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Abstract: Hyperspectral images’ (HSIs) classification research has seen significant progress with
the use of convolutional neural networks (CNNs) and Transformer blocks. However, these studies
primarily incorporated Transformer blocks at the end of their network architectures. Due to significant
differences between the spectral and spatial features in HSIs, the extraction of both global and local
spectral–spatial features remains incomplete. To address this challenge, this paper introduces a
novel method called TransHSI. This method incorporates a new spectral–spatial feature extraction
module that leverages 3D CNNs to fuse Transformer to extract the local and global spectral features
of HSIs, then combining 2D CNNs and Transformer to capture the local and global spatial features
of HSIs comprehensively. Furthermore, a fusion module is proposed, which not only integrates the
learned shallow and deep features of HSIs but also applies a semantic tokenizer to transform the
fused features, enhancing the discriminative power of the features. This paper conducts experiments
on three public datasets: Indian Pines, Pavia University, and Data Fusion Contest 2018. The training
and test sets are selected based on a disjoint sampling strategy. We perform a comparative analysis
with 11 traditional and advanced HSI classification algorithms. The experimental results demonstrate
that the proposed method, TransHSI algorithm, achieves the highest overall accuracies and kappa
coefficients, indicating a competitive performance.

Keywords: hyperspectral image (HSI) classification; spectral–spatial features; self-attention; convolutional
neural network (CNN); Transformer

1. Introduction

The classification of HSIs is a crucial task in Earth observation missions. HSIs cap-
ture hundreds of bands per pixel in the spectral dimension, providing a vast amount of
spectral–spatial information with a high spectral resolution [1]. HSI classification has
enormous potential for various high-precision Earth observation applications, such as land
cover identification [2], precision agriculture [3,4], change detection [5,6], environmental
monitoring [7,8], and resource exploration [9].

1.1. Literature Review

The early approaches to HSI classification primarily relied on methods based on
spectral features. These methods involved taking the spectral information from HSIs as
input features, extracting features using classifier models, and ultimately performing a
classification. Commonly used classifier models include K-nearest neighbor (KNN) [10],
support vector machine (SVM) [11], random forest (RF) [12], and others. However, HSI
acquisition is often affected by environmental factors, resulting in various forms of noise
during the imaging process. Furthermore, the obtained spectral features may contain
redundant information. As a result, many of the current research methods aim to address
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these challenges by initially reducing the dimensionality of the data. Techniques such as
principal component analysis (PCA) [13], singular value decomposition (SVD) [14], linear
discriminant analysis (LDA) [15], and independent principal component analysis (ICA) [16]
are commonly employed. To leverage the spectral–spatial information present in HSIs,
researchers [17] have improved traditional classifier models. However, these manual HSI
classification feature extraction methods require expert help and cannot represent a large
amount of complex data.

In recent years, due to the powerful feature extraction and adaptive learning capabili-
ties, deep learning techniques have been applied to HSI classification by many researchers.
Table 1 lists some of the most recent state-of-the-art techniques, including CNNs, recurrent
neural networks (RNNs), graph convolutional networks (GCNs), generative adversarial
networks (GANs), and Transformer, and discusses their advantages and limitations.

Table 1. Strengths and limitations of recent state-of-the-art techniques for HSI classification.

Reference Deep Learning
Techniques Strengths Limitations

[18–22] CNN

• CNN can capture local spectral–spatial
features and effectively reduce the
dimensionality of HSIs, automatically
learning features within HSIs, without the
need for manual feature extractors’ design.

• The limited local receptive field, lack of
consideration for spectral bands
correlation, and failure to learn global
contextual information.

[23–25] RNN

• RNN can leverage spatial dependencies
between non-adjacent patches and explore
long-range spectral dependencies across
different bands.

• RNN is unable to extract local spatial
features from HSIs and is prone to
gradient vanishing and exploding
during training.

[26–29] GCN
• GCN can effectively capture complex

spatial relationships.
• A substantial amount of labeled data

are needed to train the model.

[30–32] GAN

• GAN can work effectively with a limited
number of samples. The generator part can
be used to learn useful
feature representations.

• There are many issues during the
training process, such as unstable
convergence and gradient vanishing.

[33–35] Transformer

• Transformer can learn long-range
spectral–spatial information from HSIs and
enables parallel computing, improving
operational efficiency.

• Transformer cannot represent local
semantic elements and cannot fully
utilize spatial information.

As one of the mainstream backbone architectures, CNN demonstrates strong capa-
bilities in extracting spatial structural information and local contextual information in
HSIs through global parameter sharing and local connectivity. For instance, Hu et al. [18]
used five convolutional layers for HSI classification. However, these approaches failed to
sufficiently exploit the spatial features inherent to the data.

To better extract the spectral–spatial features of HSIs, researchers have introduced
higher-dimensional convolutions. For example, Yang et al. [19] developed a two-branch net-
work structure by combining 1D CNNs and 2D CNNs models. Chen et al. [20] introduced a
method based on 3D CNNs combined with regularization to extract 3D features efficiently.
Meanwhile, Zhong et al. [21] proposed a spectral–spatial residual network(SSRN) for HSI
classification. This method leverages the information from the previous layer of features to
supplement the latter layer of features, significantly improving the utilization rate of the
features. Roy et al. [22] combined the characteristics of 3D CNNs and 2D CNNs to propose a
hierarchical network structure. This method fully extracts spectral–spatial features, reduces
computational complexity, and improves classification accuracy. Building upon the fusion
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of 2D CNNs and 3D CNNs, Firat et al. [36] incorporated deep separable convolution to
reduce network parameters effectively.

Most of the methods outlined above are based on CNN backbones and their variants,
but they are often insufficient to detect subtle differences between spectral dimensions.
As the mainstream backbone architecture, CNNs have shown a solid ability to extract
spatial structure and local context information from HSIs, effectively improving classifica-
tion performance. However, CNNs also struggle to capture sequence properties, mainly
medium- and long-term dependencies. Therefore, when there are numerous categories for
classification and the spectral features are highly similar, the classification performance
tends to degrade [34]. The self-attention mechanism [37,38] may be a better choice, as it
is not limited by distance and can focus on more valuable information, contributing to a
more comprehensive capture of global contextual relationships.

Therefore, to better extract the spectral–spatial features of HSIs, researchers have
introduced attention mechanisms. For example, Mei et al. [39] introduced the spectral–
spatial attention networks (SSAN), which employ attention-based RNNs to extract essential
features from continuous spectra and use attention-based CNNs to focus on significant
spatial correlations between neighboring pixels. However, in real HSI scenarios, a large
number of hyperspectral samples (or pixels) are typically present, and RNNs are not
suitable for parallel training, reducing the efficiency of HSI classification.

The Transformer network [35] has been proposed to solve natural image classifica-
tion tasks from a sequence data perspective. For example, Dosovitskiy et al. [40] applied
Transformer to image classification tasks and proposed the Vision Transformer (ViT) net-
work. This network utilizes a multi-head self-attention (MHSA) mechanism to efficiently
process and analyze sequential data, allowing for the extraction of global information.
He et al. [33] directly used the Transformer networks for HSI classification and proposed
HSI-BERT, which has a global receiving domain and good generalization ability but only
uses linear projection and does not consider local spatial context information. Therefore,
several scholars [41,42] have combined CNNs and Transformer structures to jointly extract
information on HSIs and take advantage of both benefits. For instance, He et al. [43]
introduced the spatial–spectral Transformer (SST) model, which extracted spatial features
using a network structure similar to that of VGGNet. The model further integrated a
dense connection-enabled Transformer to capture sequential spectral relationships. More-
over, a classification task was accomplished by utilizing the multilayer perceptron (MLP).
Sun et al. [44] developed the SSFTT model, which uses convolutional layers to extract
shallow spectral and spatial features of HSIs and then introduces a Gaussian-weighted
feature tokenizer into the ViT model for feature transformation, obtaining deep semantic
information. In the studies mentioned above that integrate Transformer structures, it is
customary to append Transformer modules solely at the end of the network architecture.
However, due to substantial disparities between the spectral and spatial features in HSIs,
the extraction of global and local spectral–spatial features remains incomplete.

To fully exploit the combined potential, scholars have studied the strategy of integrat-
ing CNNs and Transformer blocks. For example, Zhong et al. [45] introduced the spectral
spatial transformation network (SSTN), which separately merged 2D CNNs and 3D CNNs
into the self-attention mechanism. They constructed spatial attention and spectral asso-
ciation modules to surpass the limitations of convolutional kernels. However, the SSTN
fails to further integrate the extracted local and global spectral–spatial features, making it
challenging to capture the crucial information of the targets. Li et al. [46] proposed Next-
ViT, a new generation of Vision Transformer that uses the next hybrid strategy (NHS) to
stack next convolutional blocks (NCBs) and next transformer blocks (NTBs) in an effective
hybrid paradigm to better capture local and global information, thereby improving the
performance of various downstream tasks. However, this method has a relatively large
number of parameters.

