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Abstract: An unmanned aerial vehicle (UAV) observation platform obtained the first vertical profiles
of particle number size distribution (PNSD) from 7 to 16 July 2022 on the eastern slope of the Tibetan
Plateau (ESTP). The results were from two flanks at the Chuni (CN) and Tianquan (TQ) sites, which
are alongside a mountain (Mt. Erlang). The observations revealed a significant negative correlation
between the planetary boundary layer height (PBLH) and the particle number concentration (PNC),
and the correlation coefficient was −0.19. During the morning, the rise in the PBLH at the CN and
TQ sites caused decreases of 16.43% and 58.76%, respectively, in the PNC. Three distinct profile
characteristics were classified: Type I, the explosive growth of fine particles with a size range of
130–272 nm under conditions of low humidity, strong wind shear, and northerly winds; Type II, the
process of particles with a size range of 130–272 nm showing hygroscopic growth into larger particles
(e.g., 226–272 nm) under high humidity conditions (RH > 85%), with a maximum vertical change rate
of about −1653 # cm−3 km−1 for N130–272 and about 3098 # cm−3 km−1 for N272–570; and Type III, in
which during the occurrence of a surface low-pressure center and an 850 hPa low-vortex circulation
in the Sichuan Basin, polluting air masses originating from urban agglomeration were transported
to the ESTP region, resulting in an observed increase in the PNC below 600 nm. Overall, this study
sheds light on the various factors affecting the vertical profiles of PNSD in the ESTP region, including
regional transport, meteorological conditions, and particle growth processes, helping us to further
understand the various features of the aerosol and atmospheric physical character in this key region.

Keywords: vertical profiles; particle number size distribution; eastern slope of the Tibetan Plateau

1. Introduction

Aerosols are colloids composed of fine solid particles and liquid droplets suspended
in the atmosphere [1], which are key constituents of the Earth’s atmosphere system [2].
They play an important role in the climate and weather changes, and have complicated
relationships with extreme weather and atmospheric pollution [3–5]. Aerosols play a
significant role in the Earth’s energy budget and climate change by directly altering solar
radiation and indirectly interacting with clouds’ optical, microphysical, and microphysical
properties [2,4,6]. To evaluate the effects of aerosols on the atmosphere, knowledge of the
size distribution of particle numbers is needed [7]. In the real atmospheric environment,
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aerosols are commonly characterized by four size distributions: the nucleation mode (diam-
eter particle (Dp) Dp < 30 nm), the Aitken mode (30 nm < Dp < 100 nm), the accumulation
mode (100 nm < Dp < 1 mm), and the coarse mode (Dp > 1 mm) [8–11].

The particle number size distribution (PNSD) is one of the most crucial properties for
characterizing aerosols, which reflects the formation mechanisms, dynamic processes, and
chemical transformations experienced by aerosol particles of different sources, physical
properties, and chemical compositions in the atmosphere [8,12,13].

Nevertheless, the factors that influence aerosol size distributions are still not well
understood. To clarify the effects of aerosols, more knowledge of the size-resolved particle
number emissions and their sources is needed. The increase in the number of aerosols in
the nucleation and Aitken mode is primarily influenced by the occurrence of new particle
formation (NPF) events [7,14–16]. Except for NPF, under conditions conducive to the
formation and growth of new particles, such as during NPF events or in the presence
of specific atmospheric processes [17–19], the explosive growth of fine particles typically
occurs, which denotes a rapid and significant increase in the number or concentration
of particles in a specific size range. The occurrence of explosive growth can result in a
sudden augmentation of particles, with significant implications for air quality, climate, and
human health. Understanding the underlying mechanisms and factors contributing to this
explosive particle growth is vital for the accurate assessment of particle impacts [20]. Fur-
thermore, these newly formed particles can potentially be activated as cloud condensation
nuclei (CCN) after hours of growth [21]. Research indicates that approximately half of the
global CCN may originate from NPF events [19,22–24]. Furthermore, traffic emissions and
culinary activities are two of the significant factors contributing to the increase of aerosol
particles in the nucleation and Aitken modes [7,25]. The emissions from light-duty gasoline
vehicles are primarily characterized by a geometric mean diameter (GMD) below 20 nm,
whereas emissions from heavy-duty diesel vehicles are predominantly associated with
a GMD around 100 nm [12,26–28], while the particle size range associated with culinary
emissions falls within a range of approximately 20–200 nm [18,29–31]. In addition, the par-
ticle number concentration in the accumulation mode can be affected by the aged aerosols
transported regionally [32–34].

