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Abstract: In the last decades, several methodologies for estimating crop phenology based on remote
sensing data have been developed and used to create different algorithms. Although many studies
have been conducted to evaluate the different methodologies, a comprehensive understanding of
the potential of the different current algorithms to detect changes in the growing season is still
lacking, especially in large regions and with more than one crop per season. Therefore, this work
aimed to evaluate different phenological metrics extraction methodologies. Using data from over
1500 fields distributed across Brazil’s central area, six algorithms, including CropPhenology, Digital
Earth Australia tools package (DEA), greenbrown, phenex, phenofit, and TIMESAT, to extract soybean
crop phenology were applied. To understand how robust the algorithms are to different input sources,
the NDVI and EVI2 time series derived from MODIS products (MOD13Q1 and MOD09Q1) and from
Sentinel-2 satellites were used to estimate the sowing date (SD) and harvest date (HD) in each field.
The algorithms produced significantly different phenological date estimates, with Spearman’s R
ranging between 0.26 and 0.82 when comparing sowing and harvesting dates. The best estimates
were obtained using TIMESAT and phenex for SD and HD, respectively, with R greater than 0.7 and
RMSE of 16–17 days. The DEA tools and greenbrown packages showed higher sensitivity when
using different data sources. Double cropping is an added challenge, with no method adequately
identifying it.

Keywords: time series; Google Earth Engine; remote sensing; soybean; phenological metrics

1. Introduction

Remote sensing has been widely used to characterize the seasonal dynamics of vegeta-
tion at continental and global scales [1]. In the last two decades, many studies have been
conducted at different scales and provided a set of techniques and algorithms to extract
phenological information from orbital data, defined as Land Surface Phenology (LSP) [2–5].
The main advantage is that these metrics are a crucial component in crop modeling simu-
lations that determine how weather, disease, and pests will affect crop yields [6–15] and
can also be used to plan to harvest to minimize losses [9]. Although various methods
have been developed, accurately identifying phenological events over large areas is still
challenging [16] as it demands a high computing time [17]. Thus, evaluating the different
methods and their sensitivity to different data sources is warranted.
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To extract sowing and harvest dates from earth observation, several time-series meth-
ods have been developed [11,16,18–21]. The first phenology extraction software is the
TIMESAT, released in the early 2000s [2,22,23]. Since then, many researchers have sought
to implement improvements in extracting vegetation phenology. Many have continued to
implement methodologies for LSP extraction, such as CropPhenology [18], phenex [24],
phenofit [21], greenbrown [25], rTIMESAT [26] developed in R language, and Digital Earth
Australia tools (DEA) [27] in Python. Although much effort has been spent on developing
and improving different phenology extraction packages, little effort has been conducted
to evaluate and compare the differences between them. Furthermore, there is a gap in
understanding the robustness of such algorithms when input with different data sources,
such as data from different satellite platforms and their products.

Phenology estimation from earth observation is challenging because different plat-
forms provide different remote sensing products with issues to be dealt with, such as noisy
data from cloud cover and low temporal, spatial, or radiometric resolution [28–30]. The
most common remote sensing data for LSP is the Moderate Resolution Imaging Spectrora-
diometer (MODIS) sensor on board the Terra and Aqua satellites, which provides consistent
spatial–temporal data [22,31,32]. However, with the wide availability and reliability of
newer platforms, finer spatial resolution can present more information about vegeta-
tion seasonality and possibly more adequate spatial resolutions to investigate changes in
LSP [33,34]. Thus, an assessment of the impact of different data sources to assess LSP is
needed to evaluate this method’s robustness.

In addition, from a practical point of view, a significant obstacle in obtaining satel-
lite phenology is the incompatibility between ground-based and satellite-based obser-
vations [35]. The main cause of this incompatibility is the inherent difference in their
respective definitions of phenology [28]. That is, the start of the season is estimated at
the time when green leaf reflections are detected by the sensors [36], and it is associated
with the emergence date rather than the sowing date of the crop. However, it is often used
interchangeably as a sowing date [37], and the lag between the actual sowing date and
plant emergence [17] is not natively considered in LSP algorithms, making the process
of extracting these dates more difficult. In addition, the lag and uncertainties are even
greater for pixels with coarser resolutions. The lag increases since SOS is generally detected
later in pixels with coarser resolution [1], while uncertainties increase due to the spectral
mixing of wider pixels, generating irregular curves [38] that can affect estimates. Thus,
the comparison of the different algorithms needs to account for the impact of the different
data sources in order to develop a more general understanding of which method(s), plat-
form(s), or product(s) can be used to accurately map sowing and harvest dates for large
agricultural areas.

Therefore, we sought to evaluate and compare different algorithms for extracting
sowing and harvest dates in large regions (1568 fields) and their performance when in-
putting different data sources. The tested algorithms included CropPhenology, Digital
Earth Australia tools package (DEA), greenbrown, phenex, phenofit, and TIMESAT. The
impact of contrasting data sources was evaluated using data retrieved from MODIS and
MultiSpectral Instrument (MSI)/Sentinel-2 sensors. To our best knowledge, this is the first
study that aimed to compare the most used algorithms developed in the last two decades,
inputting multiple data sources.

2. Materials and Methods
2.1. Study Area

This study’s area spreads across four Brazilian states, namely, Paraná (PR), São Paulo
(SP), Goiás (GO), and Minas Gerais (MG). A total of 1568 fields (Figure 1a) were kindly
provided by the ABC Foundation “https://fundacaoabc.org/ (accessed on 15 July 2023)”,
with observed soybean sowing and harvest dates during the 2019–2020 growing season. The
samples represent soybean farms monitored by the ABC Foundation, where observations
were conducted by the landowner and reported to the institution.

https://fundacaoabc.org/
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Figure 1. Overview of this study’s area showing the location of the phenology observation fields 
used for validation and total soybean cropped areas (a). Usually, the soybean calendar and length 
of the season (LOS) for the states of Paraná (PR), São Paulo (SP), Goiás (GO), and Minas Gerais (MG) 
study area vary from 120 to 160 days (b). Soybean areas downloaded from: [39]. 

