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Abstract: Initial orbit determination (IOD), as a basis for initial orbit association and accurate orbit
determination (OD), has a crucial role in the process of obtaining space debris orbit information.
Among the traditional methods, the Gooding method has better convergence and stability. In this
study, the Gooding method is enhanced to solve the issues discovered. A novel initial orbit determina-
tion (IOD) method is developed using the proposed improvement measures of the single-parameter
initial value determination (SIVD) method, the fitted-curve noise suppression method, the restricted
corrective value solution method, the removal of trivial solutions, etc. The experimental results verify
the effectiveness of the improved method. The success rate of the initial orbit determination reached
99%, and the accuracy of the solved orbit parameters was significantly improved, especially the
semi-major axis (SMA) error of less than 50 km, accounting for 88% of the total. It can be seen that
the method meets the demand of space-based space debris cataloging for initial orbit association and
can serve in the field of space situational awareness, which has important practical significance and
application potential.

Keywords: space debris; angle observations; initial orbit determination; Gooding method; very
short arc

1. Introduction

As human space exploration accelerates, the threat posed by space debris to space
activities is increasing. Strengthening the ability to monitor and remediate the space
environment is, therefore, becoming more important for human space activities. It is
incredibly challenging to acquire accurate orbit data on space debris due to their sheer
quantity, size, material, and non-cooperative nature. Benefiting from the improvement of
technology, various monitoring platforms have emerged. Currently, space-based electro-
optical systems have the following advantages over ground-based electro-optical systems,
ground-based radar surveillance systems, and space-based radar surveillance systems:
(1) Due to operating in orbit, they are not limited by geography, climatic conditions,
and atmosphere, with more observation time; (2) They have a large field of view and
can effectively search and detect space objects, especially GEO targets; (3) Since space
debris can be observed in close range, more detailed information on space targets can be
obtained [1–3]. After obtaining the observations, to obtain an object’s orbit information, it
is urgent to find an initial orbit determination method suitable for space-based platforms
with better stability and smaller errors [4].

Remote Sens. 2023, 15, 5217. https://doi.org/10.3390/rs15215217 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15215217
https://doi.org/10.3390/rs15215217
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0009-0000-4431-2645
https://orcid.org/0000-0001-7131-2720
https://doi.org/10.3390/rs15215217
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15215217?type=check_update&version=1


Remote Sens. 2023, 15, 5217 2 of 18

The evaluation of the initial orbit determination method focuses on success rate, com-
putational efficiency, error magnitude, etc. In practice, the results of the initial orbit determi-
nation are often used for initial orbit association, so the accuracy requirements are different
from other applications. The initial orbit association study presented by Zhao et al. shows
that the association of two arc segments can still be accomplished when the semi-major axis
error is less than one hundred kilometers [5]. Secondly, a higher success rate is extremely
important due to the increasingly changing space environment. For some application cases,
such as space-based laser cleanup, it is very important to complete the IOD in less time than
the observation arc length [3].

Due to the limitations of the optical observation theory compared with radar observa-
tion equipment, the observations obtained by optical sensors only have angular information,
a lack of distance information, and low accuracy. Angle-only IOD has long been a hot topic
of research due to the data acquisition characteristics of optical observing systems. There
are two major types of traditional methods, Laplace and Gauss, which were initially used
to compute non-artificial celestial objects [6,7]. In order to observe more space debris, the
arc lengths acquired by space-based observation tend to be shorter, which leads to more
non-convergence as well as poorer accuracy in traditional methods [8,9]. Many studies
and improvements to the Laplace and Gauss methods have been developed to better apply
these methods to the IOD of space debris. Firstly, in terms of introducing least squares into
the Laplace method, for example, Jia et al. analyzed and avoided its pathologies to improve
stability [10], and Wang et al. transformed the least squares method into least absolute
deviation to make the breakdown point of the method higher and the computational pro-
cess more stable [11]. Secondly, for the Laplace method, Lu et al. proposed a unit–vector
method applicable to combinations of different observations with a single revolution from
a single station [12]. Liu et al. solved the problem of trivial solutions arising from this
method by projecting the system of observational equations to the observational coordinate
system they established [13]. For the problem of the trivial solution in the Laplace method,
Gan et al. avoided it by removing the trivial solution factor from the solution equation [14].
Since the solution equations of Gauss and Laplace are polynomial equations of order 8, the
problem of multiple solutions inevitably arises. Der et al. analyzed this and proposed their
method to solve the problem [15].

Unlike traditional methods, Milani et al. introduced the concept of the admissible
region into IOD, and many subsequent studies have improved and extended based on this
idea [16]. However, the accuracy of the results obtained by this type of method depends
on the orbit propagation accuracy, the density of the triangular grid, and the accuracy of
the observations, which makes this type of method less applicable in the case of very short
observations [17]. DeMars et al. used the Gaussian mixture model to fit the probability
density function on the admissible region and then utilized a traceless Kalman filter for
dynamic estimation to obtain their final results [18]. The method has high accuracy for the
case of multiple arc segments from the same object, but its accuracy is not satisfactory for
the case of a single very short arc segment.

In recent years, methods based on Lambert’s equation have emerged. Huang et al.
proposed a semi-major axis search method that combines a single-parameter orbit solution
to Lambert’s equation, but it is not suitable for spatial objects in LEO as it depends on
small eccentricities [19]. Sang et al. proposed a distance search method based on Lambert’s
equation, but this method is not competent for the application scenario of fast IOD due to its
poor computational efficiency [20]. The Gooding method is based on the improved Lambert
equation proposed by Lancaster [21–23]. Due to its elimination of the multi-solution
problem for the semi-major axis, it has better convergence and computational efficiency, but
it still has issues, such as large influence by initial value, poor stability, etc. Ansalone et al.
applied genetic algorithms to the problem of very-short-arc orbit determination, which
converts the orbit determination problem into an optimization problem [24]. The use of
genetic algorithms avoids the classical optimization algorithms that require more accurate
initial values and tend to converge to local solutions. Li et al. also introduced particle
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swarm optimization into the initial orbit determination based on the idea of optimization
algorithms [25].

Through the above introduction, it can be seen that the existing algorithms for dealing
with IOD using space-based observations still have the problems of low solution accuracy,
slow convergence speed, poor convergence, etc. Therefore, to better monitor the impact of
space debris on space, the search for an IOD algorithm suitable for space-based platforms
with good convergence, higher accuracy, and computational