Additionally, meteorological factors modify the growth mode and growth rate of par-
ticles, thereby affecting the PNSD. Observational studies have revealed that the evolution
of the planetary boundary layer (PBL) and its vertical mixing play a crucial role in deter-
mining the diffusion of aerosols and their gaseous precursors [35,36]. This intricate process
is influenced by a combination of thermodynamic factors, including temperature, humidity,
and stability, as well as turbulent dynamics such as eddy diffusion and entrainment. These
interconnected processes have a significant impact on the occurrence of NPF events and
the PNSD [37,38]. In northern China, northwest or northeast winds have been found to
promote the formation of nucleation mode particles, while easterly winds facilitate the
growth of these particles [14,39]. In the context of Delhi, India, coarse mode particles are
predominant before the onset of the monsoon season, whereas accumulation mode particles
become dominant afterward [40].

The transitional zone between the Sichuan Basin (SCB) and the Tibetan Plateau is
known as the ESTP, characterized by significant variations in topography as the altitude
increases. This region is influenced by the East Asian monsoon, Indian monsoon, and
thermodynamics forcing circulation on the Tibetan Plateau, which result in distinct flux
transport and convergence patterns [6,41]. Furthermore, the SCB, characterized by intricate
topography and a densely populated area, has become one of the most severely polluted
regions in China [42,43]. In contrast, the Tibetan Plateau, situated at a high altitude with
minimal human activity, is renowned for its pristine and uncontaminated environment,
which provides an ideal observation site for studying the background atmospheric com-
position. However, the vertical profile of PNSD in the ESTP region has received limited
attention in previous research. The unique thermodynamic conditions over the plateau also
contribute to the vertical stratification of aerosols. Thermodynamically forced circulation,
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such as that caused by temperature inversions and diurnal heating, can cause aerosols
to accumulate or disperse at specific altitudes. Regional transport plays a crucial role in
shaping the vertical profiles of PNSD in the ESTP. The transport of aerosols from the SCB
and surrounding cities can significantly influence the physical and chemical properties of
aerosols in the ESTP. During long-range transport, aerosols can undergo aging processes,
undergoing chemical and physical changes that can alter their properties, including light
absorption efficiency. Given the complexity of these interactions, it is essential to conduct
further research on the vertical profiles of PNSD in the ESTP region. Understanding these
processes will provide valuable insights into the atmospheric dynamics, climate, and air
quality of this ecologically sensitive and geographically important area [44,45].

The characterization of aerosol distribution in the vicinity of the PBL has been extensively
investigated using various methods such as ground-based LiDAR, meteorological towers,
manned aircraft, tethered balloons, and satellites [46–48]. However, the need for higher
spatiotemporal resolution and data on microphysical characteristics has led to the increasing
utilization of unmanned aerial vehicles (UAVs) in atmospheric measurements. UAVs offer
advantages in terms of flexibility, frequent flights, ease of deployment, and the ability to carry
various sensors and detection equipment [49,50]. Therefore, numerous recent studies have
employed UAVs to measure aerosol vertical profiles in urban areas [51–53]. Yet, in regions
with complex terrain or land cover, only a handful of investigations have utilized UAVs, such
as the field observations in the Taklimakan Desert by Zhou et al. [54]. In general, there is still
a paucity of research on PNSD in regions characterized by complex underlying surfaces. This
limitation constrains our comprehension of the factors that influence PNSD in the ESTP region.

