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Abstract: Hyperspectral image (HIS) classification, a crucial component of remote sensing technology,
is currently challenged by edge ambiguity and the complexities of multi-source domain data. An
innovative multi-source unsupervised domain adaptive algorithm (MUDA) structure is proposed
in this work to overcome these issues. Our approach incorporates a domain-invariant feature
unfolding algorithm, which employs the Fourier transform and Maximum Mean Discrepancy (MMD)
distance to maximize invariant feature dispersion. Furthermore, the proposed approach efficiently
extracts intraclass and interclass invariant features. Additionally, a boundary-constrained adversarial
network generates synthetic samples, reinforcing the source domain feature space boundary and
enabling accurate target domain classification during the transfer process. Furthermore, comparative
experiments on public benchmark datasets demonstrate the superior performance of our proposed
methodology over existing techniques, offering an effective strategy for hyperspectral MUDA.

Keywords: Fourier transform; domain-invariant features; boundary reinforcement; MMD; GAN

1. Introduction

The pivotal role of hyperspectral images (HSIs) in remote sensing technology has
recently ignited considerable research interest, given that the processing and analysis
of HSIs influence the accuracy of object recognition. In recent years, deep learning has
achieved noteworthy advancements in managing HSI data, particularly in the supervised
learning classification of HSIs, when there is an abundance of labeled data available [1].
However, when dealing with sparse or unlabeled HSI data, a viable approach involves
employing transfer learning to extrapolate from the labeled to the unlabeled dataset.
Nevertheless, distribution inconsistency between the labeled and unlabeled datasets may
present challenges for model generalization.

To address this challenge, recent research has introduced unsupervised domain adap-
tation (UDA) algorithms [2], which aim to alleviate distribution discrepancies between
training and testing datasets using transfer learning mechanisms. These algorithms have
been employed to classify hyperspectral images when the available labels are, for exam-
ple, limited or non-existent [3–11]. Despite the significant progress achieved via UDA
in this domain, we must recognize that the current methodologies are primarily tailored
to single-source domain scenarios. Although these approaches demonstrate efficacy in
managing a restricted number of source domains, the efficacy diminishes as the number of
source domains expands. Acquiring domain-invariant features via a single shared feature
extractor becomes progressively more challenging. In practical applications, annotation
data for hyperspectral images often originate from multiple sources, intensifying the com-
plexity of obtaining domain-invariant features via a solitary shared feature extractor [12].
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Consequently, directly applying single-source UDA methods might constrain hyperspectral
image classification efficacy.

In response to the intricate challenges posed by the classification of multi-source hyper-
spectral images, researchers have proposed multi-source unsupervised domain adaptation
(MUDA) methodologies [13], drawing insights from the theoretical analyses of Ben-David
and others [14]. These MUDA approaches primarily concentrate on attaining domain-
invariant features and often necessitate, concurrently, training shared feature extractors and
classifiers tailored to each specific domain [15–19]. However, amalgamating hyperspectral
image data and incorporating edge data features across adjacent source domains markedly
escalates the intricacy of aligning data between source and target domains. This not only
intensifies the complexity of extracting domain-invariant features, but also detrimentally
impacts data transmission accuracy. Consequently, current methodologies typically metic-
ulously analyze the sample distribution of the image data when handling hyperspectral
image data features stemming from multiple source domains. This scrutiny aims to ensure
that the network model adeptly captures the distribution characteristics of each source
domain [20–24].

Additionally, we observed that a single shared feature extractor often fails to entirely
capture the complexity inherent in multi-source domain data when constructing a unified
distribution encompassing multiple source domains. This limitation can pose challenges
for classifiers within each source domain to effectively discern the target domain, conse-
quently impeding data transfer learning efficacy and hindering the precise extraction of
classification features from hyperspectral images in the target domain. Existing methods
endeavor to improve the data transfer learning efficiency by constructing domain-invariant
representation learning [25–27]. Domain invariance encompasses two pivotal aspects:
domain adaptation (DA) and domain generalization (DG). Domain generalization primar-
ily delves into cross-domain invariance, aiming to achieve feature invariance during the
transfer process via explicit feature alignment [28,29], adversarial learning [30–32], or de-
coupling [33–35]. Modern domain generalization methodologies also encompass strategies
such as data augmentation and meta-learning [36,37], primarily applied within the realms
of computer vision and reinforcement learning.

This study focused on addressing the challenge of extracting domain-invariant features
from multiple source domains, aiming to overcome the issue of low accuracy in target
domain classification by utilizing a single shared feature extractor. We have built an
innovative multi-source unsupervised domain adaptation (MUDA) structure. Firstly, a
knowledge extraction framework, weighted via the Maximum Mean Discrepancy (MMD),
was established. This framework enhances the internal consistency of the features by
employing Fourier transform techniques, thus capturing the class invariant features of the
source domain. A correlation-weighted second-order statistical method was introduced
to achieve this, targeting the alignment of feature distributions across different source
domains. Amalgamating these two strategies ensures the superior generalization of source
domain knowledge for the unknown target domain. Secondly, the generative adversarial
network (GAN) method was incorporated to enhance the classification accuracy of the
target domain data. Guided by density constraints, synthetic samples within the feature
matrix of the source domain feature space were generated. This process significantly
reinforced the source domain data boundaries. Lastly, this study mapped the combination
of source and target domains to distinct feature spaces. This facilitated the alignment
of each pair of source and target domain spaces and enabled multiple domain-invariant
feature learning, ultimately improving the classification accuracy.

