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Abstract: The extensive existence of high-brightness ice and snow underlying surfaces in polar
regions presents notable complexities for cloud detection in remote sensing imagery. To elevate the
accuracy of cloud detection in polar regions, a novel polar cloud detection algorithm is proposed in
this paper. Employing the MOD09 surface reflectance product, we compiled a database of monthly
composite surface reflectance in the shortwave infrared bands specific to polar regions. Through the
forward simulation of the correlation between the apparent reflectance and surface reflectance across
diverse conditions using the 6S (Second Simulation of the Satellite Signal in the Solar Spectrum)
radiative transfer model, we established a dynamic cloud detection model for the shortwave infrared
channels. In contrast to a machine learning algorithm and the widely used MOD35 cloud product,
the algorithm introduced in this study demonstrates enhanced congruence with the authentic cloud
distribution within cloud products. It precisely distinguishes between the cloudy and clear-sky pixels,
achieving rates surpassing 90% for both, while maintaining an error rate and a missing rate each
under 10%. The algorithm yields positive results for cloud detection in polar regions, effectively
distinguishing between ice, snow, and clouds. It provides robust support for comprehensive and
long-term cloud detection efforts in polar regions.

Keywords: cloud mask; cloud detection; FY-3D; polar regions; radiative transfer model; SWIR

1. Introduction

The various degrees of cloud cover and shadows that obscure ground information
in optical remote sensing images result in blurred and incomplete surface observations,
which significantly impact the quality of remote sensing images [1]. Thus, the detection
and evaluation of cloud cover in remote sensing images hold great significance, as they
form the foundation and key for analyzing and utilizing remote sensing image information.

Cloud detection in remote sensing images represents a prominent research direction in
the field of remote sensing image recognition. To tackle cloud detection in remote sensing
image recognition, the International Satellite Cloud Climatology Project (ISCCP) was
established in 1982, and it was incorporated into the World Climate Research Program [2,3]
as a significant component. Since the 1980s, the advancement of remote sensing image
processing techniques has led to the gradual development of cloud detection methods
with three mainstream approaches: spectral threshold-based, classical machine learning-
based, and deep learning-based methods [4]. The spectral threshold-based methods detect
clouds by analyzing their spectral characteristics along with those of other targets in
the image, employing distinct thresholds across various spectral channels of the remote
sensing image [5]. Classical machine learning-based methods employ manually selected
image textures, brightness, and other features to train models, such as support vector
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machines and random forests, enabling the classification of image blocks/pixels and
successful cloud detection [6]. Deep learning-based methods utilize a large amount of
remote sensing image data to construct deep neural network models that automatically
extract data features, yielding cloud detection results of a higher precision [7]. These three
mainstream approaches provide various methods and technical avenues for cloud detection
in remote sensing images.

However, for clouds and low clouds, especially those covering snow and ice surfaces,
the limited disparity in brightness between these clouds and the surface beneath presents
multiple challenges in the creation of dependable training data and optical thresholds. In
polar regions, clouds and snow frequently demonstrate higher light reflectance and share
similar optical characteristics due to the high latitudes, low solar elevation angles, and
prolonged presence of extensive ice and snow on the ground, posing significant challenges
in cloud detection tasks [8]. Over the past few decades, the severe polar climate and
geographical constraints have resulted in a scarcity of ground observation stations. As a
result, satellite remote sensing has become the paramount and indispensable approach for
cloud observation in the Arctic region. Detecting clouds in polar regions through remote
sensing data has persistently posed a complex research challenge.

Cloud and snow detection methods are commonly categorized into spectral threshold-
ing, spatial, and multitemporal approaches [9]. The spectral thresholding method analyzes
the spectral band relationships in remote sensing images and utilizes multiple spectral fil-
ters to classify clouds and snow. In the spectral thresholding method, the widely employed
index for generating a snow mask is the Normalized Difference Snow Index (NDSI) [10].
Zhu et al. proposed [3] the Tmask algorithm for cloud, cloud shadow, and snow detection
in Landsat satellite images, which identifies snow pixels by applying thresholds to multiple
spectral bands.

Spatial methods commonly rely on statistical and deep learning models. Chen et al.
introduced [11] a cloud and snow detection algorithm that utilizes a support vector
machine (SVM). The SVM, a supervised machine learning algorithm, is primarily employed
for tasks related to classification and regression. The SVM endeavors to discover an optimal
hyperplane or decision boundary within a high-dimensional space, effectively separating
data points into distinct classes or predicting numeric values. It accomplishes this by
maximizing the margin between the classes, where the support vectors represent data
points nearest to the decision boundary [12]. Since clouds and ice and snow surfaces are
difficult to distinguish in Antarctic areas, accurate training samples are hard to obtain. But
the SVM has an advantage to solve this problem of limited samples with the hyperplane
theory. Moreover, it can be extended from the linear classifier to the nonlinear classifier,
with classification suitable for from two classes to multiple classes. The method employs
the Gray Level Co-occurrence Matrix (GLCM) algorithm to extract five distinct texture
features from cloud and snow regions, followed by the utilization of a nonlinear support
vector machine to determine the optimal classification hyperplane using training data for
cloud and snow detection. Zhan et al. developed [8] a pixel-level fully convolutional neural
network for detecting clouds and snow. This method introduces a specially designed
fully convolutional network to capture cloud and snow patterns in remote sensing images,
incorporating a multiscale strategy for fusing low-level spatial information and high-level
semantic information. Finally, the algorithm is trained and evaluated using manually
annotated cloud and snow datasets.

Multitemporal methods differentiate between clouds and snow by utilizing multiple
images collected at the same location but at different times. Bian et al. proposed a practical
multitemporal cloud and snow detection method that combines spectral reflectance with
spatiotemporal background information. Multitemporal methods for discriminating clouds
and snow often employ the NDSI to extract snow pixels [13]. However, these methods are
unsuitable for scenarios with insufficient multitemporal remote sensing images as input.

Spectral thresholding currently serves as the mainstream method for cloud and snow
detection. However, its single threshold approach exhibits low accuracy and faces chal-
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lenges in effectively distinguishing between clouds and snow in polar regions. This paper’s
objective is to enhance cloud detection accuracy over the ice- and snow-covered surfaces
of polar regions. Accordingly, we introduce a novel, computationally efficient, physically
simulated method for cloud detection in polar regions. Initially, we compiled a database of
the true surface reflectance in polar regions under clear-sky conditions, utilizing MODIS’s
8-day composite surface reflectance product (MOD09A1). We subsequently employed
the 6S model (Second Simulation of a Satellite Signal in the Solar Spectrum) for forward
simulation, acquiring the apparent reflectance of the corresponding pixel under clear-sky
conditions. By comparing this simulated apparent reflectance with the actual value, we as-
certained the presence of clouds in that pixel. This method, with its efficient computational
capabilities, adeptly tackles the intricate challenge of cloud detection over polar ice and
snow surfaces. It robustly supports comprehensive, long-term cloud detection initiatives in
polar regions and bolsters research on Arctic navigation routes and sea ice observation.

