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Abstract: A good water budget involving four variables, including precipitation (P), evapotranspira-
tion (ET), streamflow (R), and terrestrial water storage change (TWSC), is reflected in two aspects: a
high accuracy against observations for each budget component and the low water budget closure
residual error (∆Res). Due to the lack of consideration of observations of budget components in
existing water budget closure assessment methods (BCMs), when the ∆Res of budget components is
low, their error against respective observations may still be high. In this study, we assess the water
budget closure accuracy of satellite/reanalysis-based hydrological data products over mainland
China based on six popular P products and multiple datasets of additional budget components (ET,
R, and TWSC). The results indicated that the ∆Res changes between ±15 mm over mainland China.
Satellite P products such as GPM IMERG showed better performance by comparing them with rain
gauge-based observations. However, reanalysis P products such as GLDAS and FLDAS showed a
better water budget closure since the selected datasets of additional budget components (ET and
R) are also derived from reanalysis datasets. This indicates that these same data sources for budget
components make it easier to close the water budget. The further development of satellite P products
should consider the closure of the water budget with other water cycle variables.

Keywords: precipitation products; water budget closure; hydrological cycle; mainland China

1. Introduction

Precipitation (P) is the main driver of the terrestrial hydrological cycle [1–3]. A great
number of satellite and reanalysis precipitation (SRP) products, characterized by global
coverage and high temporal and spatial resolution, have been produced and widely applied
in large-scale meteorological and hydrological analyses [4–7]. This is because, despite the
high accuracy of in situ rainfall observations, they are sparse, and the record length in
many basins around the world is insufficient, limiting the accuracy of hydrological research
in these basins greatly [8]. Despite the advantages of SRP products over rain gauge-based
observations in terms of spatial coverage and resolution, they have large uncertainties and
errors arising from sensor deficiencies, retrieval algorithms, and discordant data resolu-
tion [9–11]. More importantly, the water budget closure accuracy of SRP products with
respect to products of additional budget components (ET, R, and TWSC), which is critical
for accurate hydrological research, may be low. Therefore, when studying hydrological
changes in regional and global basins, the products of hydrological variables should meet
high accuracy targets in two aspects, i.e., the high accuracy against observations for each
budget component and the low water budget closure residual error.
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In the literature, the assessment of water budget closures has become a basic condition
for verifying the reliability of hydrological products [12–15]. Water budget closure-based
assessment methods (BCMs) help users understand the error sources and uncertainties of
budget component datasets by quantifying water budget imbalances [16,17] The residual
error in water budget closure ∆Res = P − ET − R − TWSC has been commonly used to
assess the water budget imbalance caused by errors in budget component datasets [13,18,19].
Based on ∆Res, a series of derived methods (BCMs) have been developed; they include
the proportion of ∆Res to mean precipitation and the method for closing water and energy
budgets, simultaneously developed by Hobeichi et al. [20]. Sheffield et al. [9] assess the
ability of remote sensing products of P, ET, and TWSC to close water budget by comparing
their residual error represented by the estimated R (R = P − ET − TWSC) with streamflow
observations; Lehmann et al. [21] assess water budget closure of budget component datasets
by using the estimated TWSC as the residual error, and then the estimated TWSC was
compared with the measured TWSC using the Gravity Recovery And Climate Experiment
(GRACE) satellite mission. However, these BCMs lack consideration of observations of
budget components when assessing the water budget accuracy of budget component
products and are subject to mutual cancellation of errors in budget component products
from different sources, which was defined as the high accuracy of water budget closure but
the low accuracy of individual budget components in this study. As a result, the accuracy of
the selected budget component products (against observations) based on BCMs may be low,
although the ∆Res of these selected datasets is small. The combination of existing BCMs
and observations of budget components provides an opportunity to solve this problem.

Many studies have been conducted to assess how existing hydrological products can
close water budgets in different global basins since different products of budget compo-
nents show various accuracies in different regions [22,23]. Abolafia-Rosenzweig et al. [24]
evaluated three techniques: proportional redistribution, constrained Kalman filter, and
multiple collocations for enforcing water budget closure in 24 global basins. Luo et al. [12]
proposed a novel error-based method for assessing the water budget closure of satellite-
based hydrological products in the Tarim River Basin, and Soltani et al. [18] proposed a
probabilistic framework for estimating water budgets in low runoff regions of the central
Basin of Iran. Sahoo et al. [25] use the ∆Res/P to assess the water budget closure accuracy of
satellite remote sensing data of budget components in ten global basins and found that the
∆Res/P is changed between 5 and 25% in most basins. Different studies in different basins
showed various water budget closure accuracies due to the diverse inversion accuracy of
hydrological products in these basins. There is currently no relevant report on the question
of how satellite/reanalysis-based hydrological products can close the terrestrial water
budget over mainland China.