With the emergence of deep learning methods, the classification accuracy for com-
monly used HSI datasets has reached nearly 100% [36,47]. However, many of the above
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methods suffer from a common issue: training and test sets are constructed using random
sampling, with both training and test samples being drawn from the same image. The ran-
dom selection of training samples overlaps neighboring test samples, leading to a relatively
high correlation between them and overly optimistic classification results [48,49]. Recog-
nizing this problem, researchers have proposed various separation sampling strategies to
ensure the sampling of training and test sets from different regions [50,51]. For instance,
Liang et al. [52] introduced a separate sampling strategy to control random sampling
and minimize the overlap between training and test samples. Moreover, IEEE GRSS also
provides disjoint training and test sets for HSI classification competitions.

1.2. Contribution

Inspired by these studies, we aim to leverage the advantages of the Transformer model
based on the self-attention mechanism, that is, by capturing the spectral–spatial relationship
of HSI sequences at a long distance and solving the problem of the limited ability of CNN
methods to obtain deep semantic features. In this paper, considering the characteristics
of HSI, Transformer Encode modules are introduced at both shallow and deep stages of
spectral–spatial feature extraction in the network, enabling the comprehensive extraction
of global and local spectral–spatial information in HSIs. A novel HSI classification method
named TransHSI is proposed. The proposed method is introduced and evaluated using the
disjoint training and test sets. The main contributions of this paper are summarized below:

(1) The TransHSI proposes a new spectral–spatial feature extraction module, in which
the spectral feature extraction module combines 3D CNNs with different convolution
kernel sizes and Transformer to extract the global and local spectral features of HSIs.
In addition, the spatial feature extraction module combines 2D CNNs and Transformer
to extract the global and local spatial features of HSIs. The module mentioned above
thoroughly considers the disparities between spectral and spatial characteristics in
HSIs, facilitating the comprehensive extraction of both the global and local spectral–
spatial features in HSIs.

(2) A fusion module is proposed, which first cascades the extracted spectral–spatial
features and the original HSIs after dimensionality reduction and captures relevant
features from different stages of the network. Secondly, a semantic tokenizer is used
to transform the features to enhance the discriminant ability of features. Finally, the
features are represented and learned in the Transformer Encode module to fully utilize
the image’s shallow and deep features to achieve an efficient fusion classification of
spectral–spatial features.

(3) In this paper, the effectiveness of TransHSI is verified using three publicly available
datasets, and competitive results are obtained. Crop classification is assessed using
the Indian Pines dataset, and urban land cover classification is assessed using the
Pavia University dataset and the Data Fusion Contest 2018. These results provide a
reference for future research focused on HSI classification.

The remainder of this paper is organized as follows. Section 2 describes in detail
the architecture of the proposed classification method. Section 3 presents the experimen-
tal datasets used to evaluate the performance of TransHSI and the experimental setup.
Section 4 compares the classification performance of TransHSI with that of the other meth-
ods. Section 5 discusses the validity of TransHSI structures, feature visualization, and the
impact of training set proportions on classification accuracy. Section 6 summarizes the
paper and looks toward future work.

2. Materials and Methods
2.1. CNNs

In 1D CNNs, the convolutional kernels slide primarily along the spectral dimension to
extract spectral features in HSIs. On 2D CNNs, the kernels move in both the height and
width dimensions of the image to capture spatial features. In the case of 3D CNNs, the
kernels slide in three directions: height, width, and spectral dimensions. When performing
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HSI classification tasks, this implies that using 3D CNNs allows for a more comprehensive
utilization of the information embedded in HSIs. However, it is worth noting that 3D CNNs
come with the largest parameter count, and to balance performance and computational
complexity, this study employs both 2D CNNs and 3D CNNs to extract local features
in the pixel spatial and spectral dimension. Within the neural network, the value vα,β,γ

i,j
at position (α, β, γ) on the jth feature cube in the ith layer can be represented using the
following formula:

vα,β,γ
i,j = g(∑

k

Hi−1

∑
h=0

Wi−1

∑
w=0

Ri−1

∑
r=0

ωh
′
,w
′
,r
′

i,j,k vα+h
′
,β+w

′
,γ+r

′

i−1,k + bi,j) (1)

where Hi, Wi, Ri represent the width, height, and number of channels of the convolution

kernel, respectively. ωh
′
,w
′
,r
′

i,j,k is the weight parameter of position (h
′
, w
′
, r
′
) connected to the

kth feature cube, and bi,j is the bias. The function g(·) denotes the activation function.

2.2. Transformer Encode

The Transformer Encode module, shown in Figure 1b, comprises an MHSA layer, an
MLP layer, two normalization layers, and two residual connection structures. The MHSA
possesses the ability to capture long-range dependencies and adaptive spatial clustering. It
comprises multiple self-attention layers stacked and integrated, enabling parallel computa-
tions and improving operational efficiency. Compared to a standard CNN, the Transformer
Encode module incorporates advanced components such as layer normalization (LN) and
the MLP. These components enhance the functionality and expressive power of the model.
To learn multiple meanings, three learnable weight matrices Wq, Wk, Wv are used to linearly
map the flattened results, such as X f lat1 into a 3D invariant matrix comprising queries Q,
keys K, and values V. The attention score is calculated using all Q and K, and the weight of
the score is calculated using the softmax function. In summary, the self-attention layer is
expressed as in the following formula.

Z = Attention(Q, K, V) = softmax
(

QKT
√

d

)
V (2)

where Z represents the output from the attention layer and d represents the dimension of
the keys K. Several different self-attention layers are combined into a single MHSA layer
using Equation (2). The following formula expresses the MHSA layer.

MHSA = Concat(Z1, Z2, · · · , Zh)W (3)

where h is the head number of MHSA, h = 8 in this paper, W ∈ Rh×d×t is the matrix
parameter, and t is the number of tokens.

Following the MHSA and MLP layers, there is an LN layer and a residual connection,
respectively. The role of the LN layer and the residual connection is to enhance the model’s
stability, accelerate training convergence speed, and assist the network to better capture
features and information. The MLP layer comprises two linear layers with a nonlinear
activation function called the Gaussian Error Linear Unit (GELU) inserted between them.
This activation function introduces the idea of random regularity in activation, thereby
reducing gradient vanishing problems and enabling faster training.

2.3. Proposed Methodology

As shown in Figure 2, the classification method mainly includes three modules: the
HSI pretreatment module, the spectral–spatial feature extraction module, and the fusion
module, followed by classification through two linear layers. The spectral–spatial feature
extraction module consists of a spectral feature extraction module and a spatial feature
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extraction module, both of which are composed of CNNs and Transformer components.
This subsection of the paper provides a detailed description of the TransHSI method.
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2.3.1. HSI Pretreatment Module

The original HSI data I ∈ RM×N×L are given, where M is the height, N is the width,
and L is the number of spectral bands. Each pixel in I has L spectral bands, forming a
single class vector Y = (y1, y2, · · · , yC) ∈ R1×1×C, where C is the number of land cover
categories. To reduce the spectral dimensions and computational complexity while elimi-
nating redundant information, HSIs are processed using PCA. The HSI after dimensionality
reduction is expressed as Ipca ∈ RM×N×B, where B is the number of spectral bands after
PCA processing.

Then, 3D patches of the extraction of HSI data Ipca allow for the complete learning of
spectral–spatial information around each pixel. The 3D patches X ∈ RS×S×B are created
from Ipca, for which S × S represents the window size. The true label of each patch is
determined by the label of the center pixel. A fill operation is performed on edge pixels
when extracting a 3D patch around a single pixel. The width of the fill is (S− 1)/2. In each
iteration of training, the order of the training dataset is randomly shuffled to ensure the
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diversity of training data, improve the generalization ability of the model, reduce the risk
of overfitting, and increase the robustness of the model.

2.3.2. Spectral Feature Extraction Module

The spectral feature extraction module is shown in Figure 3a; the 3D patch X ∈ RS×S×B

is initially processed through a 3D CNN with a kernel of 3× 3× 3 and a step size of 1.
In this paper, to ensure that the size of the input and output data remains unchanged,
padding is applied to the input data using padding = (kernel_size − 1)/2. The kernel_size
represents the size of the convolutional kernel. Here, the 3D patch remains unchanged by
utilizing the (1, 1, 1) padding strategy. The output of the 3D CNN is normalized using the
batch normalization (BN) layer to obtain X3D1. Then, X3D1 enters two 3D CNNs with a
kernel of 5× 3× 3 and a kernel of 7× 3× 3, and the output is X3D2. X3D1 is connected with
the X3D2 residuals to obtain X′3D2. The two 3D CNNs and residual connection structure
are iterated again, and the result is X′′3D2. The utilization of multiple 3D CNNs is intended
to thoroughly extract the local spectral information of 3D patches. The iteration result is
input into a 2D CNN with a 1× 1 kernel and 64 output channels to simplify the model and
reduce the number of channels. Subsequently, the output of the 2D CNN is flattened into S2

tokens. Finally, the tokens are input into the Transformer Encode module, and the output is
denoted as Xtrans1. The flattened result X f lat1 is connected with Xtrans1 residuals to obtain
the output of the spectral feature extraction module, marked as Xspe. The Transformer
Encode module enhances the learning of spectral band sequence properties, compensating
for the underutilization of spectral information. The above process is expressed as in the
following formulas.