2. Study Area and Data
2.1. Study Area

The polar regions serve as the Earth’s primary sources of cold and represent crucial
and sensitive areas for global change [14]. They play a critical role in regulating the
global energy balance, water balance, and temperature–salinity balance. The polar regions
experience high cloud coverage year-round, with average cloud amounts of approximately
0.4 during winter and spring and around 0.7 during summer and autumn. Owing to
the intricate polar weather conditions and the prevalence of ice and snow surfaces, there
exist minimal radiation distinctions between clouds and the underlying ice and snow
surfaces in both visible and thermal infrared channels. This can potentially result in the
misidentification of clouds and ice/snow regions.

This study focused on the Arctic region located north of 66.34° latitude and the
Antarctic region located south of 66.5° latitude as the study areas, as shown in Figure 1. It
proposed a cloud detection method tailored specifically for polar ice and snow surfaces.

Figure 1. Study area: (a) north polar; (b) south polar.

2.2. FY-3D MERSI-II Imagery

China’s second-generation polar-orbiting meteorological satellite, the Fengyun-3
(FY-3), operates at an orbital height of 836 km and completes a repeat cycle every 5.5 days.
Its objective is to conduct all-weather, multispectral, three-dimensional observations of
global atmospheric and geophysical elements. Its primary function is to provide satel-
lite observational data for medium-range numerical weather prediction and to monitor
ecological environments and large-scale natural disasters. Additionally, it offers satellite me-
teorological information for global environmental change research, global climate change
research, and diverse sectors, including oceanography, agriculture, forestry, aviation, and
the military.
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In this study, data were acquired using the Medium Resolution Spectral Imager
II (MERSI-II) sensor, which captured images of the same target one to two times daily.
Covering a strip area of 2900 km, the MERSI-II sensor captures images across the orbital
direction, ranging from −55.04° to 55.04°, using a 45° scan mirror [15]. The Medium
Resolution Spectral Imager II (MERSI-II) is equipped with a total of 25 channels, comprising
16 visible near-infrared channels, 3 shortwave infrared channels, and 6 medium-longwave
infrared channels. Out of these channels, 6 have a ground resolution of 250 m, whereas the
remaining 19 have a ground resolution of 1000 m, as detailed in Table 1. Files are partitioned
and distributed at 5 min intervals in a hierarchical data format (HDF5), resulting in a granule
size of 2000 rows × 2048 columns in the 1 km resolution product (1000M_MS). The 1 km
resolution file includes the visible (0.470 to 0.865 µm) and TIR (10.8 and 12.0 µm) bands
aggregated to 1 km from the original 250 m resolution, while the other 19 channels maintain
the original sampling resolution of 1 km. Additionally, a separate geolocation file (GEO1K)
is provided, containing latitude and longitude information for each pixel, along with sun
and sensor zenith and azimuthal angles, a land/water mask, and a Digital Elevation Model
(DEM). FY-3D data can be accessed from the National Satellite Meteorological Centre of
China at http://satellite.nsmc.org.cn/PortalSite/Data/DataView.aspx?currentculture=zh-
CN (accessed on 3 March 2023). MERSI-II’s primary objective is to dynamically monitor
Earth’s environmental elements, including its oceans, land, and atmosphere. It particularly
focuses on crucial atmospheric and environmental parameters, such as cloud characteristics,
aerosols, land surface properties, ocean surface properties, and the lower tropospheric
water vapor. The operational presence of MERSI-II in orbit enhances satellite remote
sensing observations in fields like weather forecasting, climate change research, and Earth
environmental monitoring.

Table 1. The characteristics of MERSI-II bands.

Band
Central

Wavelength
(µm)

Spatial
Resolution (m) SNR NE∆T (K) Dynamic Range

1 0.470 250 100 90%
2 0.550 250 100 90%
3 0.650 250 100 90%
4 0.865 250 100 90%
5 1.38 1000 60/100 90%
6 1.64 1000 200 90%
7 2.13 1000 100 90%
8 0.412 1000 300 30%
9 0.443 1000 300 30%
10 0.490 1000 300 30%
11 0.555 1000 500 30%
12 0.670 1000 500 30%
13 0.709 1000 500 30%
14 0.746 1000 500 30%
15 0.865 1000 500 30%
16 0.905 1000 200 100%
17 0.936 1000 100 100%
18 0.940 1000 200 100%
19 1.03 1000 100 100%
20 3.8 1000 0.25 K 200–350 K
21 4.050 1000 0.25 K 200–380 K
22 7.2 1000 0.30 K 180–280 K
23 8.550 1000 0.25 K 180–300 K
24 10.8 250 0.4 K 180–330 K
25 12.0 250 0.4 K 180–330 K

http://satellite.nsmc.org.cn/PortalSite/Data/DataView.aspx?currentculture=zh-CN
http://satellite.nsmc.org.cn/PortalSite/Data/DataView.aspx?currentculture=zh-CN
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2.3. MODIS Surface Reflectance Products

The MODIS (Moderate Resolution Imaging Spectroradiometer) is a medium-resolution
imaging spectroradiometer mounted on the Terra and Aqua satellites, enabling a complete
scan of the Earth’s surface every one to two days. The instrument comprises 36 spectral
bands covering the visible and infrared spectrum range (0.4–14.4 µm), offering spatial
resolutions ranging from 250 m to 1000 m. It provides extensive global data on cloud cover,
radiative energy, and changes in oceans and land [16].

Data from MOD09, a Level 2 land surface reflectance product provided by MODIS, are
derived from calculations based on MOD02 data. The data are provided in seven bands: the
first band (620–670 nm), second band (841–876 nm), third band (459–479 nm), fourth band
(545–565 nm), fifth band (1230–1250 nm), sixth band (1628–1652 nm), and seventh band
(2105–2155 nm), at a spatial resolution of 500 m. This product estimates the land surface
reflectance for each band without atmospheric scattering or absorption. It also corrects
for atmospheric and aerosol effects, serving as the foundation for generating higher-level
gridded level-2 data (L2G) and level-3 data. The MOD09 series consists of various products,
including Level 2 (MOD09), Level 2G (MOD09GHK, MOD09GQK, MOD09GST), Level
2G-Lite daily (MOD09GA, MOD09GQ), Level 3, 8-day composited (MOD09A1, MOD09Q1),
and daily Level 3 CMG (MOD09CMG, MOD09CMA) products, as shown in Table 2 [17].