The contributions by this work can be summarized as follows:

• A domain-invariant feature unfolding methodology is proposed based on MMD
distance-weighted Fourier feature transformation. It achieves intraclass and interclass
invariant representations across multiple source domains. The primary objective of
this approach is to maximize the differentiation of the invariant features, promoting
robustness in various domain settings.
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• A feature space boundary reinforcement algorithm is introduced for the MUDA
methodologies. Utilizing a GAN constrained by domain-invariant features generates
synthetic samples to reinforce the distribution of the feature space boundary. This rein-
forcement significantly enhances the classification accuracy within the target domain.

• Extensive experiments validate the efficacy of the algorithm proposed in this work on
RGB and HSI datasets, proving its capability in successfully accomplishing the task of
multi-source unsupervised classification of hyperspectral images.

2. Materials and Methods
2.1. Problem Description

In multi-source unsupervised domain generalization, there exist N distinct underlying
source distributions denoted as {psi(x, y)}N

i=1. The joint distribution between each pair of
domains varies, PSi 6= PSj, 1 ≤ i 6= j ≤ N, where N is the number of sources. In labeled

source domain data, {(Xsi, Ysi)}N
i=1, Xsi =

{
xsi

j

}|Xsi |

j=1
denotes a sample from source domain

i, and |Xsi| denotes the number of instances in source domain i. Ysi =
{

ysi
j

}|Xsi |

j=1
is the

corresponding sample label for source domain i. In addition, the target domain distribution

is pt(x, y), where Xt =
{

xt
j

}|Xt |

j=1
denotes the samples from the target domain, but the target

domain data are not labeled Yt.
The goal of domain generalization is to learn a robust general prediction function f

across all domains, including source domains and unlabeled target domains, such that
the prediction error on target domain Stest is minimized. This is formally expressed
as minE(X,y)∈Stest [l( f (X),y)], where E represents the expectation, and l(·, ·) denotes the
loss function.

2.2. Algorithm Overview

The inherent ambiguity in HSI data boundaries can lead to an unclear representation
of the source domain features, potentially resulting in the misclassification of target domain
samples during the transfer process. To effectively address this challenge and accurately
capture the invariant features of the source domain data, a multi-source domain boundary
reinforcement self-adaptive network (MDSNI) based on invariant features is proposed
herein, ensuring the precise classification of the target domain data. The MDSNI network
comprises two primary stages: first, the acquisition of domain-invariant representations
from multiple source domains (Figure 1a); second, the reinforcement of the source domain
boundaries by aligning the source–target domains via multiclassifiers for target domain
classification (Figure 1b). Our framework consists of a domain-invariant feature extractor,
a GAN boundary enhancer, and specific N classifiers.

A method for acquiring the intraclass and interclass invariant features of the source
domain is applied in this work, as demonstrated in Figure 1a. This method relies on
distance-weighted Fourier phase information and the alignment of second-order statistics
via CORAL. Our methodology takes data input from multiple source domains and uses
a shared feature extractor to preprocess each source domain’s input data. The intraclass
invariant features of the source domain are built based on the captured Fourier phase infor-
mation. Meanwhile, the interclass invariant features of the source domain are established
by calculating the second-order statistics, aligned via CORAL. Consequently, a comprehen-
sive feature representation, encompassing multiple source domain-invariant features, is
assembled by integrating these calculations via a methodology weighted using the MMD
distance. This feature representation considers the characteristics of each source domain
and preserves the differences between the source domains. Hence, it can provide a more
accurate and resilient foundation of features to support subsequent classification tasks.

Figure 1b shows a boundary-constraint adversarial network, designed to further
constrain source domain data by generating synthetic samples within the feature space. By
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analyzing the intraclass sample density of the source domain data with invariant features,
the intraclass sample boundaries are determined. The target function of the sample density-
constrained GAN is adjusted to generate samples in the source domain boundary area, thus
strengthening the source domain feature space boundaries and further enhancing the source
domain feature space stability. Finally, each pair of source–target domain data is mapped
to multiple different feature spaces, and the distributions of specific domains are aligned
to acquire multiple domain-invariant representations. Then, multiple specific domain
classifiers are trained using multiple domain-invariant representations. The knowledge
distillation concept and the ratio of classification errors to correct as the temperature, are
leveraged to construct weighted softmax values. This approach enhances the classification
accuracy of the domain classifier for the target domain.
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The loss of our methodology consists of two parts: domain-invariant feature extraction
loss LFFT and boundary-enhanced classification loss LGAN . In particular, intraclass and
interclass invariant features can be accurately extracted from multi-source domain data
by minimizing the domain-invariant feature extraction loss. The network can accurately
classify the target domain data by minimizing the boundary enhancement classification
loss. The overall loss equation is as follows:

Lloss = LFFT + λLGAN (1)

where λ is the hyperparameter that determines the weight between the domain-invariant
feature extraction loss LFFT and the boundary-enhanced classification loss LGAN .

