteristics. 3© Representative characteristic factors include spectral char-
acteristics, vegetation characteristics, and terrain characteristics. 4© Representative characteristic
factors include spectral characteristics, vegetation characteristics, phenological characteristics, and
phenological characteristics.

By evaluating the identification results using field survey sample data, the confusion
matrix for the RF model yielded the following values: TP (true positive) = 3664, FP (false
positive) = 104, TN (true negative) = 8501, and FN (false negative) = 46. The overall accuracy
of classification mapping is higher than 98%, and the Kappa coefficient is above 0.9. In the
vegetated areas (chestnut forest, cultivated land, deciduous forest, and evergreen forest),
the accuracy reaches 92.43%. Chestnut is wrongly classified into different tree species,
mainly pear, walnut, hawthorn, and other fruit trees, as well as some terraced fields and
cultivated land. In the non-vegetated area (including water area and construction land),
the accuracy is nearly 100%.

Compared with the chestnut forest land area stated in the official statistical data (see
Table 6), the extracted area of chestnut in this study is 320.85 km2, which accounts for
89.59% of the official statistical data’s 357.17 km2. The distribution of chestnut in Huairou
and Miyun districts is 47.56% and 52.44%, respectively, closely resembling the statistical
data of 41.06% and 58.94%.
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Table 6. Comparison of chestnut area and percentage in the distribution map with official statistics
in 2020.

District Extracted Area (Percentage)
in This Study/km2

Official Statistics Area
(Percentage) in 2020/km2

Huairou 152.60(47.56%) 146.67 (41.06%)
Miyun 168.25 (52.44%) 210.50 (58.94%)

Huairou and Miyun 320.85 357.17

4. Discussion

Previous studies have demonstrated that the accuracy [21] of Chinese chestnut forest
identification can be effectively improved by utilizing medium- and high-resolution images.
Our analysis results based on Sentinel-2 images, align with this finding and further highlight
the advantages of classification mapping with Sentinel-2 images. These advantages include
high spatial resolution, abundant spectral information, numerous selectable phases, and
free accessibility. However, better recognition results would be achieved by separately
identifying chestnut forests in flat terrain and mountainous areas.

Relying on the traditional consideration of images’ spectral and vegetation charac-
teristics, we took into account the differences in the characteristics of vegetation in the
process of growth and development. The introduction of vegetation phenological and
topographic features in this study improved the quality of the chestnut forest distribution
recognition map and guaranteed its recognition accuracy. It is consistent with the studies
by Li et al. [22] and Lei et al. [23], who highlighted the importance of incorporating pheno-
logical characteristics and topographic features to enhance the classification accuracy in
land cover mapping.

In order to avoid mistakes when classifying Chinese chestnut forests, early research
introduced other auxiliary data to reduce the similarity and proved that machine learning
algorithms are effective in improving the accuracy of ground object classification [49].
Following the research hotspot in the field of machine learning, we selected three machine
learning algorithms to identify the distribution of chestnut forests in Miyun District and
Huairou District (Beijing). We found that the RF algorithm is significantly better than the
SVM algorithm and the DT algorithm in terms of the producer’s accuracy, user’s accuracy,
overall accuracy, and Kappa coefficient results. However, there were still some omissions
or classification errors when the RF algorithm was selected and used in this study. We
could identify some noise points in the classification results of chestnut forest land, so there
is still room for improvement through improving the RF methods. For example, we could
consider the interaction between feature indicators to enhance the accuracy.

Overall, although significant progress has been made through the integration of vege-
tation phenological characteristics and the RF algorithm classification, there are still certain
limitations in this study. First, we did not separate the images into flat and mountainous ar-
eas for classification, which could potentially impact the accuracy of identification. Second,
the inclusion of texture characteristics in image extraction for classification was not con-
sidered, thereby potentially limiting the performance improvement. Last, the interaction
between feature indicators in the machine learning models was not taken into account.

5. Conclusions

This study focused on the vegetation phenological characteristics of the Yanshan
Mountains in the northeast of Beijing and proposed a new method to identify the distribu-
tion of chestnut forest based on the Sentinel-2 time series remote sensing images on the
GEE cloud platform. First, three key phenological periods were determined for chestnut
forest extraction based on Sentinel-2’s high-temporal-resolution observations. Then, using
the high-resolution spectral band features and vegetation index features in these three
key phenological periods, supplemented with DEM data, we achieved the extraction of
chestnut forest data based on the machine learning algorithm. The results showed that:
1© High-temporal-resolution Sentinel-2 imagery possesses unique vegetation-sensitive
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bands, making it well-suited for vegetation identification studies. 2© The phenological
characteristics of chestnut forests in the area exhibit high distinguishability from other
land cover types, and the method for constructing phenological features can enhance the
accuracy of chestnut forest identification. 3© Compared to the other two machine learning
methods, RF classification performs the best, yielding the highest accuracy in chestnut
forest data extraction.
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