Table 2. Data products levels of MOD09.

Product ID Product Name Terra Prod ID Terra Prod ID

Surface Reflectance 8-Day L3 Global 500 m MOD09A1 MYD09A1
Surface Reflectance 8-Day L3 Global 250 m MOD09Q1 MYD09Q1

MOD09 Surface Reflectance Daily L2G Global 1 km and
500 m MOD09GA MYD09GA

Surface Reflectance Daily L2G Global 250 m MOD09GQ MYD09GQ
Surface Reflectance Daily L3 Global

0.05Deg CMG MOD09CMG MYD09CMG

The MOD09A1 product offers land surface reflectance data and quality assessment for
MODIS bands 1–7. This product is a Level 3 product synthesized from MOD09GA data,
featuring a spatial resolution of 500 m. It utilizes a sinusoidal projection and incorporates
exclusively daytime land surface reflectance data. During production, this product consid-
ers factors such as aerosol, atmospheric scattering and absorption, changes in land cover
types, bidirectional reflectance distribution function (BRDF), atmospheric coupling effects,
and thin cloud contamination. It is derived by atmospherically correcting MODIS Level 1B
data, achieving an overall accuracy of ±(0.005 + 0.05 × ρ). Each pixel is acquired within an
8-day period using maximum probability L2G observations. These observations consider
a wide range and low viewing angles, excluding the effects of clouds, cloud shadows,
and aerosols. Table 3 provides the parameters and theoretical accuracy of each band in
MOD09A1. It shows that the absolute errors of each band are small (<0.015), and the
relative errors, except for the third band, are also small. This indicates that the product has
excellent estimation capabilities for land surface spectral reflectance in different bands [18].

Table 3. Band parameters and total theoretical typical accuracy of MOD09.

Band Band Range
(µm) SNR Absolute Error Relative Error

(%)

1 0.620–0.670 128 0.005 10–33
2 0.841–0.876 201 0.014 3–6
3 0.459–0.479 243 0.008 50–80
4 0.545–0.565 228 0.005 5–12
5 1.230–1.250 74 0.012 3–7
6 1.628–1.652 275 0.006 2–8
7 2.105–2.155 110 0.003 2–8
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2.4. MODIS Cloud Mask Products

MOD35 is a Level 2 cloud mask product with a 1 km resolution provided by NASA
MODIS. To achieve precise cloud identification, the MODIS cloud mask algorithm utilizes
a series of spectral tests based on methodologies used in the AVHRR Processing scheme
Over cLoudy Land and Ocean (APOLLO), International Satellite Cloud Climatology Project
(ISCCP), Cloud Advanced Very High Resolution Radiometer (CLAVR), and Support of
Environmental Requirements for Cloud Analysis and Archive (SERCAA) algorithms to
identify cloudy fields of views (FOVs). Based on these tests, each FOV is assigned a
clear-sky confidence level (high confidence clear, probably clear, undecided, cloudy). In
case of inconclusive results, spatial- and temporal-variability tests are conducted. The
spectral tests utilize radiance (temperature) thresholds in the infrared and reflectance
thresholds in the visible and near-infrared. Thresholds depend on factors such as the
surface type, atmospheric conditions (moisture, aerosol, etc.), and viewing geometry. Inputs
for the algorithm include MOD02 calibrated radiances, a 1 km land/water mask, DEM,
ecosystem analysis, snow/ice cover maps, National Centers for Environmental Prediction
(NCEP) analysis of surface temperature and wind speed, and an estimation of precipitable
water [19,20].

2.5. Aerosol Robotic Network (AERONET)

The ground-based observation data used in this study were obtained from the AERONET
observation network (https://aeronet.gsfc.nasa.gov/, accessed on 8 March 2023). AERONET,
along with other aerosol observation networks worldwide, including the French aerosol
network (PHOTONS) and some research institutions, constitutes a ground-based aerosol
observation network alliance. AERONET employs the CE-318 sun photometer to measure
the radiation intensity in different spectral bands of direct solar radiation and to calculate
the aerosol optical thickness in the atmospheric column. It records various measurement
values every 15 min or at shorter intervals, ensuring low uncertainty. AERONET offers
high-precision and standardized data products for all sites, and its aerosol observation
data have been extensively utilized in validating satellite sensor Aerosol Optical Depth
(AOD) products. AERONET offers three levels of data products: Levels 1.0, 1.5, and 2.0.
Level 1.0 does not undergo cloud filtering and quality checks, Level 1.5 undergoes cloud
filtering without quality verification, and Level 2.0 is a high-precision data product that
has undergone rigorous cloud filtering, manual verification, and quality assurance [21].
Currently, AERONET operates more than 500 sites globally, approximately 40 of which
are located in polar regions, as depicted in Figure 2. This study concentrates on the polar
regions, thus selecting data from sites distributed in the Arctic and Antarctic.

Figure 2. The locations of AERONET ground-based stations in the polar region: (a) distribu-
tion of AERONET ground stations in the Arctic; (b) distribution of AERONET ground stations
in the Antarctic.

https://aeronet.gsfc.nasa.gov/
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3. Methods
3.1. Theoretical Foundation

In the shorter wavelength range of visible light, the reflectance between clouds and
ice/snow exhibits minimal differenceS. Traditional threshold-based methods, like ISCCP,
APLOLLP, and CLAVR, fail to detect clouds and ice/snow effectively through the use of
suitable thresholds. The near-infrared and shortwave infrared bands exhibit differences
in reflectance between clouds and ice/snow, enabling the separation of cloud layers and
ice/snow, thereby enhancing cloud detection accuracy. Figure 3 shows the spectral re-
flectance curves of ice/snow, which were collected from the ASTER spectral library [22].
Moreover, the spectra of clouds were collected from the Airborne Visible Infrared Imaging
Spectrometer, a hyperspectral data sensor with 224 spectral bands covering a spectral range
of 0.4–2.5 µm with a spectral resolution of 10 nm.

Figure 3. Spectra of clouds and snow/ice.

