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Abstract: Polarimetric Synthetic Aperture Radar (PolSAR) data is inherently characterized by speckle
noise, which significantly deteriorates certain aspects of the quality of the PolSAR data processing,
including the polarimetric decomposition and target interpretation. With the rapid increase in
PolSAR resolution, SAR images in complex natural and artificial scenes exhibit non-homogeneous
characteristics, which creates an urgent demand for high-resolution PolSAR filters. To address
these issues, a new adaptive PolSAR filter based on joint similarity measure criterion (JSMC) is
proposed in this paper. Firstly, a scale-adaptive filtering window is established in order to preserve
the texture structure based on a multi-directional ratio edge detector. Secondly, the JSMC is proposed
in order to accurately select homogeneous pixels; it describes pixel similarity based on both space
distance and polarimetric distance. Thirdly, the homogeneous pixels are filtered based on statistical
averaging. Finally, the airborne and spaceborne real data experiment results validate the effectiveness
of our proposed method. Compared with other filters, the filter proposed in this paper provides
a better outcome for PolSAR data in speckle suppression, edge texture, and the preservation of
polarimetric properties.

Keywords: polarimetric synthetic aperture radar (PolSAR); speckle filtering; spatial filtering; adaptive
filter window; similarity measure

1. Introduction

Polarimetric Synthetic Aperture Radar (PolSAR) [1] utilizes electromagnetic waves to
transmit and receive different polarization modes, which allows it to be highly sensitive to
the structural and electromagnetic scattering characteristics of targets [2]. It is widely used in
scenarios such as image classification, target detection, and hidden target monitoring [3–6].
However, the coherent imaging mechanism of SAR still leads to speckle noise in PolSAR
data, complicating the data interpretation by reducing the accuracy of image segmentation
and classification. Therefore, speckle suppression is crucial for the reformation of PolSAR
data quality.

The earliest PolSAR speckle filter was derived from a single-polarization SAR filter,
which employs the multi-look averaging method for speckle suppression [1]. Multi-look
processing is simple and effective, but at the cost of resolution degradation and spatial
detail loss. Therefore, specialized filters for PolSAR data are being explored. The Polari-
metric Whitening Filter (PWF) [7] minimizes speckle noise by combining the elements
of an optimal-polarization covariance matrix. To reduce the speckle of the three polari-
metric channels (HH, HV and VV), J.S. Lee et al. [8] proposed the Optimal Weighted
Filter. This filter smooths the PolSAR data linearly based on the multiplicative noise model
and Minimum Mean Square Error (MMSE) criterion. Subsequently, Lee proposed the
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most classic PolSAR spatial filtering algorithm: the Refined Lee Filter (Re-Lee Filter) [9].
The Re-Lee Filter overcomes the restrictions of previous speckle filters by employing
span data to determine the edge direction window and related parameters, while also
considering speckle suppression and polarization information preservation. Since then,
many scholars have carried out in-depth research on the filter and further improved the
estimation accuracy of filtering parameters. G. Vasile [10] proposes an adaptive neigh-
borhood (IDAN) filter that combines the region growing technique with the Re-Lee filter.
López-Martínez et al. [11,12] explore the realm of spatially nonstationary and anisotropic
texture analysis in SAR images and propose a multiplicative-additive speckle noise model
to enhance the characterization of speckle effects, particularly on the off-diagonal ele-
ments, which are elements of the covariance matrix. Guo [13] and Wu [14] incorporated
three-component and four-component decomposition into a PolSAR Re-Lee Filter. In 2018,
Xie [15] extended the boundary window of the Re-Lee Filter, simultaneously incorporating
statistical models and polarimetric scattering similarity, leading to notable performance
improvements. The rise of the Non-Local Mean (NLM) filter has brought a fresh insight to
the field of spatial filtering algorithms. In 2009, the concept of Probabilistic Patch-Based
(PPB), which is based on noise distribution properties, was introduced in order to determine
similarity [16]. Then, Deledalle extended the NLM filter for denoising PolSAR data [17].
In 2015 and 2016, Wu, et al. [18] and Sharifymoghaddam [19] proposed adjustments to
the similarity measurement in the NLM algorithm, making it more appropriate for SAR
data. NLM filters make use of a wider range of image structure information to estimate
similarity and generally perform better at preserving texture information. Nevertheless,
they do not demonstrate exceptional performance in maintaining polarimetric properties.
To address this, Shen [20] introduced an adaptive NLM filter with shape-adaptive patch
matching (ANLM). However, it tends to have a higher algorithmic complexity and lower
computational efficiency, making it less practical in large-scale data preprocessing.