X3D1 = BN(Conv3D1(X)) (4)

X3D2 = Conv3D2(X3D1) (5)

X′3D2 = X3D1 + X3D2 (6)

X f lat1 = Flatten
(
Conv2D1

(
X′′3D2

))
(7)

Xtrans1 = Trans
(

X f lat1

)
(8)

Xspe = X f lat1 + Xtrans1 (9)

where Conv3D denotes the 3D CNNs, Conv2D denotes the 2D CNNs, Flatten(·) denotes
flattening and Trans(·) denotes processing in the Transformer Encode module.

In the TransHSI network, there is a BN layer following the first 3D CNN, and after
each subsequent convolutional layer, there is also a rectified linear unit (ReLU) layer
and a dropout layer. The BN layer addresses the overfitting problem while speeding up
network training and convergence. The ReLU layer adds nonlinearity to the model, thus
improving its expressive power. The dropout layer enhances feature differentiation by
increasing sparsity and helps to prevent overfitting. In this paper, the formula expression
and illustration have been simplified, and the BN, ReLU, and dropout layers after the
convolutional layer are not shown.
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2.3.3. Spatial Feature Extraction Module

As shown in Figure 3b, the spatial feature extraction module initially employs 2D
CNNs to capture local spatial information and subsequently utilizes the Transformer
Encode module to learn long-range dependencies of pixels, effectively exploring the spatial
information within HSIs. The module takes Xspe as the input and passes it through two
2D CNNs with 3× 3 kernels, yielding an output denoted as X2D2. Next, similar to the two
3D CNNs in the spectral feature extraction module, the two 2D CNNs undergo residual
connections and iterative processing before being fed into the spectral feature extraction
module. The output of the spatial feature extraction module is recorded as Xspa. The spatial
feature extraction module is represented as in the following formulas.

X2D2 = Conv2D2
(
Xspe

)
(10)

X′2D2 = Xspe + X2D2 (11)

X f lat2 = Flatten
(
X′′2D2

)
(12)

Xtrans2 = Trans
(

X f lat2

)
(13)

Xspa = X f lat2 + Xtrans2 (14)

where X′2D2 is the result of connecting the X2D2 and Xspe residuals, and X′′2D2 is the result of
iterating over two 2D CNNs and the residual connection structure.

2.3.4. Fusion Module

The fusion module is shown in Figure 4, which includes a cascade layer, a 2D CNN, a
tokenizer module, and a Transformer Encode module.
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The cascade layer plays a role in fusing the shallow and deep spectral–spatial features
of HSIs. Specifically, it combines the original 3D patches X, the output Xspe of the spectral
feature extraction module, and the output Xspa of the spatial feature extraction module.
The fusion result is recorded as Xcat. To simultaneously learn fused feature results and
reduce the number of channels, Xcat is subsequently fed into the 2D CNN with a kernel
of 3× 3. Then, the output of the 2D CNN is flattened to obtain Xin ∈ RS2×D, where S
represents the size of the 3D patch in the spatial dimension, either height or width. And D
is the number of channels. The above process is expressed as in the following formulas:

Xcat = Concat
(
X, Xspe, Xspa

)
(15)

Xin = Flatten(Conv2D3(Xcat)) (16)

To guide feature distribution regularization, the tokenizer operation uses two learnable
weights initialized using the Xavier standard normal distribution, Wa and Wb, which are
multiplied by Xin to extract critical features. That is, P feature vectors are selected from S2

feature vectors for tokenization, where 0 < P < S2. The softmax function is employed to
emphasize relatively significant information. This processing converts shallow and deep
spectral–spatial features into tokenized semantic features, which aims to align the deep
semantic features more closely with the distribution characteristics of the samples, thereby
enhancing their separability [44]. The following equations summarize this process.

Xa = softmax(Xin ·Wa)
T (17)

Xb = Xin ·Wb (18)

Xout = Xa · Xb (19)

In this process, Wa ∈ RD×P, Wb ∈ RD×D; Xa ∈ RP×S2
, Xb ∈ RS2×D. Xout ∈ RP×D

is the output of the tokenizer. Xout consists of P tokens, which can be expressed as
[X1, X2, · · · , XP].

To achieve a better HSI classification, a classification token Xcls is introduced here. It
dynamically updates during network training, aggregating global features from other to-
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kens to prevent bias towards any individual token. Then, the positional coding information
Xpos is added. The above process is expressed in the following formula.

Xtokens = [Xcls, X1, X2, · · · , XP] + Xpos (20)

The positional encoding Xpos ∈ R(P+1)×D is a learnable parameter initialized using a
normal distribution. As the network trains, it learns the row and column information of
the pixels. Xcls possesses a fixed positional encoding (at position 0), alleviating interference
caused by positional encoding. Xtokens ∈ R(P+1)×D is the output of the cascade Xcls and
the addition of positional encoded information. Furthermore, the transformed features are
passed through the Transformer Encode module to further learn the deep semantic features
abstractly after fusion. Finally, the output is classified using two linear layers.

2.4. Implementation of TransHSI

As shown in Table 2, a detailed summary of the types of layers, output dimensions
of maps, and the number of parameters for the TransHSI network is provided on the
Pavia University dataset. The size of the 3D patch extracted using the Pavia University
dataset is 15 × 9 × 9. In the spectral feature extraction module of the TransHSI network,
3D CNN_1 consists of 32@3×3×3 convolutional kernels; 3D CNN_2 and 3D CNN_4
each consist of 64@5×3×3 convolutional kernels, and 3D CNN_3 and 3D CNN_5 each
consist of 32@7×3×3 convolutional kernels. In addition, 2D CNN_1 comprises 64@1×1
convolutional kernels. In the spatial feature extraction module, 2D CNN_2 and 2D CNN_4
each consist of 128@3×3 convolutional kernels, and 2D CNN_3 and 2D CNN_5 each
consist of 64@3×3 convolutional kernels. Preceding the fusion module, the Transformer
Encoder modules Trans_1 and Trans_2 outputs are resampled into 64@9×9 feature maps.
Post fusion, 143(64 × 2 + 15) @9×9 feature maps are input into 2D CNN_6 containing
128@3×3 convolutional kernels. Subsequently, the 128@9×9 feature maps from 2D CNN_6
are resampled into 81 tokens of dimension 128. After selecting 5 feature vectors, which
include 4 tokens and 1 introduced classifiable token, they are further processed through the
Transformer Encoder module to output a 128 × 1 × 1 classifiable token. Finally, a linear
layer generates a 9 × 1 × 1 prediction vector. In terms of the number of parameters, the
total trainable parameters in the network amount to 1,049,569, with the highest number of
parameters being attributed to 3D convolutions, followed by 2D convolutions.

Table 2. Layer-wise summary of TransHSI network based on the Pavia University Dataset.

Layer (Type) Output Shape Parameter

Input_1 (InputLayer) (1, 15, 9, 9) 0
3D CNN_1 (3D CNN) (32, 15, 9, 9) 960
3D CNN_2 (3D CNN) (64, 15, 9, 9) 92,352
3D CNN_3 (3D CNN) (32, 15, 9, 9) 129,120
3D CNN_4 (3D CNN) (64, 15, 9, 9) 92,352
3D CNN_5 (3D CNN) (32, 15, 9, 9) 129,120
2D CNN_1 (2D CNN) (64, 9, 9) 30,912

Flat_1 (Flatten) (81, 64) 128
Trans_1 (Transformer Encoder) (81, 64) 17,864

2D CNN_2 (2D CNN) (128, 9, 9) 74,112
2D CNN_3 (2D CNN) (64, 9, 9) 73,920
2D CNN_4 (2D CNN) (128, 9, 9) 74,112
2D CNN_5 (2D CNN) (64, 9, 9) 73,920

Flat_2 (Flatten) (81, 64) 128
Trans_2 (Transformer Encoder) (81, 64) 17,864

Cascade layer (2D CNN) (128, 9, 9) 165,120
Tokenizer layer (Flatten) (5, 128) 256
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Table 2. Cont.