However, remote sensing images typically consist of a significant number of mixed
pixels. Each pixel in satellite imagery covers a large area due to the sensor’s low spatial
resolution, resulting in the inclusion of multiple types of land cover information [23]. In
polar regions, cloud pixels in remote sensing images are typically obscured by thin or
broken clouds, leading to the reflectance of pixels in polar regions being influenced by
the combined interactions of clouds and ice/snow. Broken clouds often manifest as small,
isolated patches, covering a limited section of the cloud. Substantial gaps exist between
these cloud patches, rendering them notably distinct at the image’s edges. Thin clouds are
typically characterized by their relatively low thickness, permitting the passage of some
light through the cloud layer, generally within the optical thickness range of 0.1 to 3. In the
shortwave infrared band, the reflectance of thin or fragmented clouds closely resembles that
of the underlying ice/snow in polar regions. Mixed pixels composed of clouds (especially
thin clouds, fragmented clouds, and cloud edges) and underlying ice/snow surfaces exhibit
the phenomenon of “same spectrum, different objects” or “same objects, different spectra”,
which significantly impacts cloud detection accuracy in polar regions. The reflectance
of mixed pixels can be expressed as a linear combination of the constituent component’s
reflectance and the ratio of their pixel areas [24].

P =
N

∑
i=1

ciei + n = Ec + n (1)
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N

∑
i=1

ci = 1 (2)

Here, N represents the total number of pixels, P represents the reflectance of the mixed
pixel, E is an m × n matrix, ei represents the proportion of each component, ci represents
the area proportion of ei in P, and n represents uncertainty.

3.2. Construction of Polar Cloud Detection Model
3.2.1. Polar Surface Reflectance Database Construction

The 1.64 µm band of MOD09A1 data is selected, followed by batch geometric cor-
rection of the filtered data, and, finally, the mosaicking process is conducted in the North
and South Poles. The projection and coordinate systems of the surface reflectance data
are unified to the Universal Polar Stereographic Projection (UPS) and WGS84 coordinate
system during the geometric correction process in this study.

It is assumed that the surface reflectance of most land cover remains relatively constant
over a specific period [21]. Based on this assumption, monthly compositing of MODO9A1
data was performed to create a database of monthly composited surface reflectance for
cloud detection purposes. To effectively enhance the utilization of image data, ensure spatial
continuity in surface reflectance, and preserve spectral information accuracy, additional
processing of the four MODO9A1 datasets within each month is necessary. By removing
clouds, cloud shadows, and outliers, the original information of the data is preserved to
the maximum extent. Since clouds, cloud shadows, and outliers in the images frequently
result in substantial variations in reflectance values, we chose the second smallest value
among the four datasets for each pixel as the composited monthly surface reflectance value
to build a database of surface reflectance for the North and South Poles. Figure 4 displays
the composited surface reflectance data for the North and South Poles in June 2022 at a
single channel of 1.64 µm, illustrating the strong spatial continuity of the data.

Figure 4. Surface reflectance database of polar region in June 2022.

3.2.2. 6S Model Forward Simulation

The 6S model was developed in 1997 by Vermote et al. from the Department of
Geography at the University of Maryland, USA, as an extension of the 5S model. The
primary aim of the 6S model is to simulate the radiance received by a sensor under cloud-
free conditions while accounting for the absorption and scattering effects of atmospheric
components on solar radiation under non-Lambertian surfaces. It is applicable across
the wavelength range of 200 nm to 4000 nm. In contrast to the 5S model, the 6S model
incorporates factors such as the target height, non-Lambertian surfaces, and the influence
of additional absorbing gases, like CH4, N2O, CO, and others. The successive order of
scattering (SOS) algorithm is employed to calculate the scattering and absorption effects,
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thereby improving the accuracy of the model [25,26]. In the 6S model, the first step is
the direct radiation of sunlight passing through aerosols and directly illuminating the
target object. Secondly, as a result of aerosol scattering, light that originally could not
directly illuminate the target becomes indirectly illuminated upon scattering. The 6S
model employs a concept similar to transmittance to quantify the magnitude of this light
component. Additionally, during the upward transmission of reflected light from the
surface target, some light is scattered back and illuminates the surface target again, owing
to the backscattering effect of aerosols [26]. This process encompasses the irradiance
received by the surface, as illustrated below.

Esol = µsEs(e−τ/µs + td(θs))(ρtS + ρ2
t S2 + · · · ) = µsEs(e−τ/µs + td(θs))

1− ρtS
(3)

µs = cos(θs) represents the cosine of the solar zenith angle, Es represents the solar
irradiance at the top of the atmosphere, and t denotes the aerosol optical thickness in the
vertical direction. td(θs) represents the diffuse transmittance coefficient, which measures the
magnitude of the diffuse radiation transmitted through the aerosol layer and illuminating
the surface target due to aerosol scattering. p represents the reflectance of the surface target,
and S represents the spherical albedo of the atmosphere, indicating the magnitude of the
backscattered reflection of the surface object when it passes through aerosols.

The aforementioned phenomenon is a result of the presence of aerosols, which induce
variations in the irradiance received by surface objects. Furthermore, the presence of
aerosols also leads to the composition of the radiation received by the sensor being divided
into three distinct parts.

First, the reflected light from the surface object reaches the sensor directly after passing
through aerosols.

Edir
re = Esolρte−τ/µv (4)

µν = cos(θν) represents the cosine of the sensor zenith angle. Secondly, when sunlight
illuminates aerosols, some of the light is scattered backward by the aerosols and does not
reach the ground. Instead, it goes directly back to space, and a portion of it enters the sensor.

Edi f f
re = Esρa(θs, θν, ϕs − ϕν) (5)

Lastly, the scattering effect of aerosols causes a portion of the reflected light from sur-
rounding objects to enter the optical path of the target. When the target and the surrounding
objects belong to the same category, this portion of light enhances the target’s radiation and
is deemed a useful component. However, if the target and the surrounding objects differ in
category, this portion of light introduces additional environmental interference known as
the adjacency effect.

Ecross
re = Esol〈ρe(M)〉t′d(θv) (6)

Therefore, the total radiation received by the sensor is

Ere = Edi f f
re + Edir

re + Ecross
re = µsEsρa(θs, θν, ϕs − ϕν) +

µsEs(e−τ/µs + td(θs))

1− ρS
(ρie−τ/µi + 〈ρe(M)〉t′d(θν)) (7)

By employing the aforementioned model to simulate the apparent reflectance based
on surface reflectance, highly accurate results can be achieved.