2.3. Source Domain-Invariant Feature Extraction Based on a Weighted Fourier Transform

The domain-generalized intraclass invariant features are acquired via distance-weighted
Fourier phase transformations and domain-generalized interclass invariant features via
CORAL alignment. As shown in Figure 1a, the structure takes input from multiple source
domains. It calculates the Fourier phase, CORAL-aligned second-order statistics, and
MMD distance for each source domain upon passing through the shared feature extractor.
Subsequently, multi-source domain-invariant features are constructed based on a distance
weighting rule.
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2.3.1. Learning Intraclass Invariant Features

Existing research [38–42] has noted that the Fourier phase signal retains the most
high-level semantic information from the original data and is not easily affected by related
data interference. Hence, the Fourier phase features of the original data can be utilized as
intraclass invariant features of the domain.

The network takes the Fourier phase information and class labels as the input and out-
put, respectively, to obtain the Fourier phase information features for classification. Accord-
ing to reference [43], the Fourier transform equation for single-channel two-dimensional
data is as follows:

F(x)(u, v) =
H−1

∑
h=1

W−1

∑
w=0

x(h, w)•e−j2π( h
H u+ w

W v) (2)

where (u, v) is the index. H and W are the height and width, respectively. Then, the phase
component [42] is expressed as follows:

P(x) = arctan
I(x)
R(x)

(3)

where R(x) and I(x) denote the real and imaginary parts of F(x), respectively. The Fourier
phase of x is denoted as x′, and then, the network is trained using (x′, y):

L f f t = min
θ f

E(x,y)Lcls

(
G f (xk

′),y)× 1
N − 1

N−1

∑
n=1

dmmd
(
Si, Sj

)
,i 6= j (4)

where θ f is the learnable parameter of the feature extractor G f in the network. E denotes
the expectation, Lcls is the cross-entropy loss, and ∑ d computes the MMD distance between
the current source domain and the other source domains.

2.3.2. Exploring Interclass Invariant Features

As previously mentioned, the Fourier phase feature is the sole means of obtaining the
intrinsic invariant features of the source domain. Hence, the interclass invariant features
are explored by harnessing the cross-domain knowledge derived from multiple source
domains. The following second-order statistics from CORAL alignment [8] are adopted for
two domains, Si and Sj, to accomplish this:

Lcoral =
N
∑
i 6=j

∥∥Ci − Cj
∥∥2

F

× 1
dmmd(Si ,Sj)

[
1− Si∩Sj

Si∪Sj

]
Ci =

1
ni−1

(
XiTXi − 1

ni

(
1TXi)T(1TXi)) (5)

where ‖·‖F denotes the Frobenius matrix paradigm, dmmd calculates the distance between
two source domains, and the Jaccard index gives the probabilistic logical value of the
correlation between the two domains.

2.4. Target Domain Classification Based on Feature Space Boundary Enhancement

Existing multi-source unsupervised domain adaptation (MUDA) methodologies pre-
dominantly concentrate on acquiring a shared domain-invariant representation that en-
compasses all the domains. Nevertheless, these methodologies do not fully consider the
specificity of the source domain. Although invariant feature extraction can reduce data
edge blurring and further enhance the intraclass structure, the presence of outliers in the
source domain may cause boundary blurring of the source domain during transfer, as
shown in Figure 2b. Consequently, different classifiers may predict different labels for a
specific target sample in a particular domain. A new solution framework is proposed to
address these challenges. For this purpose, a GAN is established to enhance the representa-
tion of the boundary data in the source domain, as shown in Figure 2c. Subsequently, the
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classifier’s output is aligned with the target sample to improve the classification accuracy
and consistency.
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Figure 2. (a) Original multi-source domain data, with blurred data edges and a high overlap rate
between classes; (b) multi-source domain data after domain-invariant processing, with reduced
data edge blur and a lower overlap rate between classes; (c) multi-source domain data after GAN
boundary enhancement, with clear data edges and the lowest overlap rate between classes.

2.4.1. Domain Boundary Reinforcement

The objective function of the sample density-constrained GAN generates samples in
the boundary region of the source domain, thus reinforcing the known sample bound-
aries. The MMD serves as a measure of the difference between each source domain and
target domain.

This work integrates the density peak clustering algorithm [44], using the values from
the prelogit layer as the sample points to calculate the sample density at any position in the
sample feature space. This information is pivotal in determining the sample boundaries.
The boundary samples are generated via the GAN to strengthen the domain boundary data,
generating samples around the known class boundaries. Hence, it amends the original
GAN objective function in this work [22]. The modified objective function is as follows:

min
G

max
D

EPkkc(x) log D(x) + EPG(x)[log(1− D(x)]︸ ︷︷ ︸
(a)

+ βEPG(x)[φ(x)]︸ ︷︷ ︸
(b)

(6)

where β > 0 is a balancing parameter. When β = 0, the trained classifier becomes a class
classifier. This objective function is explained in two parts. The first term (a) corresponds to
the original GAN loss, making the samples generated via the generator as similar as possible
to the real samples. The second term (b) calculates the sample density. During the training
phase, the generator and discriminator are trained multiple times under the sample density
constraint, eventually leading the generator to produce low-density boundary samples,
thereby enhancing the sample boundary.