Layer (Type) Output Shape Parameter

Trans_3 (Transformer Encoder) (5, 128) 68,488
Cls_token (Identity) (128) 0

Linear_1 (Linear layer) (64) 8256
Linear_2 (Linear layer) (9) 585

Total Trainable parameters: 1,049,569

3. Datasets and Experimental Setup
3.1. Experimental Datasets

In this study, three commonly used hyperspectral datasets are used for experiments:
the Indian Pines dataset, the Pavia University dataset, and the Data Fusion Contest 2018.
Moreover, the practice of randomly sampling training samples on the entire image is not
adopted because in practical applications, the training and test samples are often collected
from different locations. When the method uses the CNNs to process data, the receptive
field will unconsciously contain the samples in the test set, meaning that the classification
accuracy of the test set is set at a high level [1]. Therefore, experiments are performed
using disjoint training and test sets. We downloaded the training sets for the Indian Pines
and the Pavia University datasets are downloaded from the IEEE GRSS DASE website:
http://dase.grss-ieee.org/, accessed on 6 October 2022. The training set for the Data Fusion
Contest 2018 was manually selected. The number of training and test dataset samples for
each class within the three datasets is shown in Table 3.

Table 3. Land cover categories and training and test sample sizes of the Indian Pines Dataset, the
Pavia University Dataset, and Data Fusion Contest 2018.

No.
Indian Pines Dataset Pavia University Dataset Data Fusion Contest 2018

Class Training Test Class Training Test Class Training Test

1 Alfalfa 21 25 Asphalt 327 6304 Healthy grass 858 8941
2 Corn-notill 753 675 Meadows 503 18,146 Stressed grass 1954 30,548
3 Corn-mintill 426 404 Gravel 284 1815 Artificial turf 126 558
4 Corn 138 99 Trees 152 2912 Evergreen trees 1810 11,785

5 Grass-pasture 209 274 Painted metal
sheets 232 1113 Deciduous trees 1073 3948

6 Grass-trees 376 354 Bare Soil 457 4572 Bare earth 600 3916

7 Grass-pasture-
mowed 16 12 Bitumen 349 981 Water 74 192

8 Hay-windrowed 228 250 Self-Blocking
Bricks 318 3364 Residential

buildings 3633 36,139

9 Oats 10 10 Shadows 152 795 Non-residential
buildings 18,571 205,181

10 Soybean-notill 469 503 Roads 2899 42,967
11 Soybean-mintill 1390 1065 Sidewalks 1962 32,067
12 Soybean-clean 311 282 Crosswalks 417 1101

13 Wheat 125 80 Major
thoroughfares 3189 43,159

14 Woods 720 545 Highways 1518 8347

15 Buildings-Grass-
Trees-Drives 287 99 Railways 708 6229

16 Stone-Steel-
Towers 49 44 Paved parking

lots 799 10,701

17 Unpaved
parking lots 51 95

18 Cars 575 5972

http://dase.grss-ieee.org/
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Table 3. Cont.

No.
Indian Pines Dataset Pavia University Dataset Data Fusion Contest 2018

Class Training Test Class Training Test Class Training Test

19 Trains 155 5214
20 Stadium seats 556 6268

Total 5528 4721 2774 40002 41,528 463,328

3.1.1. Indian Pines Dataset

The Indian Pines dataset was collected in northwestern Indiana, USA, using an Air-
borne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor. It comprises two-thirds agri-
culture and one-third forest or other natural perennials. The HSI comprises 145 × 145 pixels,
has a ground sampling distance (GSD) of 20 m, and 220 spectral bands that cover a wave-
length range of 400–2500 nm. After removing the 20 noise and water absorption bands,
200 spectral bands were retained, namely 1–103, 109–149, and 164–219. This study primarily
has 16 land cover categories, some of which are not mutually exclusive. The false-color
map, ground truth map, and distribution of the training and test sets for the Indian Pines
dataset are shown in Figure 5.
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Figure 5. Indian Pines Dataset: (a) false-color map, (b) ground truth map, (c) training, (d) test.

3.1.2. Pavia University Dataset

The Pavia University dataset is made up of scene data from the University of Pavia
and its surroundings obtained using the Reflective Optics System Imaging Spectrometer
(ROSIS) sensor. The sensor includes 103 spectral bands at 430–860 nm, and the image
consists of 610 × 340 pixels with a GSD of 1.3 m. The scene contains nine land cover classes.
The false-color map, ground truth map, and distribution of the training and test sets for the
Pavia University dataset are shown in Figure 6.

3.1.3. Data Fusion Contest 2018 (DFC 2018)

The DFC 2018 was acquired with onboard sensors in downtown Houston, Texas, USA.
The image consists of 610 × 2384 pixels, with a GSD of 1 m, which covers 48 adjacent bands
of 380–1050 nm. The dataset includes not only urban categories, such as various types
of buildings, roads, cars, and trains, but also various vegetation types, including healthy
or stressed grass, deciduous or evergreen trees, etc. The dataset is part of the 2018 Data
Fusion Contest, with 20 land cover categories. The false-color map, ground truth map, and
distribution of the training and test sets for the DFC 2018 are shown in Figure 7.
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Figure 7. DFC 2018: (a) false-color map, (b) ground truth map, (c) training, (d) test.

3.2. Experimental Setup

In this paper, we used Python language and the PyTorch library to implement the
classification method on the Windows 10 operating system. The experimental environment
consists of the Intel(R) Core (TM) i9-9900K CPU @ 3.60 GHz, 32 GB memory, and NVIDIA
GeForce RTX 2080 GPU. The learning rate is set to 0.001, and the batch size for both the
training and test is set to 32. The experimental results are quantitatively evaluated using
three indicators: overall accuracy (OA), average accuracy (AA), and the kappa coefficient
(κ). The OA is the ratio of the total number of correctly classified samples to the total
number of samples tested across all tests. AA is the average of the classification accuracy
for all categories. The kappa coefficient is used to assess the categorical agreement of all
classes and is calculated from the confusion matrix. If the sample size is the same for each
category, OA and AA are equal. The strong difference between OA and AA may indicate
a high percentage of specific categories being misclassified. The higher the value of the
network on these three indicators, the better the classification ability of the network.

To fully utilize the spectral–spatial information of HSIs, as explained in Section 2.3.1,
the original hyperspectral data undergo PCA processing. Then, 3D patches of a specific size
around central pixels are selected as inputs for the network. The chosen size of a 3D patch
significantly influences the amount of information utilized for classification and, to some
extent, impacts the classification effect. As the patch size increases, more spectral–spatial
information from the neighborhood may be introduced. However, a larger patch size
can also introduce irrelevant information, leading to information redundancy and higher
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computational costs. Therefore, when determining the optimal patch size for each dataset,
a balance must be struck between computational cost and classification performance. The
number of spectral bands after PCA (denoted as B) also follows a similar consideration.
Due to significant differences in the sample sizes of the three datasets, we conducted
experiments with different patch sizes and spectral band numbers, as illustrated in Figure 8
below. The OAs for the three datasets initially increased and then gradually decreased
with an increase in input size. The change in OA was not consistent across datasets due
to variations in data acquisition equipment and the spectral reflectance characteristics of
ground objects. Specifically, for the Indian Pines dataset with a smaller sample size and a
larger number of spectral bands (145 × 145 × 200), we used a patch size of 11 and B of 30.
For the moderate-sized Pavia University dataset (610 × 340 × 103) and the DFC2018 with
a larger sample size and fewer spectral bands (610 × 2384 × 48), we used a patch size of 9
and B of 15.
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4. Experimental Result

This section uses several comparative experiments to verify the classification per-
formance of the proposed method, TransHSI. The comparative methods include tradi-
tional classification methods like SVM [1] and RF [1]; CNN-based methods including 2D
CNNs [20], 3D CNNs [20], HybirdSN [22], SSRN [21], and InternImage [53] based on
deformable convolution (DCNv3); Transformer network-based methods such as ViT [40];
and methods combining CNNs and Transformer blocks, like Next-ViT [46], SSFTT [44], and
SSTN [45]. To minimize experimental errors, each experiment was conducted three times,
and the average of the three results was taken as the classification accuracy, as shown in
Tables 4–6. In the TransHSI and comparative methods, the highest three comprehensive
indicators are highlighted in bold.

Table 4. Classification accuracies of various methods in Indian Pines Dataset.