Recent advances in machine learning and neural networks have demonstrated
great potential for reducing speckle noise in PolSAR data. In a study by Harold C.
Burger et al. [21], data denoising was successfully achieved by applying a multilayer
perceptron (MLP) to map data blocks and a large database for training. Further research
performed by G. Chierchia [22] utilizes a convolutional neural network (CNN) for SAR
data denoising. This network applies a residual learning strategy to remove speckle compo-
nents from the noise data and has achieved impressive results with both synthetic and real
SAR data. G. Adugna [23] proposes a multi-stream complex-valued fully convolutional
network (CV-deSpeckNet) that reduces speckle and estimates the PolSAR covariance ma-
trix effectively, demonstrating the feasibility of complex-valued deep learning for PolSAR
speckle suppression. These filters train deep neural networks on large PolSAR datasets to
identify underlying patterns and structures to denoise the data. Despite their high efficacy,
it is important to note that these filters require a substantial amount of labeled data and
computational resources.

The analysis and review above show that PolSAR speckle suppression has attracted
much attention. Conventional spatial domain filters still play a crucial role in practical data
processing applications. However, these techniques still have limitations on how accurately
they can identify homogeneous pixels. In terms of window selection, traditional windows
such as fixed rectangular windows, edge template windows, and adaptive windows are
not able to accurately represent the true nature of the ground objects. In terms of judgment
criteria, most of the existing algorithms are based on a simple multiplicative speckle
noise model and Gaussian distribution statistics, e.g., the confidence interval in the Sigma
filter algorithm [24] and the variation coefficient used by the Re-Lee filter [25]. These
factors result in errors in the selection of homogeneous pixels and make it challenging to
achieve a balance between speckle suppression, preservation of polarization information,
and edge structure. To resolve these issues, this paper proposes an adaptive PolSAR
speckle filter based on the joint similarity measure criterion (JSMC). Firstly, the multi-
directional ratio edge detector and watershed transform are utilized to efficiently acquire
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an irregular filtering window. Subsequently, we propose the JSMC, which combines spatial-
domain and extreme-domain similarity measures to accurately select homogeneous pixels
while preserving data characteristics. Finally, statistical averaging is performed on the
homogeneous pixels in order to achieve speckle filtering.

The remainder of this paper is structured as follows: The main principles and methods
of PolSAR filtering are analyzed in Section 2. In Section 2.1, the fundamental concepts of
PolSAR data and the criteria for filter design are briefly introduced. In Section 2.2, the
adaptive PolSAR filter based on JSMC is detailed. Based on the analysis above, the complete
flow chart of this method is outlined in Section 2.3. The experimental results obtained from
both airborne and spaceborne data are presented in Section 3. The performance of the
method is further analyzed and discussed in Section 4. Finally, the paper concludes with a
summary of its full content in Section 5.

2. Principle and Method of PolSAR Speckle Filtering
2.1. PolSAR Speckle Filtering

PolSAR obtains the medium complex scattering matrix S with quad polarizations
between the transmitting and the receiving channels. The scattering matrix in the linear
polarization base can be expressed as:

S =

[
SHH SHV
SVH SVV

]
(1)

The subindices H and V are the horizontal and vertical orthogonal polarization, re-
spectively. SHH is the scattering element of horizontal transmitting and horizontal receiving
polarization, and the other three elements are defined similarly. Based on the hypothesis of
reciprocal backscattering case, SHV = SVH. The polarimetric scattering information can be
represented vectorially by Pauli basis k or Lexicographic basis Ω as [26]:

k = 1√
2
[SHH + SVV , SHH − SVV , 2SHV ]