Based on the above analysis, BCMs have the advantage of quantifying the water
budget closure of SRP products with respect to datasets of additional budget components
but are subject to the mutual cancellation of errors in budget components. Maintaining a
high precision in budget component datasets in both aspects of against observations and
water budget closure is critical for accurate hydrological research. Statistical metrics, such as
root mean square error, correlation coefficient, and false alarm ratio, were commonly used
to assess SRP products by comparing them with rain gauge-based observations [26]. If high-
precision datasets can be pre-selected using statistical metrics and then the selected datasets
are applied to BCMs, it is possible that SRP products based on existing BCMs have high
accuracy in the two aspects mentioned above. Therefore, this study focuses on assessing
and intercomparing the water budget closure accuracy of six popular SRP products relative
to datasets of additional budget components in mainland China by combining statistical
methods and existing BCMs. The assessment helps understand the water budget closure
state of existing hydrological products in mainland China. In detail, the statistical methods
were first used to quantify the accuracy of SRP products by comparing them with rain
gauge-based observations to ensure that the accuracy of SRP products applied to water
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budget closure assessment is high. The existing BCMs were then used to quantify the ∆Res
of the selected SRP products with respect to datasets of additional budget components.

The specific objectives of this study were: (1) to assess the water budget closure
accuracy of six popular SRP products relative to the selected datasets of additional budget
components in mainland China. The difference in closing water budget between satellite
and reanalysis P products is further investigated due to their different inversion methods;
(2) to compare the difference in SRP assessment between statistical methods and BCMs
with mainland China as a case study; and (3) to investigate the uncertainties that affect SRP
assessment.

This study was organized as follows. Study area and data are described in Section 2.1
and Section 2.2; Methods used in this study are represented in Section 2.3; Results for
assessing SRP products and intercomparing their accuracies for closing water budget are
presented in Section 3; The main results and uncertainties affecting water budget closure
assessment are discussed in Section 4; Finally, the conclusions are summarized in Section 5.

2. Study Area, Datasets, and Methodology
2.1. Study Area

Figure 1a, b shows the study area of mainland China, with an area of approximately
9.6 million km2. It covers diverse topography and climatic regions, indicating that the
performance of SRP products in different topographies and climatic conditions can be well
investigated with mainland China as a case study. The mean annual P across mainland
China ranges from 7 to 2754 mm [27]. It decreases significantly from the southeast to
northwest of mainland China and is affected by the prevailing monsoon climate from
the Indian and Pacific Oceans [28]. As shown in Figure 1a, rain gauge stations within
mainland China are mainly distributed in eastern China and less distributed in western
China, covered mainly by desert and alpine landscapes.
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Figure 1. Study area of mainland China. (a) Rain gauge stations that were used in this study;
(b) DEM and nine major basins in mainland China, including the Songhua and Liaohe River Basin
(SLRB), Haihe River Basin (HB), Huaihe River Basin (HRB), Yellow River Basin (YB), Yangtze River
Basin (YRB), Pearl River Basin (PRB), Southeast Basin (SEB), Southwest Basin (SWB), and Continental
Basin (CB).

2.2. Datasets
2.2.1. Rain Gauge Observations

A monthly ground-station dataset of precipitation derived from the China Meteoro-
logical Data Service Center (http://data.cma.cn/en (accessed on 31 October 2023)) was
used as the reference for assessing the accuracy of SRP products. Locations of rain gauge
stations used in this study are shown in Figure 1a. These data were collected from 2000 to
2020. In order to ensure the quality of data, many rain gauge stations with a large number
of missing values were removed. In detail, we use 5% as a threshold to filter rain gauge
stations. That is, rain gauge stations with the amount of missing data accounting for less

http://data.cma.cn/en
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than 5% of these total data, which means that the overall evaluation performance will not be
affected by missing data, were selected; for the selected rain gauge stations, months with no
data during the study period were interpolated using a sample linear interpolation method.

2.2.2. SRP Products

Table 1 shows the SRP products used in this study: GPM IMERG, TRMM 3B43,
PERSIANN-CDR, ERA5, GLDAS, and FLDAS. They include different data sources and
inversion algorithms and have been widely used for hydrological analysis in previous
studies [29,30]. Figure 2 shows the spatial distribution of these six SRP products.

Table 1. Features of the selected six popular precipitation products.