In the Tibetan Plateau and its surrounding areas, there has been limited research on
the aerosol particle size distribution profiles in and upon the boundary layer, and often
inadequate temporal resolution is a common issue [55–57]. To address this gap, this study
conducted PNSD vertical observations at two sites in the ETSP region, Chuni, and Tianquan,
using UAVs. For detailed information regarding the data and methods employed, please
refer to Section 2. Section 3 presents a comprehensive description of the aerosol particle
size distribution profiles during the summer in the ESTP region and provides a discussion
of their influencing factors. Finally, Section 4 offers a summary and further discussion of
the findings.

2. Data and Methods
2.1. Observation Site

The field campaign was carried out in the ESTP region, which represents the transi-
tional zone from the SCB to the Tibetan Plateau and is characterized by its high-mountain
gorge topography (Figure 1). From 7–11 December 2022, a UAV took off at Chuni (CN
site, 29.81◦N, 102.20◦E), which is nestled within a valley in the western foothills of Erlang
Mountain, sitting at an altitude of 1289 m. Similarly, from 12–16 December 2022, a UAV
took off at Tianquan (TQ site, 29.92◦N, 102.38◦E), which is located in the eastern foothills
of Erlang Mountain, approximately 20 km away from the CN site, and at an altitude of
1417 m. Both observation sites are situated in sparsely populated areas where the influence
of human activities and emissions is considerably less pronounced compared to that in
urban areas.

2.2. Instrumentation and Data
2.2.1. Vertical Profile Measurement

A hexacopter UAV (model Hi-Drone M600, XH230E, Junpan Electromechanical Ltd.
Co., Nanjing, China) was utilized as a platform to carry observation instruments. The
UAV, equipped with a 326,000 mAh battery, had a maximum carrying capacity of 8 kg
and can hover for up to 80 min without additional load, for 60 min with a 2 kg load, and
32 min with an 8 kg load. During the experiment, the ascent rate of the UAV was set at a
constant 3 m s−1, and the maximum probing height reached approximately 1200 m above
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ground level (AGL). The portable meteorological instruments recorded data at a sampling
frequency of 1 Hz, with automatic data storage during the flights.
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The UAV was scheduled to be launched every 4 h from 01:00 on 7 July to 21:00 on
16 July 2022, local standard time (LST) GMT+8. All flight times during the experiment are
shown in Table S1. From 7 July at 01:00 to 11 July at 13:00, the weather conditions were
mostly sunny, resulting in a total of 22 flights at the CN site. Among these flights, altitudes
ranged from 650–700 m in 11 flights, 800 m in 2 flights, and 1200 m in 9 flights. From 11 July
at 19:00 to 16 July at 21:00, observations were conducted at the TQ site under predominantly
cloudy weather, with occasional rainfall leading to a higher number of missing data points.
During this period, a total of 17 flights were conducted. Among these flights, 1 reached a
maximum altitude of 700 m, 1 reached 1000 m, and 15 reached 1200 m. The regular launch
intervals enabled comprehensive data collection throughout the observation period.

Above the UAV, we installed a GTS1-2 (Nanjing Daqiao Machinery Co., Ltd., Nanjing,
China) to measure temperature (T, ◦C), relative humidity (RH, %), atmospheric pressure
(P, hPa), and an FT205 (FT Technologies Limited, Sunbury, UK) to measure wind speed (WS,
m s−1) and direction (WD, ◦). Beneath the UAV, a portable optical particle spectrometer
(POPS), manufactured by Handex in the United States, was mounted to measure the
physical parameters of atmospheric aerosols. With its compact weight of less than 1 kg,
the POPS device is particularly suitable for deployment on balloons and small unmanned
aerial vehicles (UAVs). It utilizes Mie scattering, based on the principle of light scattering
by individual particles within the size range of approximately 140–3000 nm, to measure
the optical size of the sampled aerosol particles [58]. In this experiment, aerosol particles
ranging in size from 130 nm to 3000 nm were classified into 16 size bins, and the sampling
frequency was set at 1 Hz. For UAV data error specifications, refer to Table S2.