T

Ω = [SHH ,
√

2SHV , SVV ]
T (2)

where, the superscript T denotes the matrix transpose.
The span (or total power) of a pixel is an incoherent summation of three polarimetric

channels (HH, HV and VV), which can be expressed as:

span = kHk = |SHH |2 + 2|SHV |2 + |SVV |2 (3)

In order to eliminate the speckle caused by the coherent superposition of scattering
unit echoes, SAR data are generally filtered by averaging several adjacent single-look
pixels. Similarly, the polarization covariance matrix C or coherence matrix T, after speckle
suppression is obtained from the PolSAR data, can be expressed as:

C =
1
N

N

∑
i=1

ΩΩH =


〈
|SHH |2

〉 〈√
2SHHS∗HV

〉 〈
SHHS∗VV

〉〈√
2SHVS∗HH

〉 〈
2|SHV |2

〉 〈√
2SHVS∗VV

〉
〈SVVS∗HH〉

〈√
2SVVS∗HV

〉 〈
|SVV |2

〉
 (4)

T = 1
N

N
∑

i=1
kkH

=


〈
|SHH + SVV |2

〉 〈
(SHH + SVV)(SHH − SVV)

∗〉 〈
2(SHH + SVV)S∗HV

〉〈
(SHH − SVV)(SHH + SVV)

∗〉 〈
|SHH − SVV |2

〉 〈
2(SHH − SVV)S∗HV

〉〈
2SHV(SHH + SVV)

∗〉 〈
2SHV(SHH − SVV)

∗〉 〈
4|SHV |2

〉


(5)
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where, N is the number of the pixels chosen from the homogeneous region or the
number of the nominal multi-look, 〈·〉 represents the spatial average of N pixels, the
superscript H, and ∗ denote the conjugate transpose and complex transpose.

The covariance matrix C and the coherence matrix T can be converted through

T = DCDH (6)

where,

D =
1√
2

1 0 1
1 0 −1
0
√

2 0

 (7)

PolSAR speckle filtering is mainly shown in the accurate statistics of polarization
covariance matrix C or coherence matrix T. The guiding principles are as follows [4].

• Maintain the polarization property:

Each element of the polarimetric covariance matrix or coherence matrix should be
estimated by averaging the surrounding homogeneous pixels in a similar way to multi-look
processing.

• Avoid crosstalk between polarization channels:

Each element of the polarization covariance matrix or coherence matrix must be
filtered independently in the spatial domain. All elements of the covariance matrix should
be filtered with the same weight.

• Preserve the edge texture features and point targets:

The filtering should be adaptive and select a homogeneous area from neighboring pixels.

2.2. PolSAR Speckle Filter Based on Joint Similarity Measurement Criterion

The existing spatial PolSAR speckle filters are all implemented by selecting homoge-
neous pixels for average value. The difference between various filters is only in the selection
window algorithm and the homogeneous pixel judgment standard. Considering the above
two aspects, this paper will take two measures to ensure the speckle-filtering consequent:
construct the irregular filtering window based on the target shape structure and retain the
edge features and structure information to the maximum extent and construct JSMC to
achieve the selection of homogeneous pixels.

2.2.1. Adaptive Filtering Window Construction

In order to preserve the edge features and structural information, this paper adopts a
multi-directional ratio edge detector and watershed transform to construct an adaptive filter
window. To prevent the interference of speckle noise with the detection of structural edges,
this study employs rotated rectangular windows as edge detectors. An edge detector [27]
can be represented by the parameter K f =

{
l, w, d, θ f

}
, and its structure is shown in

Figure 1. In Figure 1, l is the length of the detector, w is the width of the detector, d is
the width between two rectangles, and θ f is the direction of the detector. For a specific
direction θ f , the average value of pixels in the rectangular area on both sides of pixel
(x, y) is Î1(x, y, θ f ) and Î2(x, y, θ f ), then the ratio edge strength map (RESM) of the pixel is
defined as:

r(x, y, θ f ) = min

(
Î1(x, y, θ f )

Î2(x, y, θ f )
,

Î2(x, y, θ f )

Î1(x, y, θ f )

)
(8)

where θ f is uniformly sampled in [0, π].
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Figure 1. Configuration of multi-directional ratio edge detector.