The Maximum Mean Discrepancy (MMD) [45] is selected as our estimation of the
difference between the two domains. The MMD estimates the distance as follows:

DH(p, q) =

∥∥∥∥∥∥ 1
ns

∑
xi∈Ds

φ(xi)−
1
nt

∑
xj∈Dt

φ
(
xj
)∥∥∥∥∥∥ (7)

where DH(p, q) is the unbiased estimator of the MMD distance between the source domain
and target domain. Equation (7) is utilized as an estimate of the difference between each
source domain and target domain to achieve source–target domain alignment. The MMD
loss is written as follows:

Lmmd =
1
N

N

∑
j=1

D
(

Hj

(
F
(

X
′
sj

))
,Hj(F(Xt))

)
(8)



Remote Sens. 2023, 15, 5306 7 of 19

where X
′
sj represents the source domain data after boundary reinforcement, as shown in

Figure 2c.

2.4.2. Domain-Specific Classifier Alignment

In an ideal scenario, each classifier should yield consistent prediction outputs for the
same target sample. Nevertheless, disparities in the predictions for the target samples can
emerge since the classifiers are independently trained across multiple source domains in
practice. This discrepancy is especially notable for target samples positioned near class
boundaries, where the possibility of misclassification increases.

Hence, this section mainly accomplishes the minimization of the differences between
all the classifiers. In this context, the principle of knowledge distillation is employed,
using the ratio of misclassification to correct classification as the temperature to create a
weighted softmax value. The difference loss is then formulated using the absolute value of
the difference between the weighted softmax values for all the correctly classified target
domain data:

Ldisc =
2

N × (N − 1)

N−1

∑
j=1

N

∑
i=j+1

Ex↔Xi‖Pi − Pj‖ (9)

pi =
exp(Hi(F(x))/T)

∑N
k exp(Hk(F(x))/T)

, T =
Cerror

CCorrect
(10)

Each specific feature extractor can align with each pair of source domain and target
domain spaces by minimizing Equation (9), thereby achieving the accurate classification of
the target domain.

In summary, the following expression can be obtained after optimization:

Lloss = L f f t + αLcoral + λ1Lmmd + λ2Ldisc (11)

α, λ1, λ2 are hyperparameters. Equation (11) encapsulates four objectives: (1) intraclass in-
variant feature learning; (2) interclass invariant feature learning; (3) boundary enhancement;
and (4) classification.

The initial two objectives revolve around the acquisition of invariant representations
for domain generalization, while the latter two objectives are associated with boundary
enhancement and MUDA classification.

In real-world applications, the primary focus is on tuning the hyperparameters to
balance these four terms. Future work will involve developing more heuristic approaches
for automatically determining the hyperparameters.

3. Experiments

Furthermore, the relevant experiments are conducted on both the RGB image dataset
and the hyperspectral dataset to verify the effectiveness of the MDSNI algorithm.

3.1. Target Domain Classification Based on Feature Space Boundary Enhancement

The Office-31, Office-Home, and ImageCLEF-DA public datasets are utilized to val-
idate the RGB image dataset classification task. Office-31 [46] notably includes a total of
4652 images from three different domains, including 31 categories. Each learning task has
31 classes in the source domain and 10 classes in the target domain. Office-Home [47]
includes a total of 15,588 images from four different domains, including 65 categories.
Each learning task has 65 classes in the source domain and 25 classes in the target domain.
ImageCLEF-DA is composed of 12 common categories shared by three public datasets,
with 50 images per category and 600 images per domain.

In the experiments, the MDSNI is compared with the deep MUDA methodology
Deep Cocktail Network (DCTN) [6] and MFSAN [48]. Furthermore, the MDSNI is also
compared with various SUDA methodologies, including ResNet [49], Deep Domain Confu-
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sion (DDC) [27], the Deep Adaptive Network (DAN) [26], Deep CORAL (D-CORAL) [8],
Reverse Gradient (RevGrad) [50], and the Residual Transfer Network (RTN) [51].

All the algorithms are fine-tuned using the ResNet model [49]. The stochastic gra-
dient descent (SGD) with a momentum of 0.9 and the learning rate annealing strategy
are incorporated into RevGrad. Moreover, ηp = η0

(1+αζ)β is utilized for the adjustment

during the SGD, where ζ is the training progress changing linearly from 0 to 1, η0 = 0.01,
α = 10, β = 0.75, which is optimized to promote convergence and low error in the source
domain. To suppress noise activation in the early stages of training, the adaptation factors
λ and γ are not determined, but gradually changed from 0 to 1 in a progressive schedule:
γζ = λζ = 2

exp(−θζ)
− 1. Moreover, θ = 10 is kept constant throughout the experiments.