Precipitation Product Resolution Period Provider Reference

Monthly Global Precipitation
Measurement (GPM) v6

(GPM IMERG)

0.1 degree
3 h 2000-present

NASA GES DISC at NASA Goddard
Space Flight Center, Maryland,

United States
Huffman et al. 2019 [31]

TRMM (TMPA/3B43) Rainfall
Estimate L3 (TRMM 3B43)

0.25 degree
1 month 1998–2019

NASA GES DISC at NASA Goddard
Space Flight Center, Maryland,

United States
Huffman et al 2010 [32]

NOAA Climate Data Record
(CDR) of Precipitation

Estimation from Remotely
Sensed Information using

Artificial Neural Networks
(PERSIANN-CDR), Version 1
Revision 1 (PERSIANN-CDR)

0.25 degree
1 day 1983-present NOAA NCDC, North Carolina,

United States Sorooshian et al. 2014 [33]

The fifth generation ECMWF
atmospheric reanalysis of the

global climate (ERA5)

0.25 degree
1 month 1979-present

ECMWF/Copernicus Climate
Change Service, Reading,

United Kingdom

Copernicus Climate
Change Service, 2017 [34]

GLDAS Noah Land Surface
Model L4 (GLDAS)

0.25 degree
3 h 2000-present

NASA GES DISC at NASA Goddard
Space Flight Center, Maryland,

United States
Rodell et al. 2004 [35]

FLDAS Noah Land Surface
Model L4 (FLDAS)

0.10 degree
1 month 1982-present

NASA GES DISC at NASA Goddard
Space Flight Center, Maryland,

United States
McNally et al. 2017 [36]

The GPM IMERG is a new-generation satellite-based P dataset produced by com-
bining passive microwave data, microwave-calibrated IR satellite data, and P gauge ob-
servations [31]. This dataset can be obtained from https://search.earthdata.nasa.gov/
search?q=GPM_3IMERGM_06 (accessed on 31 October 2023). TRMM 3B43 is a satellite-
based P dataset combining GPCC rain gauge analysis [32]. It can be downloaded from
https://search.earthdata.nasa.gov/search?q=TRMM_3B43 (accessed on 31 October 2023).
PERSIANN-CDR is also a satellite-based P product, which can be obtained from https:
//chrsdata.eng.uci.edu/ (accessed on 31 October 2023). ERA5 is the reanalysis dataset,
which estimates P by combining model simulation and rain gauge-based observations.
Monthly reanalysis data of ERA5 can be downloaded from https://cds.climate.copernicus.
eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form (accessed on 31 October
2023). GLDAS is the global land data assimilation system. It estimates almost all budget
fluxes, including P, ET, and R, based on land surface models such as the variable infiltration
capacity (VIC). The GLDAS dataset can be downloaded from https://search.earthdata.nasa.
gov/search?q=GLDAS_NOAH025_M_2.1 (accessed on 31 October 2023). Like GLDAS,
FLDAS also estimates almost all budget components, including P, ET, and R, but not the
state variable of TWSC. The product can be downloaded from https://search.earthdata.
nasa.gov/search?q=FLDAS_NOAH01_C_GL_M (accessed on 31 October 2023).

https://search.earthdata.nasa.gov/search?q=GPM_3IMERGM_06
https://search.earthdata.nasa.gov/search?q=GPM_3IMERGM_06
https://search.earthdata.nasa.gov/search?q=TRMM_3B43
https://chrsdata.eng.uci.edu/
https://chrsdata.eng.uci.edu/
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form
https://search.earthdata.nasa.gov/search?q=GLDAS_NOAH025_M_2.1
https://search.earthdata.nasa.gov/search?q=GLDAS_NOAH025_M_2.1
https://search.earthdata.nasa.gov/search?q=FLDAS_NOAH01_C_GL_M
https://search.earthdata.nasa.gov/search?q=FLDAS_NOAH01_C_GL_M
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2.2.3. Datasets of Additional Budget Components

Together with P, the additional budget components of R, ET, and TWSC jointly con-
stitute a closed hydrological system. Both products, GLDAS and FLDAS, provide global
coverage of ET and runoff estimates. The R used in this study is the sum of the surface
runoff and subsurface runoff simulated using hydrological models in GLDAS and FLDAS.
Since there are no sufficient TWSC observations in most global basins, GRACE TWSC has
been widely used for hydrological analysis in previous studies [19,37–39]. GRACE satellite
monitors TWSC by mapping variations in the Earth’s gravity field [40]. In this study,
three GRACE TWSC products were considered: the CSR produced by U. Texas/Center for
Space Research (Austin, TX, USA), GFZ produced by GeoForschungsZentrum Potsdam
(Potsdam, Germany), and JPL produced by NASA Jet Propulsion Laboratory (Pasadena,
CA, USA) [41]. These datasets cover the time period from 2002 to 2017 since the GRACE
mission was launched in March 2002 and finished in October 2017. The coarse spatial reso-
lution of GRACE TWSC data (1 degree) determines that they are more suitable for TWSC
research in large-scale watersheds. Since these three GRACE TWSC products are produced
by different centers, producing TWSC data individually, their values may differ slightly. In
most previous studies, they are commonly merged into one single TWSC product to reduce
uncertainties [25,42]. In this study, the data merging technology in Equation (8) below was
used to merge these three GRACE TWSC products.