To avoid a large number of fragmented windows caused by local minima after wa-
tershed transform, this paper utilizes a threshold method to construct the RESM, i.e., in
(9), g(x, y) = 1−∏K

f=1 r(x, y, θ f ), K is the direction number of the edge detector. Tα is the
α percentile value of the RESM histogram. The α is positively related to the size of the
adaptive filtering window, which is the tradeoff between the reduction in speckle and the
loss of edge structure. It can be determined according to the demand for filtering details. A
larger α provides smoother speckle suppression but may blur fine details. If the texture
needs to be preserved, a smaller value of α should be utilized. Finally, the watershed
transform is performed on the threshold RESM to construct the adaptive filtering windows.

RESM(x, y) =


1−min

θ f

{
r(x, y, θ f )

}
, i f g(x, y) > Tα

0, otherwise
Tα = min{τ : {( x, y) : g(x, y) ≤ τ} ≥ αN }

(9)

PolSAR span data is the weighted sum of each polarization channel, which can restrain
the speckle to a certain extent, and its noise level is lower than that of any polarization chan-
nel. Therefore, this paper applies the span data for adaptive filtering window construction.
In the following content, the results of adaptive filtering window construction for airborne
data are given in Figure 2. The data size is 300 × 300 pixels, and α is empirically taken
as 20. Figure 2a–c shows a Pauli decomposed diagram of airborne data, threshold RESM,
and adaptive filtering windows, respectively. The region primarily consists of grapevines
and citrus trees, with grapevines spaced 2–3 pixels apart and citrus trees spaced about
4–5 pixels apart. To ensure that the windows preserve the texture structure, it is certain
that a portion of the windows will have smaller sizes, as is shown in Figure 3. However,
within the 300 × 300 pixel area of Figure 2, there are a total of 1897 irregular windows, with
an average size of 47 pixels, which is roughly equivalent to a 7 × 7 window size. And the
window size mainly depends on the geometric structure of the scene, which is consistent
with the subjective visual experience.

2.2.2. Joint Similarity Measurement Criterion

For SAR data, each pixel is expressed as complex data. For PolSAR data, each pixel
is processed with a scattering matrix or covariance matrix, which contains intensity and
polarimetric information. Most speckle suppression algorithms refer to the Refined Lee’s
filtering idea when extending from SAR to PolSAR filtering, calculate the similarity between
pixels to obtain homogeneous pixel areas using PolSAR span data, and then filter each
element of the covariance matrix separately. However, it is necessary to retain the polari-
metric properties of ground objects in PolSAR data, in addition to preserving the texture
of the scene. At this point, the span data can no longer accurately reflect the polarimetric
similarity between pixels.
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In the practical application, the polarization covariance matrix C and polarization
coherence matrix T contain all the polarization information from the data, which are the
direct representations of the polarization scattering mechanism. The polarization classifica-
tion and decomposition are also based on the above two matrices. To sum up, constructing
a robust similarity measure parameter of a covariance matrix or coherence matrix is a
significant issue for the polarization of homogeneous pixel selection. In this paper, the
Wishart distance between the polarization matrices and the weighted Euclidean distance
are utilized to construct the Joint Similarity Measure Parameter (JSMP). Considering that
the covariance matrix and the coherence matrix can be converted by (6), this paper will
take the coherence matrix as an example to illustrate.

The polarization covariance matrix C after multi-look processing follows the Wishart
distribution:

pc(C) =
|C|m−q exp

[
−Tr(A−1C)

]
K(m, q)|A|m

(10)

where A = E
[
ΩΩH], C =

m
∑

k=1
Ω(k)Ω(k)H , m represents the number of multi-looks. q is the

dimension of vector Ω. For monostatic PolSAR data in reciprocal media, q = 3; for bistatic
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PolSAR data, q = 4; for polarimetric interferometric SAR data, q = 6. Tr(·) represents the
trace of the matrix.