In addition, the MDSNI is compared with the other algorithms for three datasets, and
the results are presented in Tables 1–3, respectively.

Table 1. Classification accuracy (%) using the Office-31 dataset. Display the most data in bold.

Method A, W→D A, D→W A, D→W Avg

ResNet 98.31 95.73 61.88 85.34
DDC 97.22 94.05 66.73 86.03
DAN 98.60 96.82 66.92 87.42

D-CORAL 98.31 97.02 66.43 87.22
RevGrad 98.70 97.12 66.92 87.62

RTN 98.41 95.83 65.54 86.63
DCTN 98.31 97.22 63.56 86.33

MFSAN 98.51 97.52 71.97 89.30
MDSNI 99.70 99.20 73.80 91.60

Table 2. Classification accuracy (%) using the ImageCLEF-DA dataset. Display the most data in bold.

Method I, C→P I, P→C P, C→I Avg

ResNet 74.05 90.59 83.06 82.57
DDC 77.81 90.19 84.84 82.96
DAN 76.82 92.37 91.28 86.82

D-CORAL 76.33 92.66 90.78 86.63
RevGrad 77.12 92.76 90.88 86.92

RTN 77.81 94.35 86.03 85.04
DCTN 74.25 94.74 89.40 86.13

MFSAN 78.31 94.45 92.66 88.51
MDSNI 79.90 96.36 94.55 90.30

Table 3. Classification accuracy (%) using the Office-Home dataset. Display the most data in bold.

Method C, P, R→A A, P, R→C A, C, R→P A, C, P→R Avg

ResNet 64.65 49.10 78.90 74.65 66.83
DDC 63.46 50.29 77.42 74.25 66.33
DAN 67.82 88.51 78.21 81.68 71.68

D-CORAL 67.42 58.01 78.71 81.87 71.48
RevGrad 67.72 58.51 78.71 81.87 71.68
MFSAN 71.38 61.38 79.50 80.98 73.36
MDSNI 72.83 62.63 81.11 82.63 74.85

The following conclusions can be drawn based on the analysis of the above results.
The MDSNI demonstrates superior performance over all the compared methodologies

across most multi-source transfer tasks. This underscores the significance of the domain-
invariant feature construction algorithm introduced in this work and the enhancement of
specific class boundaries.
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Comparatively, the results achieved using the MDSNI methodology in the experiments
surpass those of the MUDA methodology, DCTN. The analysis suggests that this is mainly
because the MDSNI extracts domain-invariant feature representations from multiple source
domains. It effectively discriminates between the information for each source domain,
resulting in a more robust generalization of the source domain knowledge to unknown
target domains. The DCTN lacks consideration of the boundary ambiguity of multiple
source domains when extracting features, which makes it challenging for the classifier
to adapt to the variations between each source domain. In contrast, the MDSNI excels
in capturing shared knowledge across different source domains by acquiring domain-
invariant representation in the feature space of each source domain. The experimental
results also show that the MDSNI outperforms the MFSAN, which indicates that the source
domain boundaries can be enhanced by constraining the GAN to generate fake samples in
the feature space and construct domain-specific decision boundaries, ultimately enhancing
the target domain’s classification accuracy.

Compared with SUDA methodologies like DAN (source combine), the MDSNI stands
out for its ability to extract multiple domain invariant representations within multiple
feature spaces. In contrast, DAN focuses on extracting common domain-invariant represen-
tations within a shared feature space. The superior performance of the MDSNI over DAN
(source combine) suggests that extracting a single common domain-invariant representation
from all domains can be challenging.

Figure 3 visualizes the tasks learned via DAN (single source) for D→A, the tasks
learned via MFSAN for D, W→A, and the tasks learned via MDSNI for D, W→A using
t-SNE embeddings. The results in Figure 3b surpass those in Figure 3a, indicating the
benefits of considering multiple source domains. Furthermore, the results in Figure 3c
outperform those in Figure 3b, further affirming the effectiveness of our model in adapting
specific domain distributions and classifiers.
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samples from target domain A.

3.2. HSI Image Dataset Classification Task
3.2.1. Invariant Feature Network Performance Analysis

The performance of invariant feature networks is assessed using the Pavia Univer-
sity, Pavia Center, and Salinas Valley datasets. The Pavia University dataset comprises
103 effective spectral bands, encompassing nine land-use categories for classification. Simi-
larly, the Pavia Center dataset consists of 102 spectral bands, representing nine land-use
targets. The Salinas Valley dataset offers 204 spectral bands, with 16 diverse land-use
categories designated for classification.

For the sample partitioning procedures, the samples are initially randomized within
each category. Subsequently, r% of the samples (r = 40, 50, 60, 70) are selected from each
category and assigned their true class labels to form a training set; 30% of the samples will
be utilized as the test set. These experimental procedures should be repeated five times
to mitigate the influence of edge effects stemming from random sampling and ensure the
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reliability of our experiment. Then, the classification results are averaged to assess the
performance of the algorithm. The network training setup remains consistent with that
outlined in Section 3.1.