2.2.2. Radiosonde and Surface Observations

In addition, we launched 10 radiosonde balloons from Luding Meteorological Obser-
vatory, located at (102.21◦N, 29.88◦E, 1387 m) at the same time as the UAV (see Table S1).
This station is in the western foothills of Erlang Mountain, which is in close proximity to
the CN site. The radiosonde balloons were launched simultaneously with the UAV flights,
enabling the collection of data on wind direction, wind speed, temperature, relative hu-
midity, and atmospheric pressure. The radiosonde original measurements had a temporal
resolution of about 1 s, an ascent speed of 400 m·min−1, and a data accuracy of 0.1 ◦C. The
average vertical resolution was about 6–7 m from the surface to the lower troposphere,
which ensured a high-resolution description of the thermodynamic structure in ABL [59,60].
In this study, the original radiosonde and UAV data at each time step were subjected to
three-fold spline interpolation and then uniformly processed at 5 m intervals to eliminate
random errors. The measurements obtained from the radiosondes provide a representation
of the atmospheric conditions throughout the observation period and serve to validate the
accuracy of the UAV measurements.
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As indicated in Figure 2, a comparison of the data obtained from the UAV and ra-
diosonde balloons at the CN and TQ sites reveals the level of correlation between these
measurements. The results demonstrate that the data collected from the radiosonde showed
a stronger correlation with the UAV data at the CN site, which is situated in the western
foothills of Erlang Mountain. The correlation coefficients of temperature and relative hu-
midity were 0.8976 and 0.8189 (a chi-square test was applied with the p-value set as 0.01).
Conversely, the correlation between the radiosonde data and the UAV data at the TQ site,
located in the eastern foothills of Erlang Mountain, was comparatively weaker, particularly
in relation to relative humidity. The correlation coefficients of temperature and relative
humidity were 0.7145 and 0.2621 (a chi-square test was applied with the p-value set as
0.01). This discrepancy suggests that Erlang Mountain exerts a substantial influence on
the blocking effect of water vapor transport. In addition, Luding Meteorological Observa-
tory also provided meteorological data in accordance with the specifications for surface
meteorological observation—automatic observation (GB/T 35237-2017),which were hourly
average data including relative humidity (RH, %), temperature (T, ◦C), precipitation (mm,
h), sea level pressure (P, hPa), wind, and sunshine duration (SD, h).
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2.2.3. ERA-5 Data

A new generation of reanalysis data, the European Center for Medium-Range Weather
Forecasts Reanalysis Version 5 (ERA-5) reanalysis data (https://www.ecmwf.int/, accessed
on 13 February 2023) from the ECMWF [61], were also used in this study. The ERA-5
reanalysis data provide meteorological elements such as mean sea level pressure, relative

https://www.ecmwf.int/
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humidity, u-component of wind, v-component of wind, and vertical velocity with a spatial
resolution of 0.25◦ × 0.25◦. Hourly data from 7 July 2022 to 16 July 2022 were analyzed to
examine the temporal and spatial variations of the atmospheric background field during
the observation period.

2.3. Determination of PBLH

In this study, UAV data were employed to estimate the planetary boundary layer
height (PBLH) based on the 1.5-theta-increase method [62]. According to this method,
the PBLH is defined as the first altitude at which the potential temperature surpasses the
minimum value within the PBL by 1.5 K. This methodology has been widely applied in
previous studies investigating the PBL, demonstrating favorable accuracy and consistency
in the obtained results [53,63,64]

2.4. Air Mass Sources

Previous research has indicated that variations in air masses can result in spatiotempo-
ral discrepancies in the PNSD and aerosol optical properties [39,65,66]. In order to gain a
deeper understanding of the sources of air masses and the pathways of aerosol transport
within the study area, 72 h air mass back trajectories for air masses at 1 km were ana-
lyzed using the NOAA Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT)
model [67].