K(m, q) = π
1
2 q(q−1)Γ(m) . . . Γ(m− q + 1) (11)

Γ is the Gamma function.
Assuming that the filtered pixel is M(x0, y0), the homogenous pixel to be selected for

filtering is N(xn, yn), and the corresponding covariance matrices are C0 and Cn. According
to (10) and Bayesian criteria, the condition distribution is obtained as follows:

p(Cn|C0 ) =
|Cn|m−q exp(−Tr(C−1

0 Cn)

K(m, q)|C0|m
(12)

We take the natural logarithm of p(Cn|C0 )p(C0) and change its sign, then eliminate
the irrelevant term with C0. The distance measurement of N-looks covariance matrix is
obtained as follows:

dWn(Cn, C0) = m ln|C0|+ mTr(C−1
0 Cn)− ln[p(C0)] (13)

For PolSAR data with unknown prior probabilities, p(C0) can be assumed to be the
same. In this case, the distance measurement is independent of the multi-look number. The
Wishart distance of M(x0, y0) and N(xn, yn) can be finally expressed as:

dW(M, N) = ln|C0|+ Tr(C−1
0 Cn) (14)

After normalizing the Wishart distance, the weighted Wishart distance parameter PWD
is obtained as follows:

PWD = e−
[dW /max(dW )]2

2σ2 (15)

where, PWD ∈ (0, 1]; σ is the filter scale factor, which determines the distribution of
weighted Wishart distance.

The Euclidean distance dE between M(x0, y0) and N(xn, yn) can be expressed as:

dE(M, N) =

√
(xn − x0)

2 + (yn − y0)
2 (16)

The weighted Euclidean distance parameter after Gaussian weighting is:

PED = e−
dE

2

2σ2 (17)

where PED ∈ (0, 1].
In this paper, the weighted Euclidean distance and Wishart distance are combined.

Based on (15) and (17), the JSMP is defined as follows:

P = PED·PWD (18)

It can be seen that the value range of P is (0, 1]. When P is closer to 0, the similarity
between pixels is lower. The closer P is to 1, the higher the similarity between pixels. When
P is 1, the pixel is completely homogeneous. Therefore, the homogeneous pixels to be
filtered can be effectively selected according to P values.

JSMP combines physical distance and polarization distance, which can accurately
describe the actual similarity and polarization similarity between pixels. In this paper, the
filter based on the above-mentioned homogeneous pixel selection constraint is defined as a
JSMC filter.

2.3. Procedure of Proposed PolSAR Speckle Filter

Based on the previous analysis, we present the complete flowchart of the JSMC filter
in Figure 4. The JSMC filter mainly includes three steps.
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STEP 1: Construct adaptive filter window.
Firstly, the multi-direction ratio edge detection is performed on the PolSAR span data.

Secondly, the RESM of the PolSAR data is extracted by the threshold processing method.
Finally, the watershed algorithm is utilized for the RESM in order to obtain the adaptive
filtering windows. In the follow-up verification experiments of this paper, the parameters
of the edge detector are set to: {l, w, d} = {5, 5, 1},θ f = {π/8, 2π/8, . . . , 8π/8}.

STEP 2: Select homogeneous pixels.
This step calculates the weighted Euclidean distance and Wishart distance of the

pixel to be filtered and all pixels in the filter window and determines the joint similarity
according to the JSMP. Next, JSMP will be sorted in descending order to select homogenous
pixels that satisfy the conditions according to the set filter look.

STEP 3: Filter homogeneous pixels.
After the above steps are completed, the pixels satisfying the JSMC filter condition

are filtered as the final pixel set. To preserve polarimetric properties, each element of the
covariance matrix C has to be filtered equally in a way similar to multi-look averaging.

3. Experiment Results

In this paper, the X-band airborne and C-band spaceborne PolSAR data are used for
illustration. At the same time, the Re-Lee filter [9], IDAN filter [10], NLM filter [17] and
JRP filter [15] are used to compare with the JSMC filter. Among them, the NLM filter is
applied in a 21 × 21 searching window with a 7 × 7 patch, and the other three filters
are applied with 7 × 7 pixel filter windows. By selecting the value of α, the average
window size of the JSMC filter is close to 49 pixels, which is similar to the size of the other
7 × 7 pixel windows.