In this study’s area (Figure 1a), the soybean growing season is modulated by rainfall. 
In Paraná, soybean sowing usually occurs between the end of September (when the rainy 
season starts) and mid-November, with a higher concentration between late October and 
early November [37,40,41]. Harvesting is usually performed between mid-January and 
early April, with the crop cycle in most regions ranging from 120 to 160 days [37,40,41]. In 
São Paulo, the sowing dates and the crop cycle duration are quite similar to those per-
formed in Paraná, while the harvest comprises the period from February to May (Figure 
1b; [42]. In Goiás and Minas Gerais, sowing is a little later and can occur until mid-Decem-
ber. The harvest can extend from January to April in the state of Goiás and until May in 
Minas Gerais [42]. Thus, in order to capture the growing season of all regions, our study 
period was extended from the end of August 2019 to the beginning of May 2020. 

  

Figure 1. Overview of this study’s area showing the location of the phenology observation fields
used for validation and total soybean cropped areas (a). Usually, the soybean calendar and length of
the season (LOS) for the states of Paraná (PR), São Paulo (SP), Goiás (GO), and Minas Gerais (MG)
study area vary from 120 to 160 days (b). Soybean areas downloaded from: [39].

In this study’s area (Figure 1a), the soybean growing season is modulated by rainfall.
In Paraná, soybean sowing usually occurs between the end of September (when the rainy
season starts) and mid-November, with a higher concentration between late October and
early November [37,40,41]. Harvesting is usually performed between mid-January and
early April, with the crop cycle in most regions ranging from 120 to 160 days [37,40,41]. In
São Paulo, the sowing dates and the crop cycle duration are quite similar to those performed
in Paraná, while the harvest comprises the period from February to May (Figure 1b; [42].
In Goiás and Minas Gerais, sowing is a little later and can occur until mid-December. The
harvest can extend from January to April in the state of Goiás and until May in Minas
Gerais [42]. Thus, in order to capture the growing season of all regions, our study period
was extended from the end of August 2019 to the beginning of May 2020.
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2.2. Remote Sensing Data

To understand how robust the algorithms are to varying inputs, data from two different
data sources, MODIS (products MOD09Q1, MOD13Q1, MYD13Q1) and MSI /Sentinel-2
(Level—2A) that were available in Google Earth Engine (GEE) were used. Normalized
difference vegetation index (NDVI) [43] and enhanced vegetation index (EVI) [44] have
been the most commonly used vegetation indices in retrieving vegetation phenology [45].
However, the estimates vary among methods [4] and the crop season [45], with very
different or even conflicting results [4,45]. Thus, to have a comprehensive evaluation of
how the different indices can affect the algorithms, we used the NDVI and two-band
enhanced vegetation index (EVI2) [46]. The MOD13Q1 and MYD13Q1 products offer
a 16-day maximum value composition (MVC) of NDVI and EVI2 indices at a spatial
resolution of 250 m. Aggregated, the MOD and MYD products can offer an 8-day temporal
resolution. The MOD09Q1 product offers an 8-day MVC in the red and near-infrared
regions of the electromagnetic spectrum at 250 m, while the MSI/Sentinel-2 sensors collect
data every five days at a resolution of 10 m in similar spectral regions. For the reflectance
data, NDVI and EVI2 for each field pixel in each image were calculated according to
Equations (1) and (2) [43,46].

NDVI = NIR − Red/NIR + Red (1)

EVI2 = 2.5 × (NIR − Red)/(NIR + (2.4 × Red) + 1) (2)

where NIR and Red are near-infrared and red reflectances; both vegetation indices were
used since most of these packages have not been tested before using different indices. Thus,
the algorithms were assessed with varying temporal, spatial, radiometric, and spectral
resolutions, totaling 48 different experiments (6 packages × 4 data sources × 2 indexes).

2.3. Satellite Data Pre-Processing

Because the spectral reflectance value of each pixel is partially influenced by the
spectral properties of adjacent pixels [47], pixels at the field border were excluded using a
negative buffer of 125 m, as described below. The datasets were then processed with the
GEE platform [48] to remove the noise data, such as pixels affected by clouds and cloud
shadows (Figure 2). Then, after removing the noise, the whole field NDVI and EVI2 time
series were generated. The NDVI and EVI2 values were averaged to provide the whole
field value. Product-specific pre-processing steps were also applied, as described in the
following sections.

2.3.1. MOD13Q1/MYD13Q1 Processing

The MOD13Q1 and MYD13Q1 product’s Quality Assessment (QA) reliability was
used to identify and remove noisy pixels. To accomplish this, a mask was applied to each
image, selecting data only with QA = 0 (good quality) and QA = 1 (marginal data). We
also selected pixels where the blue reflectance band value was less than 10%. To reduce the
potential effect of anisotropic reflectance, we only used pixels with a view zenith angle of
less than 30◦. After the corrections, the MOD13Q1 and MYD13Q1 products were combined
to generate an 8-day product, referred to as MCD13.

2.3.2. MOD09Q1 Processing

For MOD09Q1, the quality band was used to filter out the disturbance that could affect
the Vegetation Index (VI) data quality. To do this, a mask was created using the State band
and filtering the bits 0 and 1 (Cloud), 2 (Cloud shadow), and 8 and 9 (Cirrus cloud).
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Figure 2. Flowchart of the NDVI and EVI2 time series extraction process on the Google Earth Engine
platform.

2.3.3. Sentinel-2 Processing

For Sentinel-2 (S2), the data containing clouds or noisy data were filtered using
the Scene Classification Map (SCL) band provided with the dataset. To do this, all
pixels classified with values 1 (Saturated), 2 (Dark), 3 (Cloud shadow), 7 (Cloud_low),
8 (Cloud_medium), 9 (Cloud_high), 10 (Cirrus), and 11 (Snow/Ice) were removed. In
addition, the cloud mask band (QA60) provided with the dataset was used to remove
opaque and cirrus cloud noise.