3. Results and Discussion
3.1. Temporal Variation of Surface Meteorological Variables

In order to gain a comprehensive understanding of the vertical distribution of PNSD
and the influence of meteorological conditions on it in regions characterized by complex
terrain, field campaigns were conducted at ETSP. The surface meteorological conditions
observed at the Luding Meteorological Observatory, including temperature (T, ◦C), relative
humidity (RH, %), precipitation (mm, h), surface atmospheric pressure (P, hPa), sunshine
duration (SD, h), and wind, are shown in Figure 3. These observations provide a com-
prehensive overview of the meteorological conditions throughout the observation field
campaigns. For detailed information regarding the meteorological conditions at the obser-
vation points, namely the CN site and TQ site, where the UAVs were deployed, please refer
to the subsequent analysis at Part 3.3. During field campaign observations, the daily aver-
age temperature displayed a decreasing trend, with the maximum temperature declining
from 35.2 ◦C on 7 July to 28.2 ◦C on 16 July. However, owing to the impact of sunshine
hours (characterized by clear skies and no precipitation), there was a temporary rebound
in temperature on 13 and 14 July. Under favorable radiation conditions, we observed explo-
sive growth of fine particles events (indicated by the gray shade at Figure 3) at both the CN
and TQ sites. RH was higher than 85% on 11 July, which was conducive to hygroscopic
growth of particulate matters. From 8 July, the intensity of the low-pressure system in the
SCB increased, the low-pressure range expanded, and an obvious low-vortex circulation
gradually formed at 850 hPa (Figure 4), causing the surface atmospheric pressure at Luding
meteorological observatory to decrease from 853.6 hPa on 7 July to 843 hPa on 11 July.
Under the influence of the low-pressure system, the southerly wind intensified, bringing
in more water vapor and potentially leading to an increase in cloud cover [68], which
corresponded to a decrease in sunshine duration during the later phase of the observation
field campaigns, accompanied by multiple instances of precipitation. Therefore, at the TQ
site, we observed hygroscopic growth of particulate matter (indicated by the green shade
in Figure 3) and the precipitation clearance effect on particulate matter (indicated by the
blue shade in Figure 3).
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3.2. The Relationship between Particle Number Concentration and PBLH Based on
UAV Measurements

The PBL plays a crucial role in influencing the dispersion, transport, and transforma-
tion of aerosol particles in the atmosphere, and can affect the vertical distribution of PNSD.
Therefore, understanding the intricate influencing of the diurnal variation of the PBL and
aerosols in the vertical direction is a crucial aspect when investigating the impact of the
PBL on the vertical distribution of PNSD. Therefore, the PNC, temperature, wind, and RH
data with a vertical resolution of 3 m s−1 were collected by the UAVs through three spline
interpolations to eliminate random errors, and profiles with 5 m for each layer’s vertical
resolution were obtained. Subsequently, these data were stratified at 50 m intervals, and
the average value of each group was calculated to draw the vertical profiles.

The averaged diurnal evolutions of the vertical distributions during the observation
period shown in Figure 5 represent the accumulation and diffusion process of pollutants at
different observation sites with the change of PBLH. First, the PBLH plays a crucial role in
the dispersion and vertical distribution of particles. As the diurnal variation of the PBLH
occurred, a corresponding synchronous change was observed in the total PNC at the PBLH.
As shown in Figure 5, during the observation period, it was generally observed that the height
of the daytime PBL exceeded that of the nighttime PBL. After sunrise (05:00–09:00 LST), the
increase of surface radiation flux fosters an augmentation in mixing processes within the PBL,
thereby promoting a robust development of the PBLH. At the CN site, the PBLH increased
by an average of 204 m, and the particle number concentration decreased by 16.43%. At the
TQ site, the PBLH increased by an average of 86.6 m, and the particle number concentration
decreased by 58.76%. The significant decrease in PNC at the TQ site can be attributed to
two possible factors: first, the dispersion facilitated by the uplift of the PBL, as depicted in
Figure 5; and second, the precipitation removal, as demonstrated in Figure 3, which has been
previously discussed [69,70]. Throughout the afternoon and evening, specifically from 13:00
to 21:00 LST, the PNC at the top of the PBL demonstrated a continuous increase due to the
decreased PBLH. However, from 01:00–05:00 LST at the CN site and 09:00–13:00 LST at the TQ
site, the PNC did not exhibit a decrease despite the increasing PBLH. This phenomenon could
be attributed to two potential factors: the accumulation of particles caused by a temperature
inversion (Figure S1), and the regional nucleation process [71].
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Figure 6 depicts a typical process in which daily changes in PBLH affected the to-
tal PNC. From 01:00–05:00 LST on 8 July, the area below 200 m AGL experienced near-
isothermal conditions. During this period, the total PNC below 200 m reached approxi-
mately 3600–4000 # cm−3. After sunrise, as the temperature increased, the stable boundary
layer dissipated, and the PBL rapidly expanded. By 13:00, the RH within the PBL was below
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32%, and the PBLH reached 430 m. At this time, a three-layer structure can be identified
in the vertical profile of the particles at 13:00 LST on 8 July (Figure 6a). From bottom to
top, this structure comprises a mixed layer with a uniform PNC, a transition layer where
PNC decreases with height, and a low PNC in the free atmosphere, similar to the vertical
distribution of pollutants in a previous study [53]. Subsequently, from 17:00–21:00, as the
temperature decreased and the PBLH approached 220 m, the total PNC began to rise.