3.1. Airborne Experiment

In this section, the polarization speckle filtering is performed on airborne PolSAR data.
The data is collected by Xidian University and the Institute of Electronics at the Chinese
Academy of Sciences (IECAS) in Meishan (Sichuan, CHN). Figure 5 shows the optical
image and span image. The acquisition mode is X-band full-polarimetric Strip mode. The
data is single-look complex (SLC) with a resolution of 0.2 m. The ground objects in the
scene are mainly large dense shrub eucalyptus, well-distributed economic crop citrus, and
grape. In order to clearly display the texture and other detailed information before and
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after filtering, the data in the red frame is intercepted for filtering. The intercepted data size
is 1500 × 1500 pixels. The basic parameter information of the scene is shown in Table 1.
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Figure 5. Experimental scene in Meishan area, Sichuan. (a) Google Earth optical image; (b) span
image of PolSAR data.

Table 1. Parameters of Airborne PolSAR data.

Parameter Value

Center frequency 9.6 GHz
Polarization type HH/HV/VH/VV
Average elevation 554.46 m

Resolution (Azimuth × Range) 0.2 m × 0.2 m
Scene center location 29.94◦N, 103.53◦E

Data size 1500 × 1500 pixels

Figure 6 shows the Pauli decomposition results with the different filters. Figure 6a is
the Pauli decomposition result of the SLC data. It can be seen that the SNR of the data is
high. The contours between vegetation are clear, but the influence of speckle noise still
exists. Figure 6b–f shows that all compared filters, as well as the JSMC filter, have a strong
ability to suppress speckles. Next, we focus on region 1 of Figure 6 for a more detailed
visual analysis.

As shown in Figure 7, region 1 contains densely planted grapes. The row spacing
between the grape crowns is about 0.6 m, and it spans about 3 pixels in the range direction
of the SAR data. At this time, the scattering medium in the 7× 7 filtering window does
not satisfy the local stationarity assumption, which brings great challenges to the filtering
performance. Figure 7b shows the Pauli decomposition result filtered by a 7 × 7 Re-Lee
filter. The result exhibits a good ability to reduce speckle. In particular, for the citrus trees
in the upper right corner, the gap between canopy layers is still clearly visible after filtering.
However, for denser grape vines, the canopy gaps are completely obscured. Both the IDAN
filter and NLM filter in Figure 7d,e can retain the gaps between the grape vines to a certain
extent, but the gaps are not particularly clear. Especially for the NLM filter, there is still
residual speckle noise after filtering. For the JRP filter and JSMC filter, it can be seen from
Figure 7d–f that the filters not only have a strong ability to remove speckle noise, but they
can also better preserve the edge features of both the grape vines and the citrus trees.
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To further demonstrate the performance of the different filters, this paper employs
two evaluation indicators for quantitative evaluation. One is the Equivalent Number of
Looks (ENL) [28], and the other is the Edge Preserving Index (EPI) [29]. ENL is the ratio of
mean square to variance of the distributed target intensity, defined as follows:

ENL =
E2(I)
var(I)

(19)

where, E2(I) represents the mean value of the random variable, and var(I) represents the
variance of the random variable. ENL characterizes the ability of the filter to smooth speckle
noise in a homogeneous region. The larger the ENL, the more obvious the smoothing, and
the better the effect of speckle suppression.

EPI is the ratio of the cumulative gradient changes in azimuth and range direction
before and after filtering, and is defined as follows:

EPI =

M
∑

i=1

N
∑

j=1

√
(pa(x, y)− pa(x + 1, y))2 + (pa(x, y)− pa(x, y + 1))2

M
∑

i=1

N
∑

j=1

√
(pb(x, y)− pb(x + 1, y))2 + (pb(x, y)− pb(x, y + 1))2

(20)

where, pb(x, y) is the pixel value before filtering, and pa(x, y) is the pixel value after filtering.
The EPI indicates the retention degree of edge structure, and the value range is [0, 1]. The
larger the EPI, the closer the filtered data is to the original data, and the stronger the edge
preservation ability.