2.4. Sowing and Harvest Dates Estimation

The phenological attributes from VI datasets were obtained in two steps (Figure 3):
(1) Time-series smoothing (see Supplementary Materials—Section S1); and (2) Parameter
calibration (see Supplementary Materials—Section S2). After this, the validation and
analysis of the phenological metrics were performed. In the validation phase, the influence
and differences caused in the estimates by the different packages and data sources were
analyzed. Also, because all methods provide Start of Season (SOS) and End of Season
(EOS), the sowing dates were defined as SOS minus 10 days (see Section 2.6), and harvest
dates were defined as the EOS date.
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2.4.1. Time-Series Smoothing

Even though most of the noise data were removed during the pre-processing steps,
the VI time series required further steps such as filtering [3]. Different methodologies were
used for each dataset after evaluating various noise removal methods (see Supplementary
Materials—Section S1, Figures S1 and S2). Briefly, for MODIS data that already had the
maximum-value composite procedure (MVC), each time series was interpolated to fill
existing gaps, filtered with Savitzky–Golay (SG) [3] to remove residuals, and interpolated
for daily values. Each time series in the Sentinel-2 dataset was first interpolated daily to
fill in gaps and null data (days without images). The Best Index Slope Extraction (BISE)
algorithm [49] was then used to remove the remaining noise/outliers from the set of time
series. Subsequently, the SG filtering procedure was used to smooth the time series VI
curve and reduce residual noise in the time series VI datasets. The SG filter was applied to
all datasets with a window size of 5 and a polynomial degree of 2.

As each extraction algorithm had different functions for noise removal and time series
smoothing, this processing was performed separately before LSP extraction in order to
provide the algorithms with the best time series for each product. These processes reflect
standard procedures when analyzing VI time series [3].

2.4.2. Phenology Extraction Algorithms

a. CropPhenology

The CropPhenology (CP) package focuses only on phenology metric extraction, and
the function extracts consecutive VI values in the time series of images for each pixel
to define a space–time cube, a three-dimensional dataset that represents the time series
of VI values (latitude, longitude, and time) [18]. The package provides the user with
15 phenological metrics that represent the seasonal growth condition of the crop for each
pixel [18]. In this package, the estimates of the start and the end of the season were
implemented by starting at peak development and analyzing the VI changes between
the previous and later values, iteratively looking for local minima (dips) in VI values.
Therefore, the SOS and EOS are each defined as the first minimum below the user-specified
VI threshold and the last minimum below the threshold value, respectively [18].

b. Digital Earth Australia tools package

The Digital Earth Australia (DEA) function xr_phenology can calculate several LSP
statistics that together describe the characteristics of a plant’s lifecycle. This function is
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contained in the dea_tools.temporal script that is a part of the DEA big data platform
that provides both the analytical tools and the high-performance computing infrastructure
needed to facilitate the analysis of multi-decadal time series data [50]. The package was
developed in Python and had two possible parameter values for estimating each of the SOS
and EOS metrics, as follows [27]: If ‘first’, then SOS is estimated as the first positive slope
on the greening side of the curve. If ‘median’, then SOS is estimated as the median value of
the curve’s positive slopes on the greening side. If ‘last’, then EOS is estimated as the last
negative slope on the senescing side of the curve. If ‘median’, then EOS is estimated as the
‘median’ value of the negative slopes on the senescing side of the curve.

c. Greenbrown

The greenbrown package (GB) is a collection of functions developed to analyze trends,
trend changes, and phenology events from satellite observations or climate model simu-
lations [25]. In this package, phenology events can be estimated from the daily interpo-
lated, gap-filled, and smoothed time series using two different methodologies, thresholds
(PhenoTrs and PhenoWhite), or extreme values of the derivative of the seasonal cycle
(PhenoDeriv) [25]. Both approaches are based on the definition of SOS and EOS as the
mid-points of green-up and senescence, respectively [51].

d. Phenofit

The phenofit (PF) package was developed in the R language and had several built-in
functionalities, from noise minimization to metric extraction [21]. The input supports
evenly and unequally spaced time series and can handle missing input values. It combines
methods of growing season splitting, 7 curve fitting methods, and four phenology extraction
methods and provides flexible input and output routines [21]. In this package, the threshold
and derivative method were also selected, which defines SOS and EOS as the first day
on which the VI value exceeds the threshold and mid-points of green-up and senescence,
respectively.

e. Phenex

The phenex (PX) package is implemented in the R language and provides a collection
of functions for the temporal analysis of phenological data [24]. Besides having methods for
extracting phenological metrics, the package has functions such as BISE [49] for correcting
time series and methods such as linear interpolation, fast Fourier transform (FFT), and SG
filter for fitting time series [24]. The function modelValues allows for these corrections to
be performed while the function phenoPhase extracts the phenological metrics from the
time series based on the threshold method [24]. This function has as parameters the time
series, the desired phase to be extracted (e.g., green-up, max, or senescence), the threshold
method (local or global), and the threshold value (e.g., 0.20, 0.50) [24].

f. TIMESAT

The TIMESAT (TM) is a software package for analyzing time series of satellite sensor
data [2]. The TIMESAT program [52] provides eleven phenological metrics, including
the start and end dates of the growing season. The TIMESAT software provides three
different approaches for smoothing the VI data and fitting it to a chosen function [52]. In
this package, a season officially starts when the value has increased by a specific measure
(threshold) of the distance between the minimum level on the left and the maximum level,
as determined by the filtered or modified functions. Similar definitions are given for the
end of the season [52]. In this work, the rTIMESAT was used [26]. The package requires at
least two annual cycles to run and returns all identified seasons. Thus, in this paper, we
double the time series by extending its size twice.

2.5. Parameter Calibration and Extraction

Before extracting phenological metrics, a calibration was carried out using 200 ran-
domly sampled fields to determine the best configuration of each package for this study’s
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region (see Supplementary Materials—Section S2). The parameters that showed the highest
correlation and fit with the field data were selected (Table 1). However, for the GB and PF
packages, only the derivative method was used, as they showed better results. Thus, the
evaluation was focused on three algorithms with the threshold method (CP, PX, and TM)
and 3 with the derivative method (DT, GB, and PF), as they have shown consistent results
in previous work [53–56].

Table 1. Parameters of each package used for validation of the phenological metrics, with CP
(CropPhenology), DT (DEA tools), PX (phenex), and TM (TIMESAT).

Package
(Parameters)

CP
(Threshold)

DT
(Derivative)

PX
(Threshold)

TM
(Threshold)

MCD13 (0.25, 0.35) (median, last) (0.15, 0.15) (0.15, 0.20)
MOD09 (0.30, 0.35) (median, last) (0.15, 0.15) (0.15, 0.20)
MOD13 (0.25, 0.25) (median, last) (0.15, 0.15) (0.15, 0.20)

Sentinel-2 (0.10, 0.40) (median, last) (0.10, 0.10) (0.10, 0.10)
Numbers and methods in parentheses indicate the parameter value for the sowing and harvest dates, respectively.