Furthermore, during the nighttime, we observed temperature inversion wherein parti-
cles were trapped near the surface and facilitated the accumulation of particles (Figure S1).

In conclusion, the structure of the PBL plays a pivotal role in governing the dispersion
and vertical distribution of PNC. However, particle microphysical effects should also
be considered, including NPF and hygroscopic growth, as these factors are critical in
comprehending PNSD.
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3.3. Case Studies of Particle Number Concentration Changes under Various Conditions

The evolution of particles at small particle sizes is another critical aspect to consider
affecting PNSD. Small particles can undergo various physicochemical mechanisms, such as
particle nucleation, condensation, agglomeration, aging, hygroscopic growth, activation
as cloud condensation nuclei (CCN), etc., leading to a change in particle sizes [4]. These
processes significantly impact the PNSD and hold implications for atmospheric phenomena
like cloud formation and air quality. Understanding the dynamics of small particle changing
is essential for accurately characterizing particle populations in the atmosphere [72–74].
In the subsequent sections, we will present three cases that have influenced the vertical
profiles of PNSD during the observation period.

3.3.1. Explosive Growth of Fine Particles

At both the CN and TQ sites, we observed a total of four instances of rapid fine
particle growth, specifically in the particle sizes range of 130–272 nm (Figure S2). In this
section, we present two representative events of fine particle growth, one at the CN site
and the other at the TQ site. For clarity, we denote the number concentration of particle
sizes range of 130–156 nm as N130–156, the number concentration of particle sizes in the
range of 226–272 nm as N226–272. Figure 7a illustrates the vertical profile of PNSD (at left,
the color indicates different particle size ranges), wind (at right, colored dots represent
the wind direction), and RH (black line) at the CN site at 5:00 LST on July 7. Within the
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layer between 100 m and 350 m AGL, the RH ranged from 67% to 70%. Combined with
the data presented in Figure S1, the temperature inversion played a significant role in
the accumulation of fine particles in the lower layer. Within this layer, the PNC increase
to a maximum of N130–156–N226–272 was 90.82 # cm−3. Additionally, a wind shear was
observed between southerly and northerly winds at 500 m, with the N130–156–N226–272
value reaching 89.72 # cm−3. Similarly, wind shear was observed between easterly and
northerly winds at 650 m, with a N130–156–N226–272 value of 71.55 # cm−3. Wind shear can
enhance turbulence, promote particle collision and aggregation, and increase the likelihood
of particle nucleation and growth processes, and lead to the occurrence of NPF, ultimately
increasing the concentration of fine particles [75].
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In Figure 7b, another interesting phenomenon is shown at 17:00 LST on 12 July, where
we observed a significant increase in the N130–272, particularly in the N130–156, within the
PBL characterized by RH ranging between 67% and 73%. The maximum concentration
of N130–156–N226–272 was 132.36 # cm−3. Furthermore, the prevailing wind direction was
northerly, as indicated by previous studies, which was known to favor NPF events [14,39].
Remarkably, the phenomenon of explosive growth of fine particles was confined to the PBL
at this time. This phenomenon may be attributed to the sufficient vertical mixing within the
PBL during the afternoon, which created regions of intense turbulence, further facilitating
the formation of NPF events. The combination of favorable wind shear conditions and
vertical turbulence mixing within the PBL contributes to the phenomenon of particle growth
in specific regions and times [75].