In this section, the algorithm proposed in this work is compared with the SVM al-
gorithm based on spectral-extended morphological attribute profile joint feature repre-
sentation [52] (Spe-EMAP SVM), a stacked autoencoder based on spectral–spatial joint
feature representation [1] (JSSAE), a stacked sparse autoencoder based on spectral features
(Spe-SSAE), a stacked sparse autoencoder based on extended morphological attribute pro-
file features (EMAP-SSAE), and a stacked sparse autoencoder based on spectral-extended
morphological attribute profile joint feature representation (Spe-EMAP SSAE). Tables 4–6
present the corresponding results from these comparisons. Figures 4–6 depict the classifica-
tion outcomes achieved using various methodologies across three HIS databases.

The proposed MDSNI algorithm exhibits exceptional classification performance during
the experiments. Among the six algorithms tested, MDSNI stands out by achieving the
highest accuracy in completing the classification task.

It is worth noting that when training support vector machine (SVM) and stacked
sparse self-encoder (SSAE) classification models with the same set of features, SSAE con-
sistently outperforms SVM in terms of overall classification accuracy. This observation
further underscores the advantages of deep features in enhancing stability and robustness,
emphasizing the significant improvement that deep features bring to the classification
performance using hyperspectral images.

Table 4. Overall classification accuracy of different classification methods at Pavia University. Display
the most data in bold.

Training
Sample Rate

Spe-EMAP
SVM JS SAE Spe-SSAE EMAP-

SSAE
Spe-EMAP

SSAE MDSNI

40% 93.66% 91.93% 90.85% 98.05% 98.76% 99.29%
50% 94.58% 92.64% 91.43% 98.30% 98.85% 99.52%
60% 95.01% 92.83% 91.58% 98.43% 98.94% 99.47%
70% 95.36% 93.64% 92.28% 98.62% 99.06% 99.54%

Table 5. Overall classification accuracy of different classification methods at Pavia Centre. Display
the most data in bold.

Training
Sample Rate

Spe-EMAP
SVM JS SAE Spe-SSAE EMAP-

SSAE
Spe-EMAP

SSAE MDSNI

40% 98.77% 98.38% 99.27% 99.42% 99.69% 99.29%
50% 99.04% 98.55% 99.34% 99.69% 99.79% 99.52%
60% 99.10% 98.64% 99.46% 99.74% 99.85% 99.47%
70% 99.16% 98.73% 99.62% 99.76% 99.87% 99.54%

Table 6. Overall classification accuracy of different classification methods at Salinas Valley. Display
the most data in bold.

Training
Sample Rate

Spe-EMAP
SVM JS SAE Spe-SSAE EMAP-

SSAE
Spe-EMAP

SSAE MDSNI

40% 93.11% 90.89% 89.23% 96.12% 96.82% 97.46%
50% 94.07% 91.72% 89.43% 96.23% 96.93% 97.68%
60% 94.72% 91.81% 89.48% 96.59% 97.00% 97.90%
70% 95.11% 92.36% 89.71% 96.76% 97.11% 98.06%
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A comparison of the actual classification results reveals that our methodology out-
performs other methodologies in reducing misclassified pixels. This achievement can
be primarily attributed to the constructed domain-invariant feature extraction algorithm,
which effectively harnesses the spectral and spatial information of the hyperspectral images
to improve classification accuracy. Substantial classification errors are found in certain
regions with the application of SVM and SSAE when examining the Salinas Valley dataset
and comparing it with the ground truth. In contrast, the MDSNI primarily exhibits sporadic
misclassifications. This notable difference can be primarily attributed to the intraclass in-
variant and interclass invariant feature structures, based on the Fourier phase information
and CORAL correlation-aligned second-order statistics proposed using the MDSNI, and the
invariant features weighted and enhanced according to the MMD distance. Additionally,
the adversarial network, which is founded on boundary constraints and introduced via
the MDSNI, constrains the source domain data by generating spurious samples in the
feature space. The generation of synthetic samples in the feature space via the GAN en-
hances the reliability and richness of the feature space, consequently fortifying the feature
space boundaries. These findings collectively underscore the substantial advantages of our
proposed MDSNI network in improving classification performance.

Finally, our experimental results consistently underscore the exceptional performance
of our method. Even when maintaining a constant training rate, the MDSNI algorithm
shows significant advantages over the other methodologies, proving its superior perfor-
mance in extracting intraclass and interclass invariant features in multi-source domains.
When the training rate is increased from 60 to 70%, the classification results of the MDSNI
algorithm display minimal variation despite the augmented volume of the training data.
This observation illustrates the capability of our methodology to yield favorable outcomes,
even with relatively limited training data. Such stable performance augments the practical
applicability of our approach.