Class SVM RF 2D
CNN

3D
CNN HybirdSN SSRN InternImage ViT Next -ViT SSFTT SSTN TransHSI

1 0.00 18.67 4.00 66.67 81.33 89.33 75.27 80.00 80.00 76.00 13.33 88.00
2 61.78 64.55 76.54 76.45 79.16 74.27 88.45 68.59 77.58 79.55 70.86 90.82
3 48.43 43.48 70.54 85.81 79.79 76.57 78.71 82.92 79.46 76.98 81.68 79.87
4 22.22 23.57 90.24 34.68 51.52 60.61 71.52 65.66 71.38 37.71 60.60 59.59
5 78.71 71.53 82.36 88.93 88.56 88.93 88.03 83.94 90.88 89.17 87.10 91.61
6 93.50 96.80 96.33 99.06 98.12 89.27 90.96 97.18 86.53 97.55 92.37 92.37
7 38.89 58.33 11.11 86.11 80.56 33.33 59.44 33.33 75.00 86.11 0.00 97.22
8 100.00 100.00 99.87 98.67 99.60 100.00 99.85 100.00 99.87 98.67 100.00 96.93
9 0.00 26.67 6.67 50.00 50.00 0.00 65.92 0.00 96.67 83.33 0.00 96.67

10 37.84 27.70 62.29 67.40 78.99 90.26 71.28 85.29 74.55 77.47 78.80 85.15
11 84.63 83.38 80.66 76.90 89.36 82.82 81.08 76.43 80.00 82.47 87.80 83.44
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Table 4. Cont.

Class SVM RF 2D
CNN

3D
CNN HybirdSN SSRN InternImage ViT Next -ViT SSFTT SSTN TransHSI

12 55.67 52.60 58.75 68.32 81.20 83.09 68.15 79.79 72.93 81.44 95.74 83.33
13 92.92 93.75 95.83 97.50 89.58 90.00 82.59 83.75 88.33 92.92 90.42 99.17
14 94.56 92.54 95.05 96.39 99.27 100.00 99.30 99.27 98.53 99.45 99.88 98.84
15 60.95 66.33 59.94 43.09 37.37 10.10 47.87 27.27 35.35 47.14 46.47 76.10
16 90.15 97.73 100.00 90.15 93.18 87.88 65.40 88.64 72.73 100.00 83.34 88.64

OA
(%)

71.47
± 10.27

69.93
± 0.09

79.36
± 0.29

80.63
± 0.36

85.79
± 0.67

83.51
± 0.18

83.22
± 0.98

81.61
± 0.71

81.90
± 1.99

83.97
± 0.57

84.47
± 2.00

87.75
± 0.35

AA
(%)

60.01
± 5.83

63.60
± 0.33

68.13
± 1.76

76.63
± 0.56

83.04
± 1.85

72.28
± 0.68

77.11
± 3.77

72.00
± 1.77

79.99
± 5.33

81.62
± 1.35

68.02
± 2.24

88.42
± 1.37

K (%) 66.97
± 12.19

65.23
± 0.10

76.48
± 0.38

77.95
± 0.42

84.53
± 0.43

81.29
± 0.20

80.91
± 1.13

79.21
± 0.81

80.30
± 1.52

81.79
± 0.67

82.34
± 2.27

86.11
± 0.41

Table 5. Classification accuracies of various methods in Pavia University Dataset.

Class SVM RF 2D
CNN

3D
CNN HybirdSN SSRN InternImage ViT Next-ViT SSFTT SSTN TransHSI

1 66.28 79.03 90.44 86.48 92.34 96.37 94.35 87.99 89.38 92.93 88.67 89.58
2 83.95 56.78 70.57 75.58 75.50 86.33 78.54 71.29 84.53 77.14 72.99 88.59
3 35.54 43.22 69.97 69.51 65.84 68.08 73.38 68.30 63.07 82.26 56.97 76.53
4 93.10 95.91 81.21 72.78 86.44 84.71 87.02 85.23 87.37 87.58 78.80 92.07
5 99.28 99.10 99.91 99.94 100.00 99.97 99.75 100.00 100.00 100.00 99.55 99.91
6 33.03 77.45 94.02 89.52 90.13 78.81 97.13 96.65 91.28 88.99 97.19 80.75
7 90.52 79.14 98.51 99.15 99.46 98.03 97.10 95.07 97.69 98.24 97.76 97.96
8 91.35 88.03 97.51 97.39 98.27 99.13 97.27 97.53 96.16 96.36 97.77 97.11
9 99.87 99.79 98.25 99.79 99.87 99.58 96.81 94.92 98.78 99.96 97.48 99.54

OA
(%)

75.34
± 0.00

70.09
± 0.09

81.45
± 0.24

81.98
± 1.04

83.85
± 0.91

88.11
± 0.91

86.52
± 0.14

81.76
± 0.03

87.32
± 1.11

85.20
± 0.06

81.84
± 1.16

89.03
± 1.72

AA
(%)

76.99
± 0.00

79.83
± 0.05

88.93
± 0.57

87.79
± 1.04

89.76
± 0.48

90.11
± 0.71

91.26
± 0.41

88.55
± 0.50

89.81
± 0.56

91.49
± 0.16

87.47
± 1.24

91.34
± 2.05

κ (%) 66.88
± 0.00

62.76
± 0.08

76.31
± 0.20

76.71
± 1.35

79.10
± 1.03

84.21
± 1.04

82.51
± 0.19

76.71
± 0.01

83.32
± 1.38

80.78
± 0.11

76.75
± 1.41

85.41
± 2.16

Table 6. Classification accuracies of various methods in DFC 2018.

Class SVM RF 2D
CNN

3D
CNN HybirdSN SSRN InternImage ViT Next -ViT SSFTT SSTN TransHSI

1 92.94 91.14 85.05 82.70 87.25 87.77 76.86 80.27 80.48 90.06 81.03 83.42
2 88.57 87.49 87.42 88.67 85.61 84.94 82.74 82.86 89.44 83.84 85.26 88.54
3 100.00 100.00 97.79 98.80 99.58 99.64 97.79 96.59 97.91 97.85 94.56 99.46
4 97.11 96.76 98.27 98.40 98.32 97.44 95.63 96.67 98.03 97.63 95.96 96.69
5 83.64 83.76 93.75 93.26 97.95 94.83 94.19 94.73 97.05 95.34 85.79 97.68
6 91.35 89.35 93.34 92.15 93.75 94.91 91.86 93.57 95.75 92.40 94.69 92.59
7 98.96 98.09 98.61 99.65 99.83 100.00 93.23 98.79 99.31 97.57 96.18 100.00
8 80.55 79.77 82.47 86.26 87.17 86.46 84.64 87.19 87.97 82.04 87.76 88.91
9 88.75 93.00 89.35 91.24 91.65 92.02 91.42 89.10 92.14 91.02 91.67 92.12

10 41.19 47.04 59.75 62.60 62.09 64.32 62.30 60.67 65.53 61.91 64.03 68.66
11 48.26 58.45 68.94 67.64 76.50 78.36 73.67 67.43 69.36 72.74 61.05 74.13
12 10.35 29.70 38.81 42.78 62.97 79.11 73.63 75.81 60.61 65.21 14.83 72.69
13 52.80 52.71 67.22 65.04 72.17 69.86 66.40 68.70 72.41 67.91 72.98 72.63
14 60.37 59.76 71.14 78.01 77.30 81.82 77.13 88.06 75.62 67.84 70.14 80.64
15 96.77 94.39 98.78 98.93 99.55 98.07 99.09 95.08 99.33 97.69 99.06 99.40
16 61.21 71.45 91.14 91.67 93.62 94.11 91.75 87.44 91.05 90.88 90.56 93.70
17 84.21 99.65 90.52 94.74 100.00 99.65 98.60 100.00 98.95 98.59 98.59 100.00
18 27.14 42.29 89.74 93.70 95.80 95.10 91.95 92.90 94.72 92.88 88.17 96.75
19 20.23 34.91 87.41 88.45 90.19 88.54 88.03 92.36 91.96 83.17 74.62 88.53
20 70.15 78.82 92.00 93.76 96.89 96.76 90.03 96.89 94.20 96.28 87.88 96.08

OA
(%)

74.78
± 0.00

78.44
± 0.03

82.44
± 0.20

83.80
± 0.24

85.40
± 0.10

85.64
± 0.23

83.68
± 0.22

82.81
± 0.39

85.52
± 0.28

83.55
± 0.38

83.62
± 0.58

86.36
± 0.65

AA
(%)

69.73
± 0.00

74.43
± 0.04

84.07
± 0.65

85.42
± 0.44

88.41
± 0.58

89.19
± 0.85

86.05
± 0.40

87.25
± 0.40

87.59
± 1.15

86.14
± 0.36

81.74
± 1.37

89.13
± 0.70

κ (%) 67.32
± 0.00

71.73
± 0.03

77.59
± 0.23

79.26
± 0.28

81.30
± 0.10

81.60
± 0.20

79.07
± 0.29

78.15
± 0.46

81.40
± 0.34

78.90
± 0.45

78.95
± 0.76

82.53
± 0.77
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4.1. Classification Results for the Indian Pines Dataset