While the direct observation of particles in the size range supporting NPF was not
achieved, we did indeed observe an increase in the PNC within the diameter range of
130 nm to 272 nm under conditions favorable for NPF, including low humidity and wind
shear. Consequently, it is inferred that NPF constitutes a possible contributing factor to the
observed growth of fine particles within the size range.

3.3.2. The Process of the Hygroscopic Growth of Particles in the Background of
Precipitation Clearance Effect

At the TQ site, it is noted that the RH was high due to rainy weather, as shown in
Figure 3. During the period from 21:00 LST on July 14 to 21:00 LST on July 16, there were
three instances when the RH exceeded 85%, and the PNC with particle sizes range from
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130 nm to 272 nm (N130–272) decreased, while the PNC with particle sizes ranging from
272 nm to 570 nm (N272–570) remained stable or increased. In this section, we present an
example of the hygroscopic growth of particles in a clean atmosphere after precipitation
cleared (additional instances are as shown in Figure S3).

As depicted in Figure 8a, at 14:00 LST on July 16, a significant decrease in PNC within
the PBL was due to the washing effect of precipitation. The air became notably cleaner, and
the PNC above the PBL approached zero. However, at 17:00 LST, the total PNC started to
accumulate again (Figures 8b and S4). In specific layers below 200 m AGL and between
400 m and 600 m AGL, a slight decrease in the N130–272 was observed, while the N272–570
exhibited a slight increase. This trend was particularly noticeable in the layers of 50–150 m,
200–350 m, 400–550 m, and 650–750 m AGL at 21:00 LST on July 16, as shown in Figure 8c.
Below 800 m AGL, the maximum decrease rate of N130–272 in the vertical direction was
approximately 1653 # cm−3 km−1, while the maximum increase rate of N272–570 in the
vertical direction was around 3098 # cm−3 km−1. Given that the RH during this period
exceeded 85% within the PBL, it could be hypothesized that the observed phenomenon
could be attributed to the hygroscopic growth of particles. It is likely that particles with
diameters below 272 nm underwent hygroscopic growth, leading to an increase in particle
sizes and shifting to the range below 570 nm. Moreover, in the atmosphere above the
PBL, where RH mostly exceeded 90%, the PNSD information observed at this altitude was
very likely to reflect the situation of CCN in the cloud [76]. Thus, the increase in N272–570
could also be attributed to the contribution of fine particles becoming activated as CCN.
According to Köhler’s theory, larger particles have a higher probability of being activated as
CCN. Consequently, aerosol particles in the accumulation mode are more easily activated
as CCNs, influencing the microphysical processes of clouds.
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3.3.3. Influence of Air Masses on PNSD Profiles