Table 7 shows the comparison between our algorithm and the latest HIS unsupervised
classification algorithm. During the sample classification, it first randomizes the samples
within each category and then selects 70% of the samples from each category to give them
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the true class label, forming the training sample set. On the other hand, 30% of the samples
will be utilized as the test sample set. The following experimental operations are repeated
five times to mitigate potential edge effects caused by random sampling and to ensure
the reliability of the experiments. Subsequently, the algorithm performance is assessed by
computing the average of the classification results. The network training settings are the
same as those in Section 3.1.

Table 7. Comparison of MDSNI with the latest HIS unsupervised classification algorithm. Display
the most data in bold.

Method Pavia University Pavia Center Salinas Valley

MDSNI 99.23% 99.54% 98.06%
PSSA [53] 97.92% 97.49% 95.12%

Diff-HIS [54] 96.38% 96.53% 96.10%

In our experiments, the performance of the MDSNI is compared with that of the PSSA
and Diff-HIS algorithms in the HSI classification task. The results show that the MDSNI
algorithm outperforms the PSSA and Diff-HIS algorithms, and this superiority mainly
stems from the unique advantages to our approach in utilizing invariant features and
establishing robust boundary strategies.

The MDSNI constructs a boundary constraint-based adversarial network, which
reinforces the boundary in the source domain-invariant feature space by generating fake
samples to populate the source domain-invariant feature space. In contrast, Diff-HIS simply
uses an unlabeled HSI patch pretrained diffusion model for unsupervised feature learning
and then exploits intermediate-level features with various time steps for classification. The
PSSA combines entropy rate superpixel segmentation (ERS), superpixel-based principal
component analysis (PCA), and PCA-domain two-dimensional singularity spectral analysis
(SSA) to enhance the feature extraction efficacy and efficiency, combined with anchor-based
graph clustering (AGC) for effective classification. Nevertheless, both methodologies fail
to consider the ambiguity of the edges in the HSI data, which makes the possibility of
classification error of the edge data extremely high when classifying HSI data, resulting in
a lower classification accuracy than that of the MDSNI.

In summary, the excellent performance of our MDSNI algorithm mainly stems from
its accurate invariant feature extraction and robust boundary reinforcement strategy. These
two points enable the MDSNI to markedly improve the classification accuracy when
performing HSI classification tasks, thus making its overall performance superior to other
competing algorithms.

3.2.2. Performance Analysis of the MUDA Sample Transfer Algorithm

To assess the effectiveness of the methodology introduced in this chapter for hyper-
spectral image transfer classification, experiments are conducted employing three datasets:
Pavia University (PU), Houston (H), and Washington DC Mall (W). The Houston dataset
includes a total of 144 bands, with a spatial resolution of 2.5 m. The Washington DC
Mall dataset comprises 305 × 280 pixels and 191 bands. Four specific types of features
are selected as transfer targets for all three datasets in the experimental process. These
four types of features are roads, grasslands, trees, and roofs. The pseudocolor images and
ground realities for the three datasets are shown in Figure 7.

Drawing from the aforementioned hyperspectral remote sensing datasets, two groups
of data are selected as the source domain and the remaining group as the target domain
to create cross-domain multi-source experimental data for verification. Throughout the
experimental process, the MDSNI is compared with the SVM, 3D-SAE [55], Deep CORAL,
DAN, and UHDAC to demonstrate the superiority of the proposed methodology. The
learning settings mirrored those utilized in Section 3.1.
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Figure 7. Pseudocolor images and ground realities for the three datasets: (a) pseudocolor image of
the Pavia University dataset, (b) ground reality; (c) pseudocolor image of the Washington DC Mall
dataset, (d) ground reality; (e) pseudocolor image of the Houston dataset, (f) ground reality.

In the results analysis stage, the overall classification accuracy (OA) and the kappa
coefficient are utilized as evaluation indicators to compare the experimental results; each
experiment is repeated ten times, and the average value is taken. The experimental results
are presented in Tables 8 and 9. Figures 8 and 9 show the classification results for the HIS
data transfer learning.

Table 8. Comparison of hyperspectral image classification results (PU, W→H). Display the most data
in bold.

Road (%) Grass (%) Tree (%) Roofs (%) OA (%) Kappa

SVM 73.73 76.18 60.47 54.95 66.28 0.5494
3D-SAE 76.94 79.08 68.81 67.33 73.01 0.6398

Deep
CORAL 77.88 82.22 71.84 67.21 74.7 0.6627

DAN 79.72 85.9 75.49 76.04 79.6 0.7275
UHDAC 81.89 98.53 72.56 81.08 83.94 0.7856
MDSNI 88.53 89.93 83.67 81.29 85.85 0.8111

Table 9. Comparison of hyperspectral image classification results (PU, H→W). Display the most data
in bold.

Road (%) Grass (%) Tree (%) Roofs (%) OA (%) Kappa

SVM 71.16 79.74 63.63 68.3 68.43 0.5731
3D-SAE 75.87 85.52 69.43 71.86 74.9 0.6561

Deep
CORAL 80.35 85.02 73.31 75.33 77.99 0.6971

DAN 85.86 86.41 76.59 79.21 81.65 0.7466
UHDAC 83.13 93.49 84.84 83.09 85.4 0.7988
MDSNI 87.56 93.15 86.18 85.3 87.41 0.8266
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The analysis reveals the following.
Traditional hyperspectral image classification algorithms, such as SVM and 3D-SAE,

only consider the source domain data during training and fail to consider the relationship
between the source domain and the target domain; thus, they perform poorly on the target
domain classification task, resulting in low overall accuracy and kappa coefficient. In con-
trast, transfer learning algorithms, such as the MDSNI, UHDAC, DAN, and Deep CORAL,
utilize the features of both the source and target domains during the training process.