As can be observed from Table 4, among all the classification methods applied to the
Indian Pines dataset, the traditional classification method RF exhibits the poorest results
in terms of the classification indicators OA, AA, and the kappa coefficient. At the same
time, the classification accuracies of SVM are also low. In contrast, high-dimensional CNN
methods such as 2D CNN, 3D CNN, and ViT networks with the MHSA mechanisms
have better classification effects than traditional methods. This is because traditional
classification methods rely solely on spectral information, whereas deep learning methods
can also leverage spatial features [1]. Moreover, methods like HybirdSN, which mixes
2D CNNs and 3D CNNs, SSRN, which adds residual connection structures to 3D CNNs,
InternImage based on DCNv3, and Next-ViT, SSFTT, and SSTN methods, which integrate
CNNs and Transformer blocks, achieve classification accuracies higher than 81% with
better classification effects. This implies that, compared to solely relying on convolution
and attention mechanisms, hybrid networks have the capacity to learn and capture a
broader range of spectral features and spatial contextual information [54]. The proposed
TransHSI method achieved an OA of 87.75%, AA of 88.42%, and kappa coefficient of
86.11%, yielding the best performance. Among the six types of land cover categories,
the TransHSI method achieves the highest accuracy. Additionally, the highly accurate
classification methods HybirdSN and SSTN achieved OAs of over 84%. However, TransHSI
outperformed HybirdSN and SSTN in terms of OA, with improvements of 1.96% and
3.28%, respectively. Regarding the AA, TransHSI demonstrated significant improvements
compared to HybirdSN, SSFTT, and SSTN, with increases of 5.38%, 6.8%, and 20.4%,
respectively. TransHSI also achieved a higher kappa coefficient than HybirdSN and SSTN,
with improvements of 1.58% and 3.77%, respectively.

Figure 9 displays the classification results of the 12 methods in the Indian Pines dataset.
It is evident that the TransHSI method (Figure 9l) exhibits the least noise, while SVM
(Figure 9a) and RF (Figure 9b) suffer from significant noise scattering and a high number
of misclassified areas, performing noticeably worse than the other classification networks.
Additionally, in categories with less satisfactory visual results, the misclassification areas
of the same land cover types, such as soybean-notill, soybean-mintill, and soybean-clean,
are relatively smaller in the results of HybirdSN (Figure 9f), SSRN (Figure 9g), SSTN
(Figure 9k), and TransHSI (Figure 9l). In the land cover category “corn-notill”, TransHSI
has the fewest misclassified regions compared to the other three methods (Figure 9f,g,k).
These observations align with the results presented in Table 4.

4.2. Classification Results for the Pavia University Dataset

As shown in Table 5 and Figure 10, the classification accuracies of SVM (Figure 10a)
and RF (Figure 10b) for the Pavia University dataset are still very poor, with many misclas-
sification areas in the visualization of the classification results. This is especially noticeable
in the land cover categories of the “meadows” and “bare soil”, which are somewhat similar.
However, this situation improved in the subsequent methods (Figure 10d–k). The TransHSI
method (Figure 10l) demonstrates exemplary performance in the classification map. The
proposed TransHSI method achieved an OA of 89.03%, AA of 91.34%, and kappa coefficient
of 85.41%. In the TransHSI classification results, although the highest accuracy is achieved
for a single land cover class, the OA and kappa coefficient metrics rank first among all the
methods. The OAs of the SSRN, Next-ViT, InternImage, and SSFTT methods all reach more
than 85%, but the OA of the TransHSI method is higher than those of the SSRN, Next-ViT,
InternImage, and SSFTT methods by 0.92%, 1.71%, 2.51%, and 3.83%. The AA of the Tran-
sHSI method is second only to that of SSFTT. The kappa coefficient of the TransHSI method
is 1.20%, 2.09%, 2.90%, and 4.63% higher than those of the SSRN, Next-ViT, InternImage,
and SSFTT methods.
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Figure 9. The classification results of the Indian Pines Dataset. (a) SVM; (b) RF; (c) 2D CNN; (d) 3D 
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TransHSI. 

Figure 9. The classification results of the Indian Pines Dataset. (a) SVM; (b) RF; (c) 2D CNN; (d) 3D
CNN; (e) HybirdSN; (f) SSRN; (g) InternImage; (h) ViT; (i) Next-ViT; (j) SSFTT; (k) SSTN; (l) TransHSI.
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Figure 10. The classification results of the Pavia University dataset. (a) SVM; (b) RF; (c) 2D CNN;
(d) 3D CNN; (e) HybirdSN; (f) SSRN; (g) InternImage; (h) ViT; (i) Next-ViT; (j) SSFTT; (k) SSTN;
(l) TransHSI.

4.3. Classification Results for the DFC 2018

As can be seen from Table 6 and Figure 11, among all the classification methods
applied to the DFC2018, the traditional classification method SVM has the lowest values in
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terms of the classification indicators OA, AA, and kappa coefficient. RF has higher values
for these three comprehensive evaluation indicators than SVM, but its OAs do not reach
80%. From the visual classification in Figure 11, it is evident that SVM (Figure 11a) and
RF (Figure 11b) have a more significant number of misclassified regions. In comparison
with the ground truth map in Figure 6b, it can be observed that the classification map
produced by the TransHSI method (Figure 11l) yields more accurate results. In the case
of other methods, there is still salt-and-pepper noise present in the boundary regions of
the “stadium seats”. The proposed TransHSI method achieves an OA of 86.36%, AA of
89.13%, and kappa coefficient of 82.53%. In the TransHSI classification results, although the
accuracies of only five land cover categories reach the maximum values, both the OA and
kappa coefficient indicators rank first among all networks. Secondly, the OAs of the SSRN,
Next-ViT, and HybirdSN methods reach more than 85%, but their OAs are 0.72%, 0.84%,
and 0.96% lower than that of the TransHSI method, respectively. The AA of the TransHSI
method is second only to that of SSRN. The kappa coefficients of the SSRN, Next-ViT, and
HybirdSN methods are lower than that of the TransHSI method by 0.93%, 1.13%, and 1.23%.
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Figure 11. The classification results of DFC2018. (a) SVM; (b) RF; (c) 2D CNN; (d) 3D CNN; (e) Hy-
birdSN; (f) SSRN; (g) InternImage; (h) ViT; (i) Next-ViT; (j) SSFTT; (k) SSTN; (l) TransHSI.

4.4. Visualization Analysis of TransHSI

As each method was subjected to three experiments on every dataset, the confusion
matrices of the results were visualized by sorting them in ascending order of OAs and
selecting the middle results. Figure 12 clearly illustrates that using TransHSI on all three
datasets has led to the successful separation of the majority of the categories, as evidenced
by the bar charts on the diagonal. However, some classes do not achieve ideal classification
performance, such as “Corn” and “Buildings-Grass-Trees-Drives” on the Indian Pines
dataset. Corn is often misclassified as “Soybean-clean”, possibly due to the scene being
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captured in June, where corn and soybean plants are in their early stages of growth, making
them challenging to distinguish. Furthermore, as indicated in Table 4, the proposed method
outperforms other comparative methods in terms of accuracy for “Buildings-Grass-Trees-
Drives”, which consists of categories with diverse land cover types.
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Figure 12. The 3D confusion matrix of TransHSI. (a) The Indian Pines dataset; (b) the Pavia University
dataset; (c) the DFC2018.

On the Pavia University dataset, “Gravel” is frequently misclassified as “Self-Blocking
Bricks”. “Trees” and “Bare Soil” are commonly confused with “Meadows”. The false-
color image of the Pavia University dataset indicates that these categories indeed share
similarities, making them challenging to distinguish. Similarly, on the DFC 2018, “Roads”,
“Sidewalks”, “Crosswalks”, “Major thoroughfares”, and “Highways” also exhibit mutual
misclassifications due to their common road-related attributes, high similarity, and, thus,
a tendency to be confused. Tables 5 and 6 indicate that although the accuracy of most
misclassified classes does not reach the highest values when compared to the other methods,
their performance remains commendable.

The t-Distributed Stochastic Neighbor Embedding (t-SNE) [55] algorithm can map
high-dimensional data to a lower-dimensional data, reducing the distances between similar
categories, and increasing the gaps between different categories while preserving the local
characteristics of the original data. To gain a more intuitive understanding of the feature
learning process of the proposed method [56], we employed t-SNE to map the original
sample and output layer features of three datasets into a two-dimensional space. As shown
in Figure 13, the feature distribution of the original sample in the three datasets appears
more chaotic, with higher levels of overlap, especially in datasets with a large number of
categories like the Indian Pines dataset and DFC2018. Conversely, in the feature distribution
of the output layer, the boundaries of most categories are clearly distinguished.
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Figure 13. Visualization of the t-SNE algorithm in the TransHSI method for three datasets
(top/original features and bottom/output features). (a) The Indian Pines dataset; (b) the Pavia
University dataset; (c) the DFC2018.