2.6. Performance Evaluation and Spatialization

Because farmers report sowing and harvest day and not the emergence or start and
end of seasons, to estimate the sowing date, 10 days were subtracted from the detected
SOS (provided by all algorithms that represented plant emergence) dates because this is the
average time when soybean plants emerge and become visible to satellites [36,57,58]. Thus,
it can be assumed that the gaps found between the estimates are due to the error between
the data estimated by remote sensing and the data measured in the field. Shapiro–Wilk
normality test [59], Spearman’s rank correlation coefficient (R), the Root Mean Square Error
(RMSE), bias (%), and linear regression between the reference field data and the estimates
were used to assess the performance of the algorithms. The non-parametric Wilcoxon
paired-samples test [60] (also known as the Wilcoxon signed-rank test) was used to assess
whether there was a statistically significant difference between the estimates and the field
data. The processing times (seconds) were also recorded.

Lastly, after the validation step, a map of the soybean season’s sowing date, harvest
date, and length was generated using one of the packages for the entire region (four states
combined) for the 2020–2021 season. The mask with soybean areas for the 2020–2021 season
is available in [39].

3. Results

The best estimate for SD was obtained using TM with MCD13 data source and EVI
index, with RMSE of 16 days, R of 0.8, and bias of 10.4%. The best estimate for HD was
obtained using PX with S2 data source and EVI index, with RMSE of 18 days, R of 0.75, and
bias of –0.2%. Both packages showed distributions similar to the field data distribution
(Figure S5). DT and GB showed the worst results, with most correlations below 0.5 and
errors greater than 40 days (Table S1). The CP and PF packages showed low errors when
compared to the field data but were less correlated; in general, R ranged between 0.5 and
0.7. Although some results have shown greater similarity with the ground-based data, it
is still possible to observe many uncertainties in the estimates (the number of outliers in
Figure 4 and dispersion around the 1:1 line in Figure 5).

Although performance differences exist when changing data sources, some algorithms
perform similarly when changing platforms (Table S1 and Figure 4). For example, TM’s
biggest difference in R was less than 0.1 from MCD13 EVI2 to MOD09 NDVI. However,
DT and GB were the most sensitive to data source changes at harvest, with DT’s R varying
from 0.29 with MOD13 NDVI to 0.47 on Sentinel-2 NDVI and at sowing with GB’s R from
0.25 to 0.51 from MCD13 NDVI to MOD13 NDVI. Overall, EVI2 showed better results and
more correlation with field data for all packages (Table S1 and Figure 4). The SD estimates
were statistically equal to the data observed in the field using the CP and PF package and
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MODIS and Sentinel-2 datasets, as well as the PX package using the MODIS dataset and
TM using the MOD13 dataset (Figure 4). For the HD estimates, the CP and PX packages
showed similarity to field data using MODIS and Sentinel-2 datasets, as well as the PF
package using MODIS data. Only EVI2 was used in subsequent evaluations as it showed
similar and slightly better results to NDVI.

Although most of the fields estimated by the TM package achieved a good fit, some
fields could not be estimated adequately, especially the very low values that were associated
with the package not returning estimates for the time series. For example, null values for
SD or high values for HD indicated that the package ran through the time series and picked
the end of the series without finding the end of the crop cycle (Figure 5).

There was a difference in the estimates between the different regions. In general,
the estimates were lower than the observed data for the northern region and higher in
the southern region (Figure 6 and S6–S9). For both estimates, most of the packages were
consistent with the field observation, except for the DT and GB packages.
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Figure 4. Violin plot comparing field data (FD) with sowing (SD) and harvest (HD) dates estimates
for the different packages, CP (CropPhenology), DT (DEA tools), GB (greenbrown), PF (phenofit), PX
(phenex), and TM (TIMESAT), using different data sources, MODIS (MCD13, MOD09, MOD13) and
Sentinel-2 (S2).

TM was the most robust algorithm with more consistent results regarding RMSE, bias,
and R (Table S1), regardless of changes in the data source. The GB package, contrarily,
was the most sensitive to changes in the data source. However, all methods have some
sensitivity to changes in data sources. For example, the less sensitive (TM) for SD has an
average error between Sentinel-2 and MOD13 of about 10 days (Figure 7a) while almost
15 days from Sentinel-2 to MCD13 (Figure 7b). In the most sensitive method (GB), the
average errors are more than 15 days apart for both SD and HD (Figure 7c,d).
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Figure 7. Distribution of the difference between the field data and sowing (a,c) and harvest estimates
(b,d) using the different data sources, EVI index, and TM (a,b) and GB (c,d) packages. FD_MC13:
difference between field data and MCD13; FD_MD09: difference between field data and MOD09;
FD_MD13: difference between field data and MOD13; FD_S2: difference between field data and
Sentinel-2. Dotted lines represent the peak of each distribution.

There are inconsistencies in some estimates made by the packages. The major source
of errors is double cropping (lower R and more outliers). Packages assume only one crop
in the mentioned season, often picking the wrong sowing or harvest date. In this case, even
though TIMESAT has features to determine the number of cycles, it often fails to identify
multiple cycles, particularly for harvest estimation (Figure 8).
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Figure 8. Dispersion between observed field data and sowing (a) and harvest (b) estimates for
different numbers of seasons. Only the TM package and MCD13 data source were used as they
showed the best fit (see Figure 5). The black line represents the 1:1 line.

The main goal of these algorithms is to quickly produce a sowing and harvest date
map over a large area. Even though the algorithms are based on point scale, some of
them provide features that enable the input of rasters, which facilitates the spatialization
process. Thus, as an example, spatialization was performed using the CP and PF packages
(Figures S10 and S11) with the MCD13 product. The quickest algorithm was the GB, and
the slowest was the TM (Table 2).

Table 2. Runtime for 100 NDVI time series for each package, with CP (CropPhenology), DT (DEA
tools), GB (greenbrown), PF (phenofit), PX (phenex), and TM (TIMESAT).

CP DT GB PF PX TM

Time (s) 0.343 6.879 0.130 0.146 10.278 76.544
These tests were performed in an Intel i5-7200U (7th Generation) with 8 GB RAM.