The inputs for the 6S model primarily consist of the observation geometry, atmo-
spheric model, aerosol model, aerosol optical thickness, surface reflectance, and sensor
spectral characteristics. The observation geometry encompasses the solar zenith angle,
solar azimuth angle, satellite zenith angle, and satellite azimuth angle, which are stored in
the geolocation file of FY-3D MERSI-II data.

In practical simulations, considering the climatic characteristics of the polar regions, we
configure the atmospheric model as either subarctic summer or subarctic winter, depending
on the specific conditions. For the Arctic, we employ the maritime-type aerosol model, while



Remote Sens. 2023, 15, 5221 10 of 20

for the Antarctic the continental-type aerosol model is used. The aerosol optical thickness is
derived from the AOD data product obtained through the AERONET observation network
at Arctic sites. However, as the 6S model necessitates aerosol optical thickness input at
550 nm and AERONET provides AOD measurements only at wavelength channels of 340,
380, 440, 500, 670, 870, and 1020 nm, we employ a quadratic polynomial interpolation
method to interpolate the known AOD values from AERONET channels to 550 nm. The
process of obtaining the AOD at the AERONET 550 nm channel using quadratic polynomial
interpolation is as follows:

lnτ∂ = ∂0 + ∂1lnλ + ∂2(λ)
2 (8)

where τ∂ represents the AOD value at the channel and ∂i(i =0, 1, 2) are unknown coeffi-
cients that can be estimated using the least squares method in combination with the known
AOD values from AERONET channels.

Regarding the sensor’s spectral characteristics, we integrate the spectral response
function of the 1.64 µm channel from FY-3D MERSI-II (refer to Figure 5) into the 6S model.
This incorporation of the spectral response function enables accurate modeling and analysis
within the 6S framework.

Figure 5. The spectral response function of the 1.64 µm channel from FY-3D MERSI-II.

3.2.3. Cloud Detection Model

Before constructing the cloud detection model, preprocessing is necessary for the
1.64 µm channel data from FY-3D MERSI-II. The first step involves restoring and adjusting
the DN (Digital Number) values of the channel.

DN∗∗ = S× (DN∗ − I) (9)

In the equation, DN∗∗ represents the restored results, DN∗ corresponds to the count
values in the scientific dataset EV of the LI data, and S and I are adjustment coefficients
that can be obtained by querying the internal properties of EV.

Subsequently, the channel undergoes radiometric calibration based on the DN. This is
followed by a quadratic calibration process, resulting in the calibrated apparent reflectance.

ρ∗ =
(
k0 + k1 × DN∗∗ + k2 × DN∗∗2

)
× d2

ES/cosθ (10)

In the equation, the symbol ρ∗ represents the calibrated reflectance. Additionally, θ
denotes the solar zenith angle; dES represents the square of the Earth–sun distance; and k0,
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k1, and k2 are the calibration coefficients. These calibration coefficients can be obtained by
querying the “VIS_Cal_Coeff” attribute in the scientific dataset EV.

The cloud detection principle in this study involves simulating the complete range
of apparent reflectance variations using the 6S model. This simulation corresponds to the
actual surface reflectance under different observation and atmospheric conditions. If the
measured apparent reflectance of a pixel from the image surpasses the maximum simulated
value, the pixel is classified as cloud-contaminated. Otherwise, it is classified as clear-
sky. The solar and satellite zenith angles cover all possible values for the satellite sensor
employed in this study. The proposed polar cloud detection model for FY-3D MERSI-II
data is as follows:

ρ∗
′

NorthPolar = 0.539187 · ρNorthPolar − 0.002571 · cos α cos β + 0.101877 (11)

ρ∗
′

SouthPolar = 0.668803 · ρSouthPolar − 0.002951 · cos α cos β + 0.080149 (12)

R = ρ∗ − ρ∗
′

(13)

The equations includes ρ∗
′
, which signifies the maximum value of the simulated

apparent reflectance variations under diverse conditions. ρ denotes the surface reflectance
sourced from the database. α stands for the solar zenith angle, β represents the satellite
zenith angle, ρ∗ represents the apparent reflectance extracted from the remote sensing
image, and R signifies the ultimate cloud detection outcome. Limited by the 1.64 µm
band characteristics, this method can only work in the daytime and is not suitable for
night. Therefore, when the algorithm is applied to the polar region, it is important to check
whether the image is in daytime. Figure 6 shows the flowchart of the proposed algorithm.

Figure 6. Flowchart of the algorithm. We conducted preprocessing on the MERSI-II images to
derive the accurate apparent reflectance, denoted as ρ∗. Utilizing MOD09A1 data, we constructed a
surface reflectance database specific to polar regions. Through forward simulations employing the

6S model, we acquired the theoretical apparent reflectance ρ∗
′

under conditions of clear skies. We
then conducted a comparison between these two values to ascertain the presence of clouds within
the pixel.

3.2.4. Evaluation Methods

To quantitatively assess the effectiveness of cloud detection algorithms and the accu-
racy of the results, this study employs remote sensing visual interpretation to extract actual
cloud content information from the images and perform accuracy verification. The MERSI-
II data’s 0.47 µm, 1.61 µm, and 2.1 µm bands are assigned to the R, G, and B channels,
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respectively, for false-color synthesis, which is widely used for cloud and snow display.
Using ArcGIS 10.8 software, the original cloud-sensitive 1.64 µm single-channel image and
the false-color synthesized image mentioned above are compared, and cloud information
is extracted by manually selecting features to generate a cloud mask product. This cloud
mask product is used to validate the real cloud coverage data of the cloud detection results
in this study, ensuring the accuracy of the results. Figure 7 displays various types of clouds,
including partial fragmented clouds and thick clouds, as observed in the remote sensing
visual interpretation results.

Figure 7. Visually interpreted cloud results in ArcGIS: (a) pseudo-color composite image; (b) 1.64 µm
single-channel images; (c) visual interpretation results.

In addition, we select a coarse-to-fine unsupervised machine learning algorithm
(CTFUM) for comparative verification [27]. CTFUM is an improved machine learning
method, which extracts color, texture, and statistical features of remote sensing images
using color transformation, dark channel estimation, Gabor filtering, and local statistical
analysis. Then, an initial cloud detection map can be obtained by using the support vector
machines (SVMs) on the stacked features, in which the SVM is trained with a set of samples
automatically labeled by processing the dark channel of the original image with several
thresholding and morphological operations. Finally, guided filtering is used to refine the
boundaries in the initial detection map.