5. Discussion

TransHSI achieved competitive classification results on the Indian Pines, Pavia Univer-
sity, and DFC2018, indicating a certain degree of generalization capability of the proposed
method. In this section, we will discuss the TransHSI network’s architecture and ablation
experiment results on the Indian Pines and Pavia University datasets, analyzing the func-
tionality of each network component. Additionally, on the three datasets, we will explore
the impact of different training set percentages on the classification performance.

5.1. Ablation Experiments
5.1.1. Quantitative Comparison of Classification Results

This paper proposes a method of fusing convolution and Transformer models to
extract the spectral–spatial features of hyperspectral data. To evaluate the effectiveness of
each component of TransHSI, seven ablation experiments were conducted.The following is
shown in Table 7.

The results of the TransHSI method and ablation experiments on the two hyperspec-
tral datasets are shown in Tables 8 and 9. From the tables, it is evident that TransHSI
outperforms all other methods regarding both OA and the kappa coefficient. Furthermore,
TransHSI achieves the highest AA on the Indian Pines dataset. On the Pavia University
dataset, the AA of the TransHSI method is not much different from the highest AA. These
indicate that the proposed network possesses a certain degree of robustness.
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Table 7. Network structure components for TransHSI and ablation experiments. (a) TransHSI removal
of the spectral feature extraction module; (b) TransHSI removal of the spatial feature extraction
module; (c) TransHSI removal of the cascading layer; (d) TransHSI removal of all Transformer Encode
modules; (e) TransHSI removal of Transformer Encode from the spectral feature extraction module;
(f) TransHSI removal of Transformer Encode from the spatial feature extraction module; (g) TransHSI
removal of Transformer Encode from the fusion module. It is worth noting that in methods (d) and
(g), a fully connected layer is inserted into the fusion module to generate the classification results.

Experiments 3D CNNs Trans_1 2D CNNs Trans_2 Concat Trans_3

(a) × ×
√ √ √ √

(b)
√ √

× ×
√ √

(c)
√ √ √ √

×
√

(d)
√

×
√

×
√

×
(e)

√
×

√ √ √ √

(f)
√ √ √

×
√ √

(g)
√ √ √ √ √

×
TransHSI

√ √ √ √ √ √

Table 8. The classification results of (a), (b), (c), (d), (e), (f), (g) and the TransHSI method in the Indian
Pines Dataset.

Class (a) (b) (c) (d) (e) (f) (g) TransHSI

1 94.67 ± 4.62 98.67 ± 2.31 61.33 ± 53.12 60.00 ± 8.00 98.67 ± 2.31 100.00 ± 0.00 96.00 ± 6.93 88.00 ± 6.93
2 88.64 ± 5.71 85.73 ± 7.93 83.36 ± 5.12 81.33 ± 1.43 82.62 ± 2.06 84.30 ± 3.81 79.90 ± 10.33 90.82 ± 3.08
3 78.96 ± 1.73 87.21 ± 3.97 86.22 ± 5.51 82.10 ± 4.84 82.67 ± 1.87 80.45 ± 2.75 80.61 ± 5.88 79.87 ± 3.62
4 56.57 ± 11.91 44.11 ± 8.23 45.79 ± 2.54 84.18 ± 7.44 53.20 ± 23.26 40.40 ± 2.67 78.17 ± 3.55 59.59 ± 30.17
5 92.58 ± 0.56 91.24 ± 1.83 89.30 ± 2.20 89.05 ± 0.97 89.17 ± 0.56 92.95 ± 1.28 88.93 ± 1.12 91.61 ± 0.97
6 88.51 ± 0.91 98.68 ± 0.99 94.73 ± 2.27 96.23 ± 0.71 91.90 ± 1.88 95.29 ± 2.40 86.25 ± 2.12 92.37 ± 0.29
7 75.00 ± 0.00 86.11 ± 24.06 61.11 ± 53.58 86.11 ± 12.73 91.67 ± 14.43 77.78 ± 17.35 61.11 ± 52.93 97.22 ± 4.81
8 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.07 ± 1.62 100.00 ± 0.00 96.93 ± 5.31
9 46.67 ± 5.77 80.00 ± 34.64 46.67 ± 50.33 43.33 ± 11.55 30.00 ± 43.59 96.67 ± 5.77 0.00 ± 0.00 96.67 ± 5.77

10 70.97 ± 4.83 89.53 ± 5.81 81.38 ± 4.13 85.69 ± 3.81 78.99 ± 2.95 86.81 ± 5.62 93.64 ± 1.39 85.15 ± 3.54
11 82.75 ± 1.81 83.94 ± 5.77 91.67 ± 1.52 81.28 ± 2.27 82.63 ± 3.10 83.29 ± 1.93 84.63 ± 0.95 83.44 ± 2.16
12 87.71 ± 3.79 86.17 ± 4.09 91.25 ± 6.07 80.14 ± 1.07 93.15 ± 4.38 92.91 ± 0.62 95.98 ± 1.14 83.33 ± 5.84
13 93.75 ± 1.25 96.67 ± 2.60 96.25 ± 4.51 95.00 ± 4.33 95.83 ± 2.60 95.00 ± 1.25 90.00 ± 0.00 99.17 ± 0.72
14 99.69 ± 0.28 99.08 ± 0.66 99.45 ± 0.64 98.23 ± 2.76 97.49 ± 1.87 99.21 ± 0.56 100.00 ± 0.00 98.84 ± 2.01
15 24.24 ± 3.50 23.57 ± 16.45 14.14 ± 3.03 42.76 ± 6.17 68.69 ± 7.28 30.30 ± 20.28 34.68 ± 4.98 76.10 ± 2.10
16 95.46 ± 6.01 100.00 ± 0.00 66.67 ± 57.74 88.63 ± 3.94 85.61 ± 12.92 98.48 ± 2.63 76.51 ± 10.50 88.64 ± 10.41

OA (%) 84.68 ± 1.00 87.67 ± 0.33 87.25 ± 0.10 85.65 ± 0.42 85.92 ± 1.28 86.70 ± 0.23 86.86 ± 0.49 87.75 ± 0.35
AA (%) 79.76 ± 0.60 84.42 ± 4.26 75.58 ± 12.19 80.88 ± 0.93 82.64 ± 2.54 84.56 ± 0.69 77.90 ± 2.96 88.42 ± 1.37
κ (%) 82.59 ± 1.12 86.02 ± 0.38 85.48 ± 0.12 83.73 ± 0.49 84.02 ± 1.46 84.93 ± 0.23 85.10 ± 0.53 86.11 ± 0.41

Table 9. The classification results of (a), (b), (c), (d), (e), (f), (g) and the TransHSI method in the Pavia
University Dataset.

Class (a) (b) (c) (d) (e) (f) (g) TransHSI

1 94.37 ± 1.40 93.24 ± 1.79 94.99 ± 2.30 94.22 ± 1.48 92.96 ± 4.82 93.23 ± 3.35 96.14 ± 0.56 89.58 ± 3.41
2 76.92 ± 2.98 77.88 ± 1.45 81.24 ± 0.75 85.95 ± 1.82 87.68 ± 4.63 81.91 ± 0.65 80.33 ± 0.17 88.59 ± 4.49
3 82.79 ± 1.32 73.96 ± 7.11 75.68 ± 1.38 63.73 ± 11.11 72.51 ± 6.12 80.88 ± 8.26 75.19 ± 2.93 76.53 ± 7.10
4 86.28 ± 3.86 89.09 ± 0.79 90.54 ± 1.38 89.62 ± 2.83 87.17 ± 5.22 87.48 ± 3.23 92.83 ± 0.02 92.07 ± 2.04
5 100.00 ± 0.00 99.73 ± 0.47 99.79 ± 0.36 100.00 ± 0.00 99.88 ± 0.21 99.94 ± 0.10 99.58 ± 0.05 99.91 ± 0.16
6 85.80 ± 4.31 91.06 ± 2.53 82.32 ± 2.62 80.68 ± 4.55 78.84 ± 5.32 90.96 ± 2.91 91.12 ± 0.83 80.75 ± 3.15
7 99.05 ± 0.66 99.22 ± 0.42 99.56 ± 0.15 98.61 ± 0.41 98.33 ± 1.05 99.39 ± 0.18 97.18 ± 0.21 97.96 ± 0.47
8 98.26 ± 0.33 97.61 ± 0.52 96.51 ± 0.74 99.62 ± 0.14 98.08 ± 0.36 95.80 ± 2.77 98.67 ± 0.06 97.11 ± 0.59
9 98.91 ± 0.70 99.54 ± 0.38 99.24 ± 0.33 99.46 ± 0.32 99.20 ± 0.41 99.25 ± 0.58 99.29 ± 0.14 99.54 ± 0.31