4. Discussion

Overall, we found that PX and TM were the best algorithms for phenology estimation,
with the lowest errors (Table S1 and Figure 5). The algorithms had different performances
when predicting SD or HD; we found that the TM algorithm was more suitable to predict
sowing while PX was to predict the harvest. Packages based on the threshold method
(such as PX and TM) showed higher consistency, except for GB (Figures S3 and S4). Large
discrepancies were observed between the algorithms based on the derivative method (PF,
GB, and DT using faster growth and senescence rate). Due to diverse methodologies, these
inconsistencies are a source of uncertainty in detecting LSP [4,61]. Thus, even the best-
performing algorithms lack the precision to drive in-season decisions (best performances
with RMSE between 10 and 20 days—Table S1). Still, these methods can provide trends
and assess regional practice changes much quicker than surveys. For example, detecting
sowing practices changes with the introduction of new crop cultivars, i.e., a cultivar that
could be sown deeper and, hence, earlier in dry lands to capture early rains [62] or crop
models that could be informed to evaluate large regions [63].

Although small differences were found, the remote sensing data sources that showed
the best results were Sentinel-2 and MCD13 for most packages (Table S1 and Figure 5).
Studies that have analyzed different data sources have observed that estimates of phe-
nological metrics could be affected when the temporal [64] and spatial resolution [65] of
the sensor changed. However, here, the TM package was the most robust and showed
similar behavior and results regardless of the data sources (Table S1 and Figure 7a,b). On
the other side, GB and DT seem to be more sensitive to the data source used (Figure 7c,d).
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The use of different VIs had a stronger impact on the phenology extraction performance
than the changing spatial and temporal resolution (Figure 4). This is probably related to the
fact that EVI and EVI2 were developed to overcome problems with saturation, minimize
atmospheric contamination, and reduce the bare-ground signal present in NDVI [44,66,67].

Estimating phenological metrics in agricultural regions with more than one cycle
makes this process even more challenging [68,69]. Double cropping, a common practice
in the studied regions (soy and corn in the south region [40] and soy, corn, cotton, or
non-commercial crops in the north [70]), generates confusion in the algorithms (Figure 8)
because of the spectral pattern similarity of these crops [70]. Although TM has features
that allow to identify the number of the crop cycle and set the desired cycle [71], it often
ends up selecting the wrong cycle regardless—particularly harvest dates (Figure 8b). This
problem could be solved by inserting the time series corresponding exactly to the period of
soybeans grown in the region. However, this information is not available, and it would
require a classification step that would make estimates even more challenging for large
regions because soybeans could be the first or the second crop in the season.

In addition, the validation of phenological metrics estimates for agricultural areas
is still difficult because of the gap between remotely sensed data and those observed in
the field [17,72]. That is, the sowing date differs from the emergence date, where only
the latter will change the VI values. Hence, although no method explicitly accounts for
it, when using VIs to identify sowing and harvest dates, the difference between sowing
and crop emergence needs to be accounted for. Note that setting a fixed number of days
between sowing and emergence needs to be inferred based on crop- and region-specific
assumptions [72]. Furthermore, different philosophies—not based on Vis—were explored.
For example, [17] used ultra-high spatial and temporal resolution satellites and obtained
an RMSE of two days. However, this method is more computationally intensive than
VIs-based methods and was evaluated on a small scale. In addition, other works also
performed a re-scaling of SOS to obtain sowing dates by subtracting a value in days and
showed the potential of this methodology [73,74].

Nevertheless, the limitations and uncertainties could potentially be reduced with
methods and data sources that were not tested in this study. For example, calibrating
each algorithm for a specific region with a similar growing pattern could improve the
accuracy of the estimates. Bias removal methods, such as those proposed by [75] and [76],
could be used to increase the reliability of the data and their use to guide management
practices. Another opportunity that could improve this type of study is the synthetic
aperture radar (SAR) data [77], which does not suffer from cloud interference [55]. Also,
data sources with a finer spatial and temporal resolution, such as the Harmonized Landsat
and Sentinel-2 (HLS) project [78] and the cube-satellite constellations (e.g., PlanetScope) [79],
can provide more accurate time series. We have not tested these different data sources in
this study; we know about their potential, but more research needs to be conducted since
radar backscattering has presented a low correlation with the observed data so far [55].
Furthermore, PlanetScope images tend to suffer from inter-sensor inconsistencies that
introduce noise into the time series of observations [80], and by the time we concluded
this study, the HLS was not available in GEE. Nonetheless, this study provides insights
when using well-documented methods to estimate phonology using vegetation indices
from diverse sources.

Furthermore, works that had higher correspondence with field data used small areas
and small validation datasets. For example, 50 fields for [17] and 100 fields for [55] when
compared with this study, where more than 900 fields were used for validation, distributed
across large production areas of Brazil (with fields more than 2000 km apart). Thus, this
work highlights that after twenty years of investigation, new approaches must consider
the variation in different ecosystems and the easy application over large areas. This would
support phenology investigations in moving from examining past phenology to predicting
future phenology [37,81].
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5. Conclusions