The ENLs and EPIs with different filters are recorded in Figures 8 and 9. Regions
2 and 3 in Figures 8 and 9 correspond to the positions marked by the red boxes in Figure 6,
which are independent buildings and eucalyptus trees. Based on these indicators, we can
conclude that the JSMC filter has better noise suppression performance and is significantly
superior to the other four filters in terms of preserving edge structure.

Furthermore, this paper introduces the polarization scattering similarity factor (SSF) [30]
to verify the ability to maintain polarization scattering characteristics. The SSF represents
the retention degree of the polarization scattering mechanism. Assuming that the pixel
before filtering is u and the pixel after filtering is t, the SSF is expressed as follows:

SSF =

∣∣pupT
t
∣∣

‖pu‖ · ‖pt‖
(21)

where the ‖·‖ is the 2-norm of the vector. Obviously, the range of SSF is [0, 1]. The larger the
SSF, the more similar the pixel t is to pixel u in the scattering mechanism. When SSF = 1,
the polarization properties of the two pixels are identical. When SSF = 0, the two pixels
are completely irrelevant. p is the vector that includes all the elements of the covariance
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matrix, and it contains the polarization properties associated with the pixel, which can be
expressed as:

p = [
∣∣SHH + SVV

∣∣2,
∣∣SHH − SVV

∣∣2, 4
∣∣SHV

∣∣2, (SHH + SVV)(SHH − SVV)
∗,

2(SHH + SVV)SHV
∗, 2(SHH − SVV)SHV

∗]
(22)

The statistical curves of SSF under different filters are shown in Figure 10, respectively.
It can be seen that the SSF curves of the IDAN filter are almost in superposition and their
peaks are around 0.73, which is better than the Re-Lee filter. The curve for the NLM filter
has a higher peak around 0.85, whereas the peak of the JRP and JSMC filters is near to
0.92 and the curve of JSMC filter is more concentrated, indicating that the proposed method
can better maintain the polarization scattering characteristics.
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3.2. Spaceborne Experiment

In this section, the San Francisco (CA, USA) PolSAR data collected by the Gaofen-3
satellite is used to verify the performance of the filters in spaceborne data. The acquisition
mode is C-band full-polarimetric Strip I (QPSI) mode. The data is SLC data with a resolution
of 8 m. Figure 11 shows the Google Earth optical image and span image of the experimental
scene. The scene includes oceans, vegetation, urban buildings, streets, etc. The buildings
are regularly distributed with obvious texture features. In order to better display the details
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and texture, the scene in the red frame in Figure 11 will be intercepted for filtering. The
intercepted data size is 1500 × 1500 pixels. The basic parameter information of the scene is
shown in Table 2.
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Table 2. Parameters of Spaceborne PolSAR data.

Parameter Value

Center frequency 5.4 GHz
Polarization type HH/HV/VH/VV
Average elevation 67.46 m

Resolution(Azimuth × Range) 8 m × 8 m
Scene center location 37.75◦N, 122.39◦W

Data size 1500 × 1500 pixels

Figure 12a is the Pauli decomposition result of the SLC data. Figure 12b–f shows that
the five filters all have certain speckle removal capabilities. We still intercept region 1 in
Figure 12 for analysis filtering details. The results are shown in Figure 13.
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In Figure 13b,d, the result of the Re-Lee filter indicates that the filter is effective
in speckle suppression, but there is still visible blurring in densely built-up areas. In
Figure 13c,e, while the IDAN and JRP filters clearly highlight the texture of the buildings,
their data smoothing effect are relatively subpar.

Figures 14 and 15 show the comparison results of ENL and EPI for different filters,
while Figure 16 presents the statistical curve of SSF for different filters. Through the above
analysis, it can be summarized that the JSMC filter is still capable of perfect edge structure
preservation, excellent speckle suppression, and the best preservation of polarization
scattering properties in spaceborne PolSAR data.
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4. Discussion

For high-resolution PolSAR data, different scattering media in vegetation and urban
areas, such as gaps in the canopy, break the assumption of local stationarity and reduce
the performance of traditional filters. This presents a challenge in selecting homogeneous
regions for speckle filtering in the spatial domain. To address the issue, this paper proposes
a new PolSAR speckle filter called a JSMC filter. The filter utilizes an adaptive adjustment
factor based on (9) to determine the initial size of the adaptive filtering window. This
process resembles super-pixel segmentation but differs from algorithms such as Simple
Linear Iterative Clustering (SLIC) [31]. Instead of using pixel clustering to determine ho-
mogeneous regions, our algorithm utilizes rotated rectangular windows for edge detection
within these regions. This approach effectively minimizes the impact of speckle noise
on window construction. Figure 2 shows that the JSMC filter has higher edge detection
accuracy and structure preservation capability. Additionally, the filter is based on JSMC in
order to measure the similarity between polarimetric covariance matrices and thus select
homogeneous pixels. In dealing with the unavoidable existence of non-homogeneous
pixels in irregular windows, our algorithm utilizes JSMC for selection in order to guarantee
homogeneity among the filtering pixels. Figures 6–9 and 12–15 demonstrate the superiority
of the JSMC filter for speckle suppression on airborne and spaceborne PolSAR data. More-
over, the JSMC filter demonstrates excellent capability in preserving the edges of vegetation
and building gaps, while also maintaining the polarimetric performance.

Additionally, two strong targets are selected in the building area of the airborne data
and the vegetation area of the spaceborne data to explore their polarimetric responses,
which are formed in a combination of ellipse orientation angle ψ (degree) and ellipticity
angle χ (degree). Theoretically, the polarization response shape of strong scatterers should
stay the same before and after filtering. Figure 17 shows the Pauli decomposition results
of region 2 in Figure 6 with different filters. Figure 18 shows the polarization response of
pixel (132, 25) in Figure 17. Figure 19 shows the Pauli decomposition results of region 2 in
Figure 12 with different filters. Figure 20 shows the polarization response of pixel (58, 97)
in Figure 19.
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Figure 20. Co-polarized and cross-polarized signatures of (58, 97) pixel in Figure 19. (a,g) Original signatures without filtering; (b,h) Re-Lee Filter; (c,i) IDAN Filter;
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Compared to the original data, the Re-Lee and the IDAN filter produce polarimetric
responses with significant differences in shape trend. The NLM and JRP filters have similar
co-polarization responses to the true response, but distinctions still exist in the cross-
polarization responses. For the JSMC filter, both the co-polarization and cross-polarization
responses are consistent with the true response.

5. Conclusions

Scattering noise is an inherent phenomenon in PolSAR data. It is caused by the coher-
ent summation of multiple scattering echoes from scatterers. To improve the processing
accuracy of polarimetric data, the polarimetric covariance or coherence matrix is usually
obtained through second-order statistics of spatially neighboring pixels. This process is
called PolSAR speckle filtering. However, for high-resolution SAR data, the pixels within a
7 × 7 or even a 3 × 3 window may not be homogeneous. Therefore, this paper proposes
a PolSAR speckle filter based on JSMC. The filter constructs the scale-adaptive filtering
window to adapt different edge structures and textures present in the scene. It utilizes a
multi-directional ratio edge detector to detect edges and determine the appropriate size
of the filtering window. This adaptive approach enables the preservation of fine details
and texture while effectively reducing speckle. Additionally, the JSMC filter addresses the
challenge of non-homogeneity in high-resolution SAR data. It recognizes that, within a
small window, the pixels may exhibit significant variations in their scattering properties. To
this end, JSMC is proposed in this paper. Based on JSMC, a filter can select homogeneous
pixels that share similar scattering characteristics, ensuring stable filtering of the PolSAR
data. The effectiveness of the proposed filter is validated utilizing X-band airborne data
and C-band spaceborne data, and compared with a classical Re-Lee filter, IDAN filter, NLM
filter, and JRP filter. The experimental results demonstrate that the proposed filter outper-
forms these filters in terms of morphology preservation, scattering mechanism preservation,
and speckle suppression.
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