2.3. Methodology

Figure 3 shows the flowchart for assessing the water budget closure accuracy of SRP
products relative to datasets of additional budget components. It mainly consists of three
parts: (1) data preparation, (2) assessing the accuracy of SRP products by comparing them
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with rain gauge-based observations using statistical methods for selecting high-precision
datasets, and (3) assessing the water budget closure accuracy of the selected SRP products
in combination with datasets of additional budget components using BCMs. The selection
of high-precision datasets in step 2 ensures that the accuracy of SRP products applied to
step 3 is high. In this study, we showed all results of the ∆Res in the Section 3 instead of
only the ∆Res for the selected high-precision SRP products to intercompare the difference
in closing water budget between satellite and reanalysis precipitation products.
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datasets of additional budget components.

2.3.1. Data Preparation and Statistical Metrics

The datasets used in this study were pre-processed to form a unified format. In
detail, all SRP products were mapped to a 1 degree spatial resolution and aggregated to
a 1 month temporal resolution. We assess SRP products on a monthly timescale for the
following reasons. The assessment of water budget closure requires datasets of four budget
components (P, ET, R, and TWSC). However, GRACE TWSC datasets used in this study are
monthly-based satellite observation data, constraining the study of water budget at finer
scales. This is one of the main reasons why most current studies assess water budget only
at a monthly time scale [12,13,16,25]. In addition, assessing the water budget at a time of
less than a month will inevitably introduce more uncertainties because the water budget
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quantifies all the water that flows into and out of the study area. It is difficult to estimate
them at daily and hourly timescales accurately.

Three commonly used statistical metrics were employed to assess the accuracy of SRP
products, including the root mean square error (RMSE), Pearson correlation coefficient (CC),
and relative error (RE) [43,44]. The metrics CC, RMSE, and RE ranges are [−1, 1], [0,+∞),
(−∞,+∞), respectively. The values of 1, 0, and 0, respectively, mean the best performance.

RMSE =

√
∑n

i=1 (Obsi − Simi)
2

n
(1)

CC =
∑n

i=1 (Obsi − Obs)(Simi − Sim)√
∑n

i=1 (Obsi − Obs)2
√

∑n
i=1 (Simi − Sim)2

(2)

RE =
∑n

i=1 (Simi − Obsi)

∑n
i=1 Obsi

(3)

where n is the number of observed p values; Obsi and Simi are the observed and estimated
p values at time i, respectively; O and S are the averages of the observed and estimated
p values, respectively.

2.3.2. Water Budget Closure Assessment

The general expression of the water budget equation is shown in Equation (4) [16,25].
Note that the monthly terrestrial water storage anomalies (TWSA) provided by GRACE
are relative values (relative to the average in 2004–2009). Therefore, TWSA data in GRACE
needs to be further processed to obtain TWSC data in Equation (4). In this study, the
backward difference equation (Equation (5) was used to deal with the gravity anomalies of
the TWSA caused by GRACE sensors [17,18]. Accordingly, the budget components, except
for the TWSC, were adjusted according to Equation (6) owing to the pre-processing of the
GRACE TWSC products.

TWSC = P − ET − R (4)

TWSC =
TWSA(t + 1)− TWSA(t)

∆t
(5)

∆W(t) =
(

P(t + 1) + P(t)
2

)
−
(

ET(t + 1) + ET(t)
2

)
−
(

R(t + 1) + R(t)
2

)
(6)

where ∆W(t) represents changes in water storage represented by the water budget flux
terms P, ET, and R.

If all budget components in Equations (5) and (6) take “true values,” TWSC is equal
to ∆W(t), that is, Equation (7) strictly holds. However, in practice, the water budget is
rarely closed due to errors within the budget-component products. That is, the ∆Res error
always exists in practice. According to previous studies, the ∆Res (due to errors in budget
components) has been commonly used to assess the imbalance in the water budget [13,18].
It is calculated based on Equations (5) and (6). A small ∆Res represents high water budget
closure accuracy, i.e., the high data consistency in the budget component products.

∆Res = TWSC − ∆W(t) (7)

The specific steps for assessing the water budget closure accuracy of SRP products
relative to datasets of additional budget components are as follows. First, different wa-
ter budget ensembles constituted by SRP products and the same products of additional
budget components (ET, R, and TWSC) were formed (see Figure 3). Six SRP products
were considered in this study. Assuming three were selected according to the first step:
P1_Selected, P2_Selected, and P3_Selected. Therefore, three budget ensembles were formed
in Figure 3: ∆Res_P1, ∆Res_P2, and ∆Res_P3; Second, we calculate and compare the ∆Res
of budget ensembles for selecting high-precision SRP products with good water budget
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closure relative to additional budget component products. Finally, SRP products with
high accuracies in terms of both aspects of univariate (compared with rain gauge-based
observations) and water budget closure (small ∆Res error) were determined.