In Table 4, TP represents the number of pixels identified as cloud in both the cloud
detection result and the actual cloud result; FN represents the total number of pixels
identified as clear-sky in the cloud detection result but as cloud in the actual cloud result;
TN represents the total number of pixels identified as clear-sky in both the cloud detection
result and the actual cloud result; and FP represents the total number of pixels identified
as cloud in the cloud detection result but as clear-sky in the actual cloud result [28].

Table 4. Confusion matrix.

Confusion Matrix
Predict

Positive Negative

Real
Positive TP FN

Negative FP TN

The cloud amount (CA) index was chosen to represent the overall cloud content in
the remote sensing image, while the cloud amount error (CAE) indicates the disparity
between the detected cloud amount and the actual cloud distribution [29]. A positive
CAE value suggests an overestimation of the clouds in the image, with a larger value
indicating a more pronounced misjudgment. Conversely, a negative CAE value indicates
an underestimation of clouds, and a smaller value signifies a more significant missed
detection. Four typical evaluation metrics, namely accuracy, precision, recall, and the F1
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score, are chosen to quantitatively assess the cloud detection results at each pixel. These
metrics offer different perspectives for evaluating the model’s performance in classification
tasks. Accuracy is a straightforward metric that represents the ratio of correctly classified
samples to the total number of samples. It provides an overall measure of the classification
correctness and is suitable when the dataset has a balanced class distribution. However,
accuracy can be misleading in the presence of class imbalance. Precision refers to the
proportion of true positives among all samples predicted as positive. It focuses on the
model’s accuracy in predicting positive samples and indicates the “precision rate” of the
model. In other words, it measures how many predicted positive samples are actually true
positives. A high precision signifies a low false positive rate in predicting positive samples.
Recall, in contrast, represents the proportion of true positives among all actual positive
samples. It assesses the model’s ability to capture true positive samples and corresponds to
the “recall rate” of the model. In simple terms, recall measures how many true positive
samples the model can correctly predict. A high recall indicates a low false negative rate in
capturing positive samples. The F1 score is the harmonic mean of precision and recall. It
offers a comprehensive evaluation by considering the balance between precision and recall.
A high F1 score indicates a favorable trade-off between precision and recall, suggesting a
well-balanced performance of the model [30].

CA =
Ncloud

N
(14)

CAE = CAproduct − CAreal (15)

Accuracy =
TP + TN

TP + TN + FP + FN
(16)

Precision =
TP

TP + FP
(17)

Recall =
TP

TP + FN
(18)

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(19)

In the equations, Ncloud represents the total number of cloud pixels in the image; N
represents the total number of pixels in the image; and CAproduct and CAreal represent
the cloud amount in the cloud detection result and the actual cloud result (i.e., the results
of visual interpretation in remote sensing).

4. Results
4.1. Dataset and Experimental Setup

We primarily evaluate the performance of the proposed cloud detection method using
FY-3D MERSI-II remote sensing images. The multispectral images are reprojected into UPS
at a spatial resolution of 1000 m. The validation images, collected from 2020 to 2022 in the
polar regions, cover an area of 400,000 × 400,000 m and encompass clouds of various forms
and thicknesses over ice and snow surfaces. We compare the 1.64 µm single-channel image
and the false-color synthesized image used in this study through remote sensing visual
interpretation to extract cloud information and verify its accuracy against real cloud results.

We select a total of 100 sub-images from the FY-3D MERSI-II remote sensing images
for cloud detection experiments and validation. The performance of the proposed cloud
detection algorithm is then compared with the MOD35 cloud product on these sub-images.
Table 5 shows the acquisition time and range of each piece of data.
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Table 5. Data acquisition time and extents.

Figure Date Extents

Figure 8a 18 July 2022 (76°13′4.76′′N,67°0′18.27′′E)–(74°46′3.03′′N,78°9′26.48′′E)

Figure 8b 25 June 2022 (69°29′55.69′′N,19°15′37.65′′W)–
(72°16′56.96′′N,14°47′34.53′′W)

Figure 8c 2 August 2021 (75°18′57.67′′N,15°48′58.67′′W)–
(78°27′8.31′′N,6°37′44.72′′W)

Figure 8d 7 July 2022 (69°29′55.69′′N,19°15′37.65′′W)–
(72°16′56.96′′N,14°47′34.53′′W)

Figure 9a 12 December 2020 (76°50′42.56′′S,132°32′25.04′′E)–
(76°9′19.45′′S,116°40′54.09′′E)

Figure 9b 25 November 2022 (77°40′13.89′′S,152°32′59.73′′E)–
(78°14′2.26′′S,134°38′41.80′′E)

Figure 9c 12 December 2021 (85°4′24.77′′S,128°37′3.41′′E)–(83°26′59.76′′S,93°15′30.55′′E)
Figure 9d 5 January 2021 (80°27′5.82′′S,90°42′35.74′′W)–(82°23′40.10′′S,73°46′13.62′′W)
Figure 10a 26 December 2022 (80°58′8.06′′S,144°49′3.99′′E)–(80°48′49.85′′S,120°46′34.46′′E)
Figure 10b 9 January 2021 (70°42′43.70′′S,90°59′1.58′′W)–(73°31′58.23′′S,80°14′46.92′′W)

Figure 10c 2 December 2020 (83°58′26.98′′S,117°44′49.30′′E)–
(81°58′45.39′′S,90°48′23.09′′E)

4.2. Comparative Analysis of Proposed Algorithm with Machine Learning Algorithms and MOD35

Figures 8–10 showcase the comparative analysis between the cloud results of the
proposed algorithm in this paper with CTFUM and the cloud mask products provided by
MODIS, encompassing various cloud types across distinct regions. The first column of the
figures displays the pseudo-color composite image of the MERSI-II 1.6.7 band (representing
0.47 µm, 1.64 µm, and 2.13 µm), while the second column exhibits the 1.64 µm single-
channel image, which is specifically responsive to clouds and utilized for aiding cloud
identification purposes. The third column illustrates the MODIS cloud product MOD35,
while the fourth column portrays the cloud detection results of CTFUM. The last column
shows the cloud product generated through the cloud detection algorithm proposed within
this paper.