TIMESAT and phenex presented the most accurate estimates of phenological metrics
for sowing and harvest dates, respectively. TIMESAT was less sensitive to changes in spatial,
temporal, spectral, and radiometric changes, while the other methods were sensitive to
changes in data input. Overall, after two decades of development, sowing and harvest
dates extracted from satellite vegetation indices errors are between 10 and 20 days. Thus,
its applicability is limited for precise and localized decision-making; regional assessments
that can cope with such errors benefit from these methods instead of surveys, nonetheless.
More studies using different algorithms and data sources can help to improve the accuracy
of estimates. Despite the limitations and uncertainties, this study provides a base for future
studies that can lead to new approaches and improvements in the algorithms developed
so far.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/rs15225366/s1; Section S1: Smoothing time series tests; Section
S2: Parameter calibration; Figure S3: Correlation coefficient between the data observed in the field
and SD and HD estimates for the different parameters of each tested. CP (CropPhenology), DT (DEA
tools), PF (phenofit), PX (Phenex), and TM (TIMESAT); Figure S4: Mean difference and standard
deviation between the observed SD (left) and HD (right) field data and the different estimates made
using different parameters for the packages. CP (CropPhenology), DT (DEA tools), PF (phenofit),
PX (Phenex), and TM (TIMESAT); Figure S5: Distribution of each tested dataset. Black lines indicate
the first and third quantiles. Red lines indicate the quantiles from field data; Figure S6: Spatial
pattern of the difference between observed and estimated sowing date (a–f) and harvest dates
(g–l) estimated by the different packages tested for MCD13 EVI2, with CropPhenology (a,g), DEA
tools (b,h), greenbrown (c,i), phenofit (d,j), Phenex (e,k), and TIMESAT (f,l). Root meant square error
(RMSE) is in days; Figure S7: Spatial pattern of the difference between observed and estimated sowing
date (a–f) and harvest dates (g–l) estimated by the different packages tested for MOD09 EVI2, with
CropPhenology (a,g), DEA tools (b,h), greenbrown (c,i), phenofit (d,j), Phenex (e,k), and TIMESAT
(f,l). Root meant square error (RMSE) is in days; Figure S8: Spatial pattern of the difference between
observed and estimated sowing date (a–f) and harvest dates (g–l) estimated by the different packages
tested for MOD13 EVI2, with CropPhenology (a,g), DEA tools (b,h), greenbrown (c,i), phenofit (d,j),
Phenex (e,k), and TIMESAT (f,l). Root meant square error (RMSE) is in days; Figure S9: Spatial pattern
of the difference between observed and estimated sowing date (a–f) and harvest dates (g–l) estimated
by the different packages tested for Sentinel-2 EVI2, with CropPhenology (a, g), DEA tools (b,h),
greenbrown (c,i), phenofit (d,j), Phenex (e,k), and TIMESAT (f,l). Root meant square error (RMSE)
is in days; Figure S10: Sowing and harvest dates estimates made using the CropPhenology (T_CP,
threshold method) and phenofit (D_PF, derivative method) packages; Figure S11: Cycle duration
estimated using the CropPhenology (T_CP, threshold method) and phenofit (D_PF, derivative method)
packages; Table S1: Correlation coefficient, RMSE (days), bias (%), and standard deviation (days)
for all estimates, with CP (CropPhenology), DT (DEA tools), GB (greenbrown), PF (phenofit), PX
(Phenex), and TM (TIMESAT).
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32. Siłuch, M.; Bartmiński, P.; Zgłobicki, W. Remote Sensing in Studies of the Growing Season: A Bibliometric Analysis. Remote Sens.
2022, 14, 1331. [CrossRef]

33. Chen, F.; Liu, Z.; Zhong, H.; Wang, S. Exploring the applicability and scaling effects of satellite-observed spring and autumn
phenology in complex terrain regions using four different spatial resolution products. Remote Sens. 2021, 13, 4582. [CrossRef]

34. Liu, L.; Cao, R.; Shen, M.; Chen, J.; Wang, J.; Zhang, X. How does scale effect influence spring vegetation phenology estimated
from satellite-derived vegetation indexes? Remote Sens. 2019, 11, 2137. [CrossRef]

35. Fisher, J.I.; Mustard, J.F. Cross-scalar satellite phenology from ground, Landsat, and MODIS data. Remote Sens. Environ. 2007, 109,
261–273. [CrossRef]

36. Rezaei, E.E.; Ghazaryan, G.; González, J.; Cornish, N.; Dubovyk, O.; Siebert, S. The use of remote sensing to derive maize sowing
dates for large-scale crop yield simulations. Int. J. Biometeorol. 2021, 65, 565–576. [CrossRef] [PubMed]

37. Becker, W.R.; Silva LC, D.A.; Richetti, J.; Ló, T.B.; Johann, J.A. Harvest date forecast for soybeans from maximum vegetative
development using satellite images. Int. J. Remote Sens. 2021, 42, 1121–1138. [CrossRef]

38. Helman, D. Land surface phenology: What do we really ‘see’ from space? Sci. Total Environ. 2018, 618, 665–673. [CrossRef]
[PubMed]

39. Song, X.P.; Hansen, M.C.; Potapov, P.; Adusei, B.; Pickering, J.; Adami, M.; Lima, A.; Zalles, V.; Stehman, S.V.; Di Bella, C.M.;
et al. Massive soybean expansion in South America since 2000 and implications for conservation. Nat. Sustain. 2021, 4, 784–792.
[CrossRef]

40. Johann, J.A.; Becker, W.R.; Uribe-Opazo, M.A.; Mercante, E. Uso de imagens do sensor orbital MODIS na estimação de datas do
ciclo de desenvolvimento da cultura da soja para o estado do Paraná—Brasil. Eng. Agríc. 2016, 36, 126–142. [CrossRef]

41. Becker, W.R.; Richetti, J.; Mercante, E.; Júlio Dalla, C.; Esquerdo, M.; Carlos Da, A.; Junior, S.; Paludo, A.; Johann, J.A. Agricultural
soybean and corn calendar based on moderate resolution satellite images for southern Brazil Calendário agrícola de soja e milho
baseado em imagens de satélite de moderada resolução para o sul do Brasil. Ciênc. Agrár. 2020, 41, 2419–2428. [CrossRef]

42. CONAB—Companhia Nacional de Abastecimento. Calendário de Plantio e Colheita de Grãos no Brasil. 2022. Available online:
https://www.conab.gov.br/institucional/publicacoes/outras-publicacoes (accessed on 6 August 2023).

43. Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec.
Publ. 1974, 351, 309.

44. Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance
of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [CrossRef]

45. Huang, X.; Liu, J.; Zhu, W.; Atzberger, C.; Liu, Q. The optimal threshold and vegetation index time series for retrieving crop
phenology based on a modified dynamic threshold method. Remote Sens. 2019, 11, 2725. [CrossRef]

46. Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote
Sens. Environ. 2008, 112, 3833–3845. [CrossRef]

47. Townshend, J.R.G.; Huang, C.; Kalluri, S.N.V.; Defries, R.S.; Liang, S.; Yang, K. Beware of per-pixel characterization of land cover.
Int. J. Remote Sens. 2000, 21, 839–843. [CrossRef]

48. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial
analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]