Remote Sens. 2023, 15, 5306 16 of 19

Moreover, these transfer learning algorithms are designed to mitigate the distributional
differences between the source and target domains, ultimately enhancing the classification
performance in the target domain. For instance, the MDSNI effectively captures the internal
and interval invariant feature structure of the source and target domains by incorporating
the Fourier phase information and CORAL correlation-aligned second-order statistics.
The UHDAC improves the domain adaptation using an unsupervised hierarchical deep
clustering approach, facilitating the learning on the shared and specific features of the
source and target domains. In a similar vein, DAN and Deep CORAL bolster the domain
adaptability by maximizing the similarity between the feature distributions in the source
and target domains, thereby reducing the distributional differences between the domains.
The overarching objective of these methodologies is to leverage information from both
the source and target domains during training to achieve better classification performance
on the target domain. As a result, they significantly outperform traditional hyperspectral
image classification algorithms, such as SVM and 3D-SAE, when it comes to the target
domain classification task, which improves the overall accuracy and kappa coefficient.

The transfer learning algorithms, Deep CORAL and DAN, aim to mitigate the disparity
in domain distribution between the source and target domains by introducing domain
adaptation layers. Nevertheless, Deep CORAL incorporates fewer domain adaptation
layers, which limits its effectiveness when handling hyperspectral data. In addition, Deep
CORAL and DAN are implemented without considering the problem of fuzzy boundaries
between the source and target domain data. Consequently, their accuracy and kappa
coefficient in hyperspectral image classification tasks are lower than those of the MDSNI.

The UHDAC strives to establish consistent feature mapping between the source and
target domains and align the data distributions of the two domains via bidirectional
adversarial migration. Nevertheless, the UHDAC tends to overlook the invariant features
of the source domain, which results in its performance in hyperspectral experiments slightly
lagging behind that of the MDSNI. While 3D-SAE combines the features of both the source
and target domains for hyperspectral images and extracts the spatial–spectral features,
its limited performance leads to the inaccurate representation of the edge information for
the hyperspectral images from different domains. Consequently, the parameters of the
network trained on the source domain data cannot be directly adapted to the training of the
target domain data. This difference in performance manifests as the accuracy and kappa
coefficient of the MDSNI methodology significantly outperforming those of the 3D-SAE.

Our algorithm notably excels and attains the desired classification results, even in the
presence of substantial disparities in the sample data distribution between the source and
target domains. This robustly underscores the effectiveness of our approach in addressing
discrepancies in data distribution between source and target domains.

The extensive array of experimental results underscores the substantial advantages
of our MDSNI method compared to state-of-the-art transfer learning techniques using
widely available benchmark datasets. Our methodology consistently delivers high-quality
image classification results for the target domain, despite the presence of data distribution
inconsistencies between the source and target domains. This is consistently confirmed
across multiple experiments, affirming the broad potential applicability of our methodology
in dealing with the hyperspectral image classification task in real-world scenarios.

4. Conclusions

In this work, an MDSNI is introduced for hyperspectral image classification. Leverag-
ing principles from deep learning and transfer learning, the MDSNI addresses the challenge
of domain adaptation that previous methodologies may have overlooked, resulting in sig-
nificant enhancements in classification accuracy and model generalization.

The MDSNI leverages MMD distance-weighted Fourier phase information to capture
intraclass invariant features and employs interclass invariant features via the relevance-
weighted CORAL alignment of second-order statistics. Furthermore, the source domain
boundary and the construction of multiple domain classifiers are bolstered by integrating
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a GAN. This strategy allows us to align the domain-specific distributions between each
pair of source and target domains, ultimately facilitating the precise classification of the
target domain.

Our experiments have demonstrated that our proposed MDSNI methodology exhibits
robust performance, even in the presence of significant discrepancies in the sample data
distributions between the source and target domains. This highlights the effectiveness
of our approach in addressing inconsistencies in the distributions of source and target
domain data.

In conclusion, our extensive experimental results on public benchmark datasets show
that our proposed algorithm has significantly improved the multi-source unsupervised
domain adaptation (MUDA) methodology, outperforming leading-edge methodologies.
This research significantly contributes to the field of hyperspectral image classification and
holds promise for further advancements in the domain of remote sensing.

It is worth noting that, while this work employs a basic density methodology to deter-
mine the source domain boundary, real-world data distributions often exhibit considerable
diversity. Some data distributions are inherently tight. Given this variability, the existing
density methodology may not be able to completely and accurately depict the source do-
main boundary. Therefore, future research will focus on finding more adaptable boundary
judgment algorithms.
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