There are two main error sources affecting water budget closure assessment using ∆Res,
i.e., the error from products of additional budget components and the error from different
P products. The ideal situation is that the accuracy of SRP products and additional budget
component products, which are inputs for the ∆Res calculation, is high. For the former,
there are no sufficient observations for each additional budget component at the global
grid-scale due to the limited spatial distribution of ground observation sites. Therefore,
observations of additional budget components cannot be directly applied to the calculation
of the ∆Res. In addition, no single product for each budget component can capture the
spatial pattern of the budget component for all regions of the globe [45]. To reduce the
uncertainty of SRP assessment caused by products of additional budget components, the
data merging technology in Equation (8) was used to derive hybrid estimates for each
additional budget component since the merged values from multiple products have been
shown to be close to observations and minimize data uncertainty [25,46].

Prodx =
n

∑
i=1

Prodx,i • ωi and ωi =

1
σ2

i
n
∑

j=1

1
σ2

j

(8)

where Prodx denotes the merged value of budget component x, Prodx,i denotes the i-th budget
component product, ωi denotes the weight of the i-th product, σ2

i denotes the error variance
of the i-th product, and n denotes the number of products for the budget component.

For the error from different P datasets, SRP products contain various sources of error
due to the different P inversion algorithms and sensor sampling errors [11,47,48]. For exam-
ple, P estimates from microwave sensors are based on microwave emission and scattering
of raindrops and ice in low-frequency and high-frequency channels, respectively [4,11].
Reanalysis-based approaches are different from satellite inversion algorithms. They esti-
mate P by combining rain gauge-based observations and climate model simulated data.
Therefore, different data sources produce different errors in the estimation of SRP products.
Moreover, the accuracy of SRP products varies between different regions [10]. In this study,
we reduce the error caused by different data sources of P by selecting high-precision SRP
products using statistical metrics.

3. Results
3.1. Assessment of SRP Products Using Statistic Metrics

This section focuses on assessing the accuracy of the selected six SRP products in
mainland China. Figure 4 shows the spatial distribution of the statistical metrics CC, RMSE,
and RE. For the metric CC (Figure 4a–f), all SRP products showed a better performance
of P estimates in most eastern and southeastern regions of mainland China (CC > 0.7 for
most stations) than the western regions (CC < 0.7 for most stations). RE (Figure 4m–r)
showed the same spatial distribution as CC. According to Figure 1a, rain gauge stations
were mainly distributed in China’s eastern and southeastern regions. This may be one of
the main reasons for the better estimates of SRP products in these regions. However, the
metric RMSE in Figure 4g–l showed an opposite result compared with CC and RE. That is,
RMSE with small values (≤30 mm), showing a better performance of P estimation, was
mainly distributed in the western regions of mainland China. We speculate that this is
mainly attributed to the smaller P magnitudes in western China (Figure 2), leading to a
smaller difference in magnitude between SRP products and rain gauge-based observations.
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According to Figure 5, GPM IMERG showed a better performance of P estimation
than GLDAS, FLDAS, and TRMM 3B43 in mainland China, followed by PERSIANN-CDR
and ERA5. Although the results of statistical metrics based on observations were reliable,
the misestimates of SRP products caused by the information reuse of rain gauge-based
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observations (the overlap in gauge-based observations used for producing and verifying
SRP products) affected the accuracy of the results. Most SRP products, such as GPM
IMERG, were combined with rain gauge-based observations during their production [31,49].
Therefore, it is very likely that the information of rain gauge stations used for bias correction
or data fusion when producing SRP products was the same as that used for the performance
assessment of SRP products using statistical metrics, resulting in information reuse errors.
Some studies have shown that satellite-gauge products have higher P detection capabilities
than satellite-only products [28]. Budget closure-based assessment methods can reduce the
problem of data reuse for gauge-based observations to some extent, as they consider all
budget components of P, ET, R, and TWSC simultaneously rather than comparing them
with observations. In addition, water budget closure has rarely been considered in the
production of SRP products because of the lack of sensors capable of monitoring all budget
components simultaneously [25].
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We compared the results with previous studies in mainland China. We reached the
same conclusion as previous studies [44,47,50–54]. That is, GPM IMERG outperforms
reanalysis products in mainland China. According to Jiang et al. [53], the performance of
GPM IMERG is better than ERA5 over mainland China on the daily, monthly, and seasonal
timescales. The results of Wei et al. [47] on the monthly timescale and Tang et al. [54] on the
hourly timescale also showed the same results. All these studies indicated that reanalysis
datasets (mainly referring to ERA5) tend to overestimate P against ground observations
in many regions of China. A possible reason for GPM IMERG overperforming ERA5 in
mainland China is that the former has been calibrated based on the monthly P products
from GPCC (1.0◦, monthly; Huffman et al. [55]) and daily P data from the Climate Prediction
Center (CPC) (0.5◦, daily; Mega et al. [56]), respectively (Xu et al. [47]; Jiang et al. [53]).
However, ERA5 only assimilates the P estimates from the National Centers for Environment
Prediction (NCEP) in the USA [57]. ERA5 products have not been calibrated based on P
observations in mainland China [44]. It is worth mentioning that each SRP has its own
strengths and weaknesses. The performance of SRP products varies with different regions
(climatic zones), time scales, and precipitation phases [44]. It is difficult to find a product
that performs well in all regions of the world [45].