OA (%) 85.05 ± 0.86 85.67 ± 0.45 86.57 ± 0.66 88.03 ± 0.08 88.48 ± 0.70 87.53 ± 0.29 87.60 ± 0.14 89.03 ± 1.72
AA (%) 91.37 ± 1.02 91.26 ± 1.02 91.10 ± 0.39 90.21 ± 1.35 90.52 ± 1.29 92.09 ± 0.41 92.26 ± 0.31 91.34 ± 2.05
κ (%) 80.59 ± 1.02 81.39 ± 0.59 82.36 ± 0.86 84.13 ± 0.11 84.66 ± 0.82 83.68 ± 0.39 83.82 ± 0.16 85.41 ± 2.16

Specifically, in the Indian Pines and Pavia University datasets, we observed the fol-
lowing results from the ablation experiments: Method (a) exhibited the lowest accuracies,
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indicating that the spectral feature extraction module significantly influences the improve-
ment in the classification performance. Methods (b) and (c) had minimal impacts on the
classification results for the Indian Pines dataset, but they both had substantial impacts
on the results for the Pavia University dataset, possibly due to differences in the dataset
resolution. Method (c), unlike TransHSI, directly used learned features for classification,
whereas TransHSI incorporated the features extracted in earlier stages. This suggests that
the TransHSI network’s fusion of shallow and deep features effectively improves the classi-
fication accuracy. Method (d) removed all Transformer Encode modules, making it similar
to the HybirdSN and SSRN methods, which primarily rely on CNN architectures. The
classification accuracies of method (d) are higher than those of SSRN in the Indian Pines
Dataset and slightly lower than those of HybirdSN. On the Pavia University Dataset, the
classification accuracies of method (d) outperform those of HybirdSN but are slightly lower
than those of SSRN. Its classification performance remains relatively stable across both
datasets. In contrast, HybirdSN and SSRN achieved high accuracies on only one dataset
each. Furthermore, when compared to the SSFTT and SSTN methods that combine CNN
and Transformer modules, method (d) exhibits a slightly lower AA by approximately 1%,
but a higher OA by about 1–6% and a higher kappa coefficient by 1–7%. This indicates
that, in terms of overall correctly classified samples, method (d) holds a certain advantage
over SSFTT and SSTN, which introduce long-range dependencies. However, deeper net-
works may not fully leverage their advantages if the specific characteristics of HSIs are
not adequately considered. For example, when compared to Next-ViT (a method with a
network depth of over 400 layers), method (d) still outperforms Next-ViT in all classification
metrics on both datasets. Methods (e), (f), and (g), when compared to TransHSI, exhibited
varying degrees of reduced accuracy. This suggests that integrating Transformer Encode
modules into various components of the TransHSI network improved the extraction of
global spectral–spatial information from HSIs, thereby enhancing the classification accuracy.
Based on the analysis above, it is evident that each module in the TransHSI network plays
a significant role in enhancing the HSI classification performances. Furthermore, it is worth
noting that on the Pavia University dataset, methods (a), (f), and (g) achieve higher AA
compared to TransHSI. This is because TransHSI performs less ideally in classifying the
“Gravel” and “Bare Soil” categories, which are prone to misclassification. Additionally,
the imbalance [57] in the sample categories in this dataset leads to TransHSI achieving the
highest OA but a slightly lower AA.

5.1.2. Activation Maps Visualization

To further investigate the effectiveness of the TransHSI method and its ablation experi-
ments, this paper conducted a qualitative experiment to visualize their activation maps. As
shown in Figure 14, we used two different samples from the Pavia University dataset as
inputs to compare the partial activation maps before the final Transformer Encode module.
The red portion in the upper-left corner of sample 1 represents buildings, while the green
portion in the lower-right corner represents trees. Sample 2 predominantly consists of
painted metal sheets. In these two samples, this study observed that the activation maps of
TransHSI (Figure 14a,e) exhibited a relatively uniform distribution of brighter areas, with
high activation values in specific regions consistent with the targets (e.g., green trees in sam-
ple 1). In contrast, the activation maps from the ablation experiments (Figure 14b–d,f–h)
displayed a more dispersed and chaotic distribution of high-activation-value areas, in-
dicating a lower consistency with the targets. This is mainly attributed to the network
structure of convolutional kernels [43]. When extracting spectral–spatial features, we
introduced Transformer Encode modules separately, optimizing the extraction of global
spectral–spatial features and key regions in HSIs. These feature visualization comparison
results demonstrate that TransHSI can extract more effective spectral–spatial features.
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Figure 14. The partial activation maps of two HSI samples on the Pavia University Dataset. (a,e) rep-
resent the activation maps of the TransHSI method; (b,f) show the activation maps when the spectral
feature extraction module is removed; (c,g) illustrate the activation maps when the spatial feature
extraction module is removed; (d,h) show the activation maps when all Transformer Encode modules
are removed. The yellow region corresponds to areas with high activation values, the green region
corresponds to regions with moderate activation values, and the blue region corresponds to areas
with low activation values.

5.2. Effect of Training Sample Percentages on Classification Results

We conducted experiments on three datasets with the Controlled Random Sampling
Strategy [52], selecting different percentages of training samples for our proposed method,
TransHSI, and algorithms based on CNNs and Transformer blocks. As shown in Figure 15,
it is evident that as the training sample proportion increases, the classification accuracy of all
methods improves. In comparison to TransHSI and Next-ViT, the classification performance
of SSFTT and SSTN appears less satisfactory. This may be attributed to their failure to
fully exploit the spectral–spatial information in HSI. The Next-ViT performs relatively
poorly on the Indian Pines dataset when the training sample proportion is 5%, but it shows
higher accuracy in other scenarios. Furthermore, in nearly all cases, TransHSI achieves the
highest classification accuracy, even with a smaller number of samples, demonstrating the
robustness of the proposed method.



Remote Sens. 2023, 15, 5331 24 of 27

Remote Sens. 2023, 15, 5331 24 of 27 
 

 

when the spatial feature extraction module is removed; (d) and (h) show the activation maps when 

all Transformer Encode modules are removed. The yellow region corresponds to areas with high 

activation values, the green region corresponds to regions with moderate activation values, and the 

blue region corresponds to areas with low activation values. 

5.2. Effect of Training Sample Percentages on Classification Results 

We conducted experiments on three datasets with the Controlled Random Sampling 

Strategy [52], selecting different percentages of training samples for our proposed 

method, TransHSI, and algorithms based on CNNs and Transformer blocks. As shown in 

Figure 15, it is evident that as the training sample proportion increases, the classification 

accuracy of all methods improves. In comparison to TransHSI and Next-ViT, the classifi-

cation performance of SSFTT and SSTN appears less satisfactory. This may be attributed 

to their failure to fully exploit the spectral–spatial information in HSI. The Next-ViT per-

forms relatively poorly on the Indian Pines dataset when the training sample proportion 

is 5%, but it shows higher accuracy in other scenarios. Furthermore, in nearly all cases, 

TransHSI achieves the highest classification accuracy, even with a smaller number of sam-

ples, demonstrating the robustness of the proposed method.  

 

Figure 15. Effect of different percentages (top/Indian Pines, bottom/DFC2018, and middle/Pavia 

University) of training samples on the classification results. 

6. Conclusions 

This study developed a novel classification model called TransHSI. By integrating 

CNN and Transformer modules, we introduce a spectral–spatial feature extraction mod-

ule designed to extract both global and local spectral and spatial information from HSIs. 
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6. Conclusions

This study developed a novel classification model called TransHSI. By integrating
CNN and Transformer modules, we introduce a spectral–spatial feature extraction mod-
ule designed to extract both global and local spectral and spatial information from HSIs.
Additionally, the fusion module combines information from shallow and deep layers and
introduces learnable parameters for feature transformation of flattened tokens, enhancing
the features’ discriminative capacity. Through experiments conducted on three publicly
available hyperspectral datasets with disjoint training and test sets, we carried out com-
prehensive comparisons with other recently proposed HSI classification methods. The
results demonstrate that TransHSI excels, particularly on the Indian Pines, a low-resolution,
small-sample dataset, where it achieves the best performance regarding OA, AA, and kappa
coefficient. On the high-resolution, large-sample datasets, Pavia University and DFC2018,
TransHSI still exhibits a competitive advantage, with AAs comparable to those of other
leading methods and the highest OAs and kappa coefficients, showcasing comparable
results to other methods. Furthermore, the ablation experiments and feature visualization
results further validate the designed model’s effectiveness. In future research, we will
optimize the network using lightweight module structures to reduce network complexity
and enhance performance. Additionally, we will explore more neural network architectures
and methods to further improve the accuracy and efficiency of HSI classification.
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