49. Viovy, N.; Arino, O.; Belward, A.S. The Best Index Slope Extraction (BISE): A method for reducing noise in NDVI time-series. Int.
J. Remote Sens. 1992, 13, 1585–1590. [CrossRef]

https://doi.org/10.1016/j.rse.2014.11.021
https://cran.r-project.org/web/packages/phenex/phenex.pdf
http://greenbrown.r-forge.r-project.org/
https://rdrr.io/github/kongdd/rTIMESAT/
https://docs.dea.ga.gov.au/notebooks/Real_world_examples/Vegetation_phenology.html
https://docs.dea.ga.gov.au/notebooks/Real_world_examples/Vegetation_phenology.html
https://doi.org/10.3390/rs8090753
https://doi.org/10.1016/j.agrformet.2015.07.005
https://doi.org/10.1029/2012WR012115
https://doi.org/10.1016/j.rse.2006.05.003
https://doi.org/10.3390/rs14061331
https://doi.org/10.3390/rs13224582
https://doi.org/10.3390/rs11182137
https://doi.org/10.1016/j.rse.2007.01.004
https://doi.org/10.1007/s00484-020-02050-4
https://www.ncbi.nlm.nih.gov/pubmed/33252716
https://doi.org/10.1080/01431161.2020.1823042
https://doi.org/10.1016/j.scitotenv.2017.07.237
https://www.ncbi.nlm.nih.gov/pubmed/29037474
https://doi.org/10.1038/s41893-021-00729-z
https://doi.org/10.1590/1809-4430-Eng.Agric.v36n1p126-142/2016
https://doi.org/10.5433/1679-0359.2020v41n5supl1p2419
https://www.conab.gov.br/institucional/publicacoes/outras-publicacoes
https://doi.org/10.1016/S0034-4257(02)00096-2
https://doi.org/10.3390/rs11232725
https://doi.org/10.1016/j.rse.2008.06.006
https://doi.org/10.1080/014311600210641
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1080/01431169208904212


Remote Sens. 2023, 15, 5366 17 of 18

50. Dhu, T.; Dunn, B.; Lewis, B.; Lymburner, L.; Mueller, N.; Telfer, E.; Lewis, A.; McIntyre, A.; Minchin, S.; Phillips, C. Digital earth
Australia–unlocking new value from earth observation data. Big Earth Data 2017, 22, 64–74. [CrossRef]

51. Forkel, M.; Migliavacca, M.; Thonicke, K.; Reichstein, M.; Schaphoff, S.; Weber, U.; Carvalhais, N. Codominant water control
on global interannual variability and trends in land surface phenology and greenness. Glob. Chang. Biol. 2015, 21, 3414–3435.
[CrossRef] [PubMed]

52. Jönsson, P.; Eklundh, L. TIMESAT—A program for analysing time-series of satellite sensor data. Comput. Geosci. 2004, 30, 833–845.
[CrossRef]

53. Atkinson, P.M.; Jeganathan, C.; Dash, J.; Atzberger, C. Inter-comparison of four models for smoothing satellite sensor time-series
data to estimate vegetation phenology. Remote Sens. Environ. 2012, 123, 400–417. [CrossRef]

54. Geng, L.; Ma, M.; Wang, X.; Yu, W.; Jia, S.; Wang, H. Comparison of eight techniques for reconstructing multi-satellite sensor
time-series NDVI data sets in the Heihe river basin, China. Remote Sens. 2014, 6, 2024–2049. [CrossRef]

55. Urban, D.; Guan, K.; Jain, M. Estimating sowing dates from satellite data over the US Midwest: A comparison of multiple sensors
and metrics. Remote Sens. Environ. 2018, 211, 400–412. [CrossRef]

56. Zhang, X.; Cui, Y.; Qin, Y.; Xia, H.; Lu, H.; Liu, S.; Li, N.; Fu, Y. Evaluating the accuracy of and evaluating the potential errors in
extracting vegetation phenology through remote sensing in China. Int. J. Remote Sens. 2020, 41, 3592–3613. [CrossRef]

57. Trentin, R.; Heldwein, A.B.; Streck, N.A.; Trentin, G.; Silva, J.C.D. Subperíodos fenológicos e ciclo da soja conforme grupos de
maturidade e datas de semeadura. Pesqui. Agropecu. Bras. 2013, 48, 703–713. [CrossRef]

58. Zanon, A.J.; Winck, J.E.; Streck, N.A.; Rocha, T.S.; Cera, J.C.; Richter, G.L.; Lago, I.; Santos, P.M.; Maciel, L.D.; Guedes, J.V.; et al.
Desenvolvimento de cultivares de soja em função do grupo de maturação e tipo de crescimento em terras altas e terras baixas.
Bragantia 2015, 21, 400–411. [CrossRef]

59. Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [CrossRef]
60. Sidney, S. Nonparametric statistics for the behavioral sciences. J. Nerv. Ment. Dis. 1957, 125, 497. [CrossRef]
61. Liu, Z.; Wu, C.; Liu, Y.; Wang, X.; Fang, B.; Yuan, W.; Ge, Q. Spring green-up date derived from GIMMS3g and SPOT-VGT NDVI

of winter wheat cropland in the North China Plain. ISPRS J. Photogramm. Remote Sens. 2017, 130, 81–91. [CrossRef]
62. Zhao, Z.; Wang, E.; Kirkegaard, J.A.; Rebetzke, G.J. Novel wheat varieties facilitate deep sowing to beat the heat of changing

climates. Nat. Clim. Chang. 2022, 12, 291–296. [CrossRef]
63. Lawes, R.; Mata, G.; Richetti, J.; Fletcher, A.; Herrmann, C. Using remote sensing, process-based crop models, and machine

learning to evaluate crop rotations across 20 million hectares in Western Australia. Agron. Sustain. Dev. 2022, 42, 120. [CrossRef]
64. Zhang, X.; Friedl, M.A.; Schaaf, C.B. Sensitivity of vegetation phenology detection to the temporal resolution of satellite data. Int.

J. Remote Sens. 2009, 30, 2061–2074. [CrossRef]
65. Garrity, S.R.; Bohrer, G.; Maurer, K.D.; Mueller, K.L.; Vogel, C.S.; Curtis, P.S. A comparison of multiple phenology data sources for

estimating seasonal transitions in deciduous forest carbon exchange. Agric. For. Meteorol. 2011, 151, 1741–1752. [CrossRef]
66. Guyon, D.; Guillot, M.; Vitasse, Y.; Cardot, H.; Hagolle, O.; Delzon, S.; Wigneron, J.P. Monitoring elevation variations in leaf

phenology of deciduous broadleaf forests from SPOT/VEGETATION time-series. Remote Sens. Environ. 2011, 115, 615–627.
[CrossRef]

67. Wu, C.; Gonsamo, A.; Gough, C.M.; Chen, J.M.; Xu, S. Modeling growing season phenology in North American forests using
seasonal mean vegetation indices from MODIS. Remote Sens. Environ. 2014, 147, 79–88. [CrossRef]

68. Rao, N.R.; Garg, P.K.; Ghosh, S.K. Development of an agricultural crops spectral library and classification of crops at cultivar
level using hyperspectral data. Precis. Agric. 2007, 8, 173–185. [CrossRef]

69. Wang, S.; Mo, X.; Liu, Z.; Baig MH, A.; Chi, W. Understanding long-term (1982–2013) patterns and trends in winter wheat spring
green-up date over the North China Plain. Int. J. Appl. Earth Obs. Geoinf. 2017, 57, 235–244. [CrossRef]

70. Bendini, H.D.N.; Fonseca, L.M.; Schwieder, M.; Körting, T.S.; Rufin, P.; Sanches, I.D.; Leitão, P.J.; Hostert, P. Detailed agricultural
land classification in the Brazilian cerrado based on phenological information from dense satellite image time series. Int. J. Appl.
Earth Obs. Geoinf. 2019, 82, 101872. [CrossRef]

71. Matongera, T.N.; Mutanga, O.; Sibanda, M.; Odindi, J. Estimating and monitoring land surface phenology in rangelands: A
review of progress and challenges. Remote Sens. 2021, 13, 2060. [CrossRef]

72. Manfron, G.; Delmotte, S.; Busetto, L.; Hossard, L.; Ranghetti, L.; Brivio, P.A.; Boschetti, M. Estimating inter-annual variability
in winter wheat sowing dates from satellite time series in Camargue, France. Int. J. Appl. Earth Obs. Geoinf. 2017, 57, 190–201.
[CrossRef]

73. Lobell, D.B.; Ortiz-Monasterio, J.I.; Sibley, A.M.; Sohu, V.S. Satellite detection of earlier wheat sowing in India and implications
for yield trends. Agric. Syst. 2013, 115, 137–143. [CrossRef]

74. Vyas, S.; Nigam, R.; Patel, N.K.; Panigrahy, S. Extracting regional pattern of wheat sowing dates using multispectral and high
temporal observations from Indian geostationary satellite. J. Indian Soc. Remote Sens. 2013, 41, 855–864. [CrossRef]

75. Zhang, Y.; Ren, Y.; Ren, G.; Wang, G. Precipitation trends over mainland China from 1961–2016 after removal of measurement
biases. J. Geophys. Res. Atmos. 2020, 125, e2019JD031728. [CrossRef]

76. Araza, A.; de Bruin, S.; Herold, M.; Quegan, S.; Labriere, N.; Rodriguez-Veiga, P.; Avitabile, V.; Santoro, M.; Mitchard, E.T.; Ryan,
C.M.; et al. A comprehensive framework for assessing the accuracy and uncertainty of global above-ground biomass maps.
Remote Sens. Environ. 2022, 272, 112917. [CrossRef]

https://doi.org/10.1080/20964471.2017.1402490
https://doi.org/10.1111/gcb.12950
https://www.ncbi.nlm.nih.gov/pubmed/25882036
https://doi.org/10.1016/j.cageo.2004.05.006
https://doi.org/10.1016/j.rse.2012.04.001
https://doi.org/10.3390/rs6032024
https://doi.org/10.1016/j.rse.2018.03.039
https://doi.org/10.1080/01431161.2019.1706780
https://doi.org/10.1590/S0100-204X2013000700002
https://doi.org/10.1590/1678-4499.0043
https://doi.org/10.1093/biomet/52.3-4.591
https://doi.org/10.1097/00005053-195707000-00032
https://doi.org/10.1016/j.isprsjprs.2017.05.015
https://doi.org/10.1038/s41558-022-01305-9
https://doi.org/10.1007/s13593-022-00851-y
https://doi.org/10.1080/01431160802549237
https://doi.org/10.1016/j.agrformet.2011.07.008
https://doi.org/10.1016/j.rse.2010.10.006
https://doi.org/10.1016/j.rse.2014.03.001
https://doi.org/10.1007/s11119-007-9037-x
https://doi.org/10.1016/j.jag.2017.01.008
https://doi.org/10.1016/j.jag.2019.05.005
https://doi.org/10.3390/rs13112060
https://doi.org/10.1016/j.jag.2017.01.001
https://doi.org/10.1016/j.agsy.2012.09.003
https://doi.org/10.1007/s12524-013-0266-3
https://doi.org/10.1029/2019JD031728
https://doi.org/10.1016/j.rse.2022.112917


Remote Sens. 2023, 15, 5366 18 of 18

77. McNairn, H.; Jiao, X.; Pacheco, A.; Sinha, A.; Tan, W.; Li, Y. Estimating canola phenology using synthetic aperture radar. Remote
Sens. Environ. 2018, 219, 196–205. [CrossRef]

78. Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and
Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [CrossRef]

79. Houborg, R.; McCabe, M.F. Daily Retrieval of NDVI and LAI at 3 m Resolution via the Fusion of CubeSat, Landsat, and MODIS
Data. Remote Sens. 2018, 10, 890. [CrossRef]

80. Houborg, R.; McCabe, M.F. A cubesat enabled spatio-temporal enhancement method (cestem) utilizing planet, landsat and modis
data. Remote Sens. Environ. 2018, 209, 211–226. [CrossRef]

81. Younes, N.; Joyce KE Maier, S.W. All models of satellite-derived phenology are wrong, but some are useful: A case study from
northern Australia. Int. J. Appl. Earth Obs. Geoinf. 2021, 97, 102285. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.rse.2018.10.012
https://doi.org/10.1016/j.rse.2018.09.002
https://doi.org/10.3390/rs10060890
https://doi.org/10.1016/j.rse.2018.02.067
https://doi.org/10.1016/j.jag.2020.102285

	Introduction 
	Materials and Methods 
	Study Area 
	Remote Sensing Data 
	Satellite Data Pre-Processing 
	MOD13Q1/MYD13Q1 Processing 
	MOD09Q1 Processing 
	Sentinel-2 Processing 

	Sowing and Harvest Dates Estimation 
	Time-Series Smoothing 
	Phenology Extraction Algorithms 

	Parameter Calibration and Extraction 
	Performance Evaluation and Spatialization 

	Results 
	Discussion 
	Conclusions 
	References