3.2. Water Budget Closure Assessment of SRP Products Relative to Additional Budget
Component Products

This section focuses on assessing the water budget closure accuracy of SRP products
relative to datasets of additional budget components on monthly and seasonal scales.
Table 2 shows the monthly and seasonal average ∆Res. Note that the ∆Res in Table 2 is
calculated based on different P products in Table 2 and the same merged ET, R, and TWSC
products in Section 2.2.3.
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Table 2. Monthly and seasonal ∆Res of P products relative to additional budget components in
mainland China.

Month GPM-IMERG TRMM-3B43 PERSIANN-CDR ERA5 GLDAS FLDAS

1 2.64 3.44 3.22 7.51 3.35 1.33
2 0.6 1.65 1.95 6.57 1.07 −0.2
3 −2.79 −1.29 −1.46 6.42 −1.42 −2.86
4 −2.26 −0.81 −0.91 10.49 0.32 −1.56
5 −4.25 −3.27 −2.11 11.29 −0.65 −2.71
6 −2.58 −2.17 0.88 13.95 2.2 −0.1
7 −14.69 −14.64 −8.18 3.26 −7.6 −8.89
8 −6.25 −6.76 1.54 14.01 2.54 2.44
9 −4.72 −5.23 −1.08 12.49 0.36 2.46

10 1.07 1.72 2.57 13.91 3.45 4.5
11 2.54 3.81 3.12 10.79 3.61 2.43
12 7.44 8.47 6.79 12.17 7.52 5.9

Spring −9.52 −5.42 −4.89 27.72 −1.99 −6.85
Summer −24.23 −23.06 −6.99 31.27 −4.76 −6.26
Autumn −0.92 0.64 4.03 37.28 6.85 9.89
Winter 4.08 6.83 −0.53 22.23 5.35 0.85

According to Table 2, the monthly average ∆Res for SRP products over mainland China
varied between ±15 mm, which is acceptable based on previous studies that concluded
that the value varies between ±20 mm in most global basins [12,25,58]. Among the SRP
products, GLDAS and FLDAS exhibited the best water budget closure relative to the
selected datasets of additional budget components in Table 1, followed by GPM IMERG
and TRMM 3B43, whereas PERSIANN-CDR and ERA5 exhibited the worse water budget
closure. Therefore, BCMs showed a different result from that of statistical metrics, which
indicates that GPM IMERG performed the best by comparing with rain gauge-based
observations. This fully illustrates the importance of selecting high-precision SRP products
using statistical metrics before assessing their water budget closure accuracy relative to
datasets of additional budget components. Figure 6 shows the results of the ∆Res in nine
major basins of mainland China. It shows that basins with large ∆Res values are HRB,
PRB, SEB, and SWB. These basins are mainly distributed in the coastal areas of eastern and
southern China, which are greatly affected by monsoon. The ∆Res in basins of YB, CB, and
SLRB located in northern China is relatively small.
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The different results in the performance assessment of SRP products based on statisti-
cal methods and BCMs are mainly due to the different error sources of the two methods. For
the accuracy of SRP products, it was assessed by comparing them with rain gauge-based
observations using statistical metrics. Therefore, the results of SRP assessment are affected
by the quality of rain gauge-based observations (e.g., the spatiotemporal coverage, data
integrity, and record length of observed p values). However, the water budget closure
assessment is affected by the data accuracy of SRP products and additional budget com-
ponent products. Therefore, when we assess the water budget closure accuracy of SRP
products, it is highly dependent on the selected datasets of additional budget components.