Figure 8 shows the comparison of the proposed cloud detection algorithm with CT-
FUM and MOD35, specifically in their ability to differentiate between fractured polar sea
ice and clouds. It is evident from the figure that MOD35 and CTFUM frequently con-
fuse sea ice with clouds, erroneously identifying fragmented sea ice within seawater as
cloud pixels. The elevated cloud content CAproduct of MOD35, relative to the authentic
cloud content CAreal , further signifies the incorrect identification of fractured sea ice by
MOD35. Importantly, in Figure 8c, both MOD35 and the outcomes of this paper (even
though MOD35 incorrectly identifies some sea ice) indicate underestimated cloud extents,
with both algorithms being unsuccessful in accurately detecting exceedingly thin clouds at
the cloud peripheries. Overall, the outcomes of this paper surpass those of MOD35 and
CTFUM concerning accuracy, precision, recall, and F1 score. This is primarily evident in
the superior accuracy of identifying fractured sea ice and clouds within the outcomes of
this paper while successfully avoiding the misidentification of sea ice as clouds. Specifically
in Figure 8d, the accuracy, precision and F1 of MOD35 are 84.94%, 75.63%, and 86.05%,
respectively, and those of CTFUM are 84.10%, 78.73%, and 84.44%, whereas the outcomes
of this paper display remarkable enhancement over MOD35 and CTFUM in these three
metrics, achieving 98.94%, 97.57%, and 98.73%, respectively.

Figure 9 illustrates the outcomes of the proposed cloud detection algorithm, CTFUM,
and MOD35 in their capability to identify polar thick clouds. Figure 9a,b,d provide intuitive
evidence that the MOD35 cloud product notably overlooks the identification of thick clouds
in the atmosphere above polar ice and snow surfaces. These instances yield recall values of
merely 43.07%, 16.1%, and 6.65%, along with accuracy values of 62.41%, 48.07%, and 27.41%,
correspondingly. CTFUM misidentifies a large amount of snow and ice as clouds, and the
ability to identify cloud edges is not strong. The cloud detection algorithm advocated in
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this paper adeptly discerns the majority of thick clouds situated above polar ice and snow,
attaining a recall surpassing 97% while consistently upholding an accuracy exceeding 95%.
Furthermore, the outcome depicted in Figure 9c indicates that when thick clouds emerge
above polar seawater MOD35 inaccurately identifies the seawater as clouds, which also
occurs in UFTUM, consequently overestimating cloud presence. Nonetheless, the algorithm
put forward in this paper rectifies MOD35’s and UFTUM’s misidentification, effectively
achieving precise differentiation between seawater and clouds.

Figure 8. Comparison of sea ice and cloud detection results in polar regions among different cloud
mask products. In the first column, white represents clouds pixels, red represents sea ice pixels, and
black represents sea water pixels. In the cloud detection results, white represents cloud pixels and
black represents noncloud pixels. (a–d) show the results of cloud detection in different polar regions.

Figure 10 displays the outcomes of the proposed cloud detection algorithm, CTFUM,
and MOD35 in identifying polar thin and fragmented clouds. Among them, Figure 10a,c
reveal that in identifying fragmented clouds within the polar ice and snow-covered region
MOD35 exhibits limited detection capability and notable omissions, yielding accuracy,
recall, and F1 score values all falling below 40%. The detection effect of CTFUM is stronger
than that of MOD35, but a large number of cloud pixels are also missed.

The algorithm advocated in this paper ameliorates the issue of overlooked fragmented
cloud detection on the polar ice and snow surfaces, stabilizing the three metrics accuracy,
recall, and F1 score at values exceeding 92%, signifying a positive recognition outcome for
fragmented clouds. In Figure 10b, thin clouds stretch across three-quarters of the image
over the polar ice and snow, yet MOD35 struggled to effectively discern these faint clouds,
managing to identify only the more conspicuous clouds below. This led to accuracy, recall,
and F1 score values of merely 23.68, 13.12, and 23.16, respectively, reflecting a notably low
level of performance. In contrast, the algorithm proposed in this paper nearly precisely
identifies the faint clouds within the image, while the corresponding metrics also sustain a
high level of performance. As evident from Table 6, the precision of both MOD35 and the
proposed cloud detection product from this paper consistently remains above 95%. This
signifies that both cloud products showcase a notable degree of precision in detecting cloud
pixels. Furthermore, it suggests that the model maintains a diminished false positive rate
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while predicting positive samples, demonstrating a cautious and confident approach in
classifying samples as the positive class.

Figure 9. Comparison of thick cloud detection results in polar regions between different cloud mask
products. In the first column, white represents clouds pixels, red represents sea ice pixels, and black
represents sea water pixels. In the cloud detection results, white represents cloud pixels and black
represents noncloud pixels. (a–d) show the results of cloud detection in different polar regions.

Figure 10. Comparison of broken and thin cloud detection results in polar regions between different
cloud mask products. In the first column, white represents clouds pixels, red represents sea ice pixels,
and black represents sea water pixels. In the cloud detection results, white represents cloud pixels and
black represents noncloud pixels. (a–c) show the results of cloud detection in different polar regions.
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Table 6. Evaluation and comparison of different cloud mask products with visual interpretation
of clouds.

Figure CAreal (%) Cloud
Product

CAproduct
(%) CAE (%) Accuracy

(%)
Precision

(%) Recall (%) F1 (%)

Figure 8a 74.62
MOD35 77.91 3.29 93.13 91.21 99.96 95.39

SVM 77.15 2.53 88.69 85.37 99.96 92.09
Result 72.53 −2.09 99.53 99.63 99.72 99.67

Figure 8b 71.44
MOD35 73.63 2.19 95.67 94.14 99.98 96.97

SVM 73.62 2.18 95.68 94.14 99.98 96.97
Result 68.97 −2.46 98.68 98.13 99.96 99.03

Figure 8c 74.60
MOD35 72.05 −2.55 95.15 94.42 98.79 96.56

SVM 72.04 −2.56 95.15 94.42 98.80 96.56
Result 69.80 −4.80 98.32 97.65 99.94 98.78

Figure 8d 45.08
MOD35 61.41 16.33 84.94 75.63 99.80 86.05

SVM 54.78 9.7 84.10 78.73 91.04 84.44
Result 42.34 −2.74 98.94 97.57 99.93 98.73

Figure 9a 72.98
MOD35 28.49 −44.48 62.41 99.20 43.07 60.06

SVM 58.01 −14.97 60.83 69.52 65.24 67.31
Result 73.51 0.54 97.99 97.29 99.98 98.62

Figure 9b 57.38
MOD35 10.12 −47.26 48.07 98.64 16.16 27.78

SVM 79.66 22.28 66.84 72.12 83.99 77.60
Result 59.15 1.77 98.30 98.69 98.44 98.56

Figure 9c 75.42
MOD35 81.91 6.49 82.23 80.86 96.93 88.17

SVM 69.11 −6.31 84.67 87.90 89.72 88.80
Result 83.17 7.76 94.96 96.70 97.22 96.96