Throughout the observation period, N130–272 and N272–570 exhibited multiple instances
of continuous increase (Figure S4). To further investigate the air mass sources and aerosol
transport pathways over the measurement area, 72 h air mass back trajectories for air masses
at 1 km were analyzed using the NOAA Hybrid Single-Particle Lagrangian Integrated
Trajectory (HYSPLIT) model [67]. The analysis of Figure 9a,b provides insights into the air
mass sources influencing the CN and TQ sites. At the CN site, approximately 70% of the
air mass passed through the SCB, which is densely populated and highly polluted; before
reaching the observation site, 21.67% of the air mass came from Panzhihua City in the
southwest of Sichuan Province, and another 8.33% originated from Aba (Ngawa) Tibetan
and Qiang Autonomous Prefecture in Sichuan Province (Figure 9a). Similarly, at the TQ
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site (Figure 9b), about 76.09% of the air mass passed through cities with frequent human
activities in the SCB before arriving at the TQ site, and 23.91% of the air mass originated
from Panzhihua region. Based on the findings that most of the air masses affecting the
observation area originated from the SCB. As a typical representative city in the SCB,
Chengdu experiences a significant presence of 250–500 nm particles, which accounts for
97.75% of the total concentration [77]. Based on this observation, it is reasonable to infer
that the higher value of N272–570, compared to other particles, during the observation period
could be attributed to aerosol transport from the SCB region.
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From 8 July, the surface low-pressure center in the SCB strengthened significantly,
and the area of low pressure expanded to cover the observation area. Additionally, a
prominent low-vortex circulation gradually formed at 850 hPa (Figure 4), which facilitated
more uniform mixing of polluted air masses from the SCB. Furthermore, the geographical
characteristics of the Tibetan Plateau played a role in the transport of air masses to the
observation area in the ESTP, leading to a blocking effect. Consequently, a downdraft was
generated over the observation sites, hindering the transport of water vapor, particulate
matter, and other substances across the plateau (Figure 9c,d). Consequently, these sub-
stances accumulated within the ESTP, leading to the observed accumulation of aerosols at
the observation sites. Furthermore, the intricate valley terrain surrounding the observation
sites imposed constraints on the dispersion of aerosols to other regions.

This part analysis underscores the impact of regional transport and complex terrain
on the PNC observed at the CN and TQ sites. Such influence is shaped by the combination
of atmospheric dynamics, complex topography, and local meteorological conditions within
the ESTP.
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4. Conclusions and Discussion

This study, the first vertical study of PNSD from 7 to 16 July 2022 on the ESTP, was
undertaken using UAVs equipped with POPS and meteorological sensors. The vertical
distribution of aerosols and meteorological data was analyzed to reveal the variation
characteristics in the vertical profile of PNSD in the ESTP region during the formation period
of the Sichuan Basin vortex, thereby shedding new light on the distribution characteristics
of accumulation mode aerosols in the intricate topography of the ESTP.

The observations revealed a significant negative correlation between the PBLH and the
PNC, and the correlation coefficient was −0.19. During the morning, the rise in the PBLH at
the CN and TQ sites caused decreases of 16.43% and 58.76%, respectively, in the PNC. Three
distinct profiles were classified. In Type I, the explosive growth of fine particles within
the size range of 130 nm to 272 nm could be attributed to the occurrence of NPF events
under conditions of low humidity, strong wind shear, and northerly winds. The significant
increase in particle concentration during such events can result in a maximum difference
between N130–156 and N226–272 reaching 132.36 # cm−3. Type II particles with a size range of
130–272 nm hygroscopic growth into larger particles (e.g., 226–272 nm) under high humidity
conditions (RH > 85%), with a maximum vertical change rate of about −1653 # cm−3 km−1

for N130–272 and about 3098 # cm−3 km−1 for N272–570. The enlarged particles are likely to
be activated as CCN within the cloud and affect the precipitation process. The decrease
in N130–272 and the stabilization or increase in N272–570 could be attributed to multiple
factors, including enhanced hygroscopic growth of particles, condensation, agglomeration
processes, and possible CCN activation. Type III show the impact of the regional transport
from the SCB and meteorological conditions on the PNSD with the ESTP region. During
the occurrence of a surface low-pressure center and an 850 hPa low-vortex circulation in
the SCB, polluting air masses originating from urban agglomeration are transported to the
ESTP region, resulting in an observed increase in the PNC below 600 nm. Overall, this
study sheds light on the complex various factors affecting the vertical profiles of PNSD
in the ESTP region, including regional transport, meteorological conditions, and particle
growth processes, which will help us further understand the distribution of aerosols or
CCNs in this region. Moreover, it offers valuable insights into the mechanisms underlying
the formation of heavy precipitation events in both local and downstream areas (such as
the Sichuan Basin).
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