3.3. Monthly and Seasonal Variations of the ∆Res

Figure 7 shows the monthly variation of the ∆Res in mainland China, which is calcu-
lated based on SRP products and datasets of additional budget components. It is obvious
that ERA5 exhibited a clear overestimation of P compared with the remaining SRP products,
as the ∆Res of ERA5 was notably greater than zero in almost all the months (Figure 7). The
high ∆Res for ERA5 is caused by its high magnitude compared with the remaining SRP
products. For the remaining ∆Res, they exhibited fluctuation changes. The Mann–Kendall
(MK) method was used to test the significance of ∆Res changes. It is a non-parametric
trend testing method. For the method, the sign of the statistic “Z” is used to determine
whether the time series of ∆Res has a trend. When Z takes a positive value, it indicates an
upward trend; on the contrary, it indicates a downward trend. When the absolute value
of Z is greater than or equal to 1.64, 1.96, and 2.58, respectively, it means 90%, 95%, and
99% significance [59]. We perform the MK test using the Python software package. The
Z-values for compositions GPM IMERG_∆Res, TRMM_∆Res, PERSIANN_∆Res, ERA5_∆Res,
GLDAS_∆Res, and FLDAS_∆Res are −0.24, −0.25, 0.56, −1.22, 0.24, and 0.27, respectively.
Therefore, the ∆Res for some compositions (GPM IMERG, TRMM 3B43, and ERA5) showed
a decreasing trend over time in mainland China (mainly satellite products) and a slightly
increasing trend for some other compositions (GLDAS and FLDAS, mainly reanalysis prod-
ucts). However, the decreasing and increasing trends are not significant since the absolute
Z-values for all compositions are less than 1.64 (failed the 90% significance test). Many
previous studies have also shown similar results. For example, Kinouchi et al. [22] reported
a 0.03 mm/month increasing trend for residual errors according to their study in the Upper
Chao Phraya River Basin.

The reduced ∆Res over time for GPM IMERG may be caused by the improved accuracy
of GPM IMERG data. According to Tang et al. [54], the inversion accuracy of GPM IMERG
significantly improved by comparing it with rain gauge-based observations because of
the increasing number of passive microwave samples. According to Chen et al. (2020c),
the IMERG Late Run performed slightly better in the estimation of global P than the
IMERG Early Run. This shows that the improved accuracy of budget component products
contributes to water budget closure. However, the decreasing trend of the ∆Res is not sig-
nificant, which indicates that the development of satellite sensors and inversion algorithms
pays more attention to the improvement of SRP inversion against rain gauge-based obser-
vations but lacks consideration of the water budget closure. Currently, no satellite sensor
can monitor all budget components of hydrological systems simultaneously [25]. How to
reduce the ∆Res error is the focus of further development of satellite hydrological data
products. According to previous studies, some water budget closure correction methods,
which focus on enforcing terrestrial water budget closure, have been proposed, such as the
Proportional Redistribution, the Constrained Kalman Filter, the Multiple Collocation and
the Minimized Series Deviation methods [13,24,41,54]. In addition, Luo et al. [6] proposed
a method for balancing the terrestrial water budget and improving the estimation of indi-
vidual budget components by combining existing water budget closure correction methods
and observations of budget components. These methods can be further combined with P
inversion/simulation algorithms for improving the water budget closure accuracy of P
inversion in the future.
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Figure 7. Temporal variation of the ∆Res from January 2003 to December 2016 for the selected
SRP products in mainland China. The abscissa represents the month. There are 168 months from
January 2003 to December 2016. For each sub-plot, the ∆Res is calculated based on the SRP in the
corresponding sub-plot and datasets of additional budget components described in Section 2.2.3.
Note that the ∆Res value at some time points exceeds the range of the ordinate (±30 mm), with the
absolute value changing between 30–40 mm. The large ∆Res at these time points is caused by the
large negative TWSC. The colors used in the picture are meaningless.

Figure 8 shows the seasonal variation of the ∆Res in mainland China. According
to Figure 8a, the monthly ∆Res varied between ±20 mm. The ∆Res calculated based on
reanalysis of SRP products (PERSIANN, GLDAS, and FLDAS) showed a smaller value
than that calculated based on satellite SRP products (GPM IMERG and TRMM 3B43). The
seasonal ∆Res (the sum of ∆Res values for three months corresponding to each season) in
mainland China changed between ±30 mm, except for the ∆Res calculated based on ERA5.
The ∆Res for PERSIANN, GLDAS, and FLDAS also showed similar seasonal changes with a
value smaller than that of other SRP products (absolute value). In the summer, the ∆Res
calculated based on satellite SRP products showed high negative values. It showed positive
values in autumn and winter. The ∆Res calculated based on reanalysis of SRP products
showed high values in autumn.
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4. Discussion

Statistical methods and water budget closure-based methods assess the accuracy of
SRP products from different perspectives, i.e., comparison with observations and the data
consistency with datasets of additional budget components, respectively. The high accuracy
of SRP products against observations based on statistical methods does not mean that their
water budget closure accuracy is also high. The results of SRP evaluation in this study
showed that water budget closure-based methods yielded a different result compared with
statistical metrics. For the former, it showed a better performance for GLDAS and FLDAS
than GPM IMERG and TRMM 3B43, followed by PERSIANN-CDR and ERA5. However,
the latter showed a better performance for GPM IMERG than the remaining SRP products.

Regarding SRP assessment using statistical metrics, the improvement in the accuracy
of SRP products is mainly caused by improved satellite sensors and inversion algorithms,
and more importantly, many globally available P observations have been merged into SRP
products using data assimilation technologies [60–62]. The performance of water budget
closure is determined from the errors in all budget components, not just the error in the
P variable. If the inversion accuracy of all budget components (meaning that all budget
components are close to their “true” values) is improved, it can obtain a perfect water
budget closure rather than a “false closure.” Therefore, previous studies on SRP inversion
have focused mainly on improving the performance of SRP data against observations.
Reducing the ∆Res error has received less attention. Developing integrated satellite sensors
with abilities to monitor all budget components is critical for improving the accuracy
of water budget closures, thereby laying the foundation for more accurate hydrological
research [25].

According to this study, a combination of statistical methods and water budget closure-
based methods provides an opportunity for selecting high-precision hydrological datasets.
Combined with previous studies, we focus on a system summary of uncertainties that
affect SRP assessment to provide insights into the further development of SRP assessment
methods. The main sources of uncertainty include the inconsistent spatial and temporal
resolution of budget component products, the quality of rain gauge-based observations,
the selection of statistical metrics, and the errors in products of additional budget compo-
nents [16,63].

Inconsistent spatial and temporal resolution of budget component datasets is a widely
concerned issue in water budget closure assessment. The water budget involves four
variables (P, ET, R, and TWSC). Their data are usually derived from different sources
(observation sites, remoting sensing, land surface models, and hydrological models), de-
termining that they have different spatial and temporal resolutions [18,46]. Regardless of
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which method (downscaling or upscaling) is used to deal with inconsistent data resolu-
tion, it inevitably introduces uncertainties, although the error introduced by upscaling is
commonly less than that of downscaling. For statistical metrics, they represent different
statistical significance and should be selected according to the research purpose and data
availability of budget component observations [26,64]. Dense gauge networks facilitate
the performance evaluation of SRP products [65]. However, observations often suffer
from data integrity, length, and information reuse. The information reuse means that rain
gauge-based observations merged into SRP products during their production are used
again by users as a reference to assess the performance of these SRP products. Most SRP
products, such as GPM IMERG, have merged with rain gauge-based observations during
their production [31,49].

According to this study, the accuracy of water budget closure is highly related to
errors in additional budget components. Methods that reduce uncertainties of additional
budget components should be integrated with water budget closure assessment methods.
For example, merged data from multiple products for each budget component performs
better than one single product. This study assesses the water budget closure of SRP
products relative to additional budget components by using the merged data of GLDAS
and FLDAS for ET and R variables and merged data of three GRACE TWSC datasets for the
TWSC variable.

5. Conclusions

Closing the water budget is critical for accurate hydrological research. This study
focuses on assessing the accuracy of six popular SRP products in closing the water budget
with respect to the selected datasets of additional budget components in mainland China by
combining statistical methods and water budget closure-based methods. The integration of
these two methods helps to obtain budget component datasets with high accuracy against
observations and the small ∆Res. The main conclusions are as follows:

(1) The ∆Res for reanalysis products of budget components is smaller than that of satellite
products, although the accuracy of the latter is higher than the former when compared
with ground-based observations. Combinations based on GLDAS and FLDAS showed
a smaller ∆Res than GPM IMERG and TRMM 3B43. However, when compared with
rain gauge-based observations, the accuracy of GPM IMERG and TRMM 3B43 is
higher than GLDAS and FLDAS.

(2) In contrast to the results of statistical metrics, which showed an increasing accuracy
of SRP products, the ∆Res for all combinations did not show a significant decreasing
trend in mainland China. This implies that there was a lack of attention on water
budget closure in the production of budget component products in previous stud-
ies, although it is critical for more accurate hydrological research and has attracted
widespread attention recently.

(3) The main error sources affecting the SRP assessment include the inconsistent spatial
and temporal resolution of budget component datasets, the quality of rain gauge-
based observations, the selection of statistical metrics, and the error in datasets of
additional budget components. Methods that reduce uncertainties of budget compo-
nents should be integrated with existing water budget closure assessment methods
for reducing the uncertainties during water budget closure assessment.
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