Figure 9d 48.53
MOD35 5.19 −43.34 26.83 88.48 5.94 11.14

SVM 46.02 −2.51 86.44 84.31 85.95 85.12
Result 45.07 −3.46 94.23 90.69 96.30 93.41

Figure 10a 54.49
MOD35 20.74 −33.75 36.32 99.44 24.50 39.31

SVM 42.81 −11.68 73.85 84.27 65.02 73.40
Result 47.20 −7.29 91.89 98.39 87.36 92.55

Figure 10b 92.78
MOD35 11.66 −81.12 23.68 98.62 13.12 23.16

SVM 54.70 −38.08 59.94 99.40 57.78 73.08
Result 93.88 1.10 96.82 96.77 99.83 98.28

Figure 10c 70.80
MOD35 7.01 −63.78 24.01 98.77 8.36 15.42

SVM 44.54 −26.26 66.05 77.75 59.03 67.71
Result 69.80 −0.98 93.93 98.52 93.18 95.78

In the realm of cloud detection within polar regions, MOD35 and CTFUM exhibit
limitations in discerning clouds from sea ice, as well as from open water. In instances
where both clouds and fragmented sea ice coexist within the region, MOD35 incorrectly
designates the fragmented sea ice atop the sea surface as clouds. This phenomenon is
more severe with CTFUM, which identifies not only broken sea ice as clouds but also
large ice sheets as clouds. When an extensive quantity of dense clouds emerges along
the boundary between the ice cover and the ocean, MOD35 incorrectly classifies certain
portions of seawater as clouds. The algorithm introduced in this paper adeptly rectifies
the identification errors of MOD35 in these scenarios, achieving a heightened accuracy in
distinguishing clouds from sea ice, as well as from seawater. Additionally, the algorithm
presented in this paper also tackles the challenge of extensive overlooked detection by
MOD35 when identifying fragmented clouds and thin clouds.
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5. Discussion

Cloud detection encounters substantial challenges in polar regions. Owing to the high
latitudes and exceptionally low solar zenith angles, remote sensing images in polar regions
often contain both clouds and snow. Clouds and snow usually have high reflectance and
similar optical characteristics, presenting substantial challenges for cloud detection. In this
study, we create a monthly composite database of surface reflectance in polar regions and
employ the 6S radiative transfer model to link surface reflectance with apparent reflectance,
thereby achieving dynamic cloud detection in polar areas. In contrast to traditional spectral
threshold methods that rely on the Normalized Difference Snow Index (NDSI) to define
multispectral thresholds for detecting clouds and snow, we adopt a physics-based approach
to establish dynamic thresholds for each pixel in single-channel images, yielding excep-
tional outcomes. Compared to traditional spectral threshold methods, the cloud detection
algorithm presented in this study exhibits superior generalization capabilities and is appli-
cable to remote sensing images from diverse sources. Moreover, when employing machine
learning- and deep learning-based cloud detection approaches in polar regions, several
critical concerns cannot be overlooked. Firstly, these techniques necessitate a substantial
volume of manual annotation. However, in remote sensing images clouds display consider-
able variations in morphology and thickness. Discerning the presence of thin clouds and
cloud boundaries with the naked eye can be challenging, resulting in notable noise in the
data labels that may affect the training outcomes of models. Secondly, deep learning-based
cloud detection algorithms, despite their superior detection accuracy relative to traditional
spectral threshold methods, frequently demand high-performance computing hardware,
such as GPUs. The algorithm introduced in this study adeptly addresses both of these
concerns. It obviates the necessity for manual annotation and showcases the potential of
physics-based approaches for cloud detection in polar regions. Additionally, its efficient
computational capabilities render it suitable for practical applications.

Clouds hold substantial significance in polar research, impacting ice and snow melt,
sea level escalation, the global energy equilibrium, and climate alteration. Nonetheless,
current research concerning polar cloud detection is restricted, predominantly centered
on spectral threshold techniques. This article presents an efficient and computationally
adept physics-based cloud detection algorithm, representing an important initial foray
into polar cloud detection. This method furnishes cloud analysis to bolster polar climate
investigations and provides avenues for algorithm refinement.

This study pioneers the use of the 6S radiative transfer model in cloud detection within
polar regions, yielding notably improved and precise cloud detection outcomes. Nonethe-
less, limitations persist. The algorithm’s polar monthly composite surface reflectance
database is established assuming minimal surface reflectance fluctuations. However, spe-
cific regions might encounter reflectance alterations caused by factors like snow melting,
possibly influencing the precision of cloud detection. Furthermore, the absence of ground-
based cloud measurement data makes contrasting algorithm outputs with visually assessed
cloud identification outcomes relatively subjective.

6. Conclusions

Cloud information plays a vital role in polar climate change and various geographical
science applications. Presently, satellite remote sensing is extensively employed for the
detection and analysis of cloud data in polar regions. Yet, the substantial ice and snow
cover in polar regions presents challenges for cloud detection in these areas. This study
aims to overcome the challenges associated with cloud detection in polar regions.

In this study, we introduce a novel, computationally efficient, physics-based algorithm
for polar cloud detection, complementing existing spectral threshold, machine learning,
and deep learning methods. In this approach, we leverage existing knowledge and posit
that surface reflectance stemming from land features experiences minimal alterations over
brief intervals. We employ the extended 8-day composite MODO9 surface reflectance
dataset, furnished by MODIS, to construct a repository of monthly composite surface
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reflectance within the shortwave infrared bands. Consequently, we procure precise surface
reflectance data under inherent conditions. Simultaneously, we harness the 6S radiative
transfer model for forward simulations, establishing the correlation between apparent
reflectance and surface reflectance across diverse scenarios. A global comparison of our
algorithm with the widely used MODIS cloud mask product and the UTCFUNM algorithm
revealed that MOD35 underperforms in polar regions, resulting in the misclassification
of a substantial number of ice and snow pixels as clouds and causing omissions in cloud
pixels over ice and snow-covered areas. Conversely, our algorithm effectively rectifies the
problem of misclassifying ice and cloud pixels, leading to substantial enhancements in
detection accuracy, precision, and omission rates.

This cloud detection algorithm can be extended for use with a range of optical sensors
equipped with a 1.6 µm wavelength band, including GEO-KOMPSAT-2A, Sentinel-2-MSI,
and Landsat-8-OLI. Nevertheless, this algorithm is exclusively applicable during daylight,
and its potential adaptation for nocturnal applications warrants further comprehensive
investigation. Moreover, the algorithm’s detection outcomes could be susceptible to factors
like snow and ice melting, potentially leading to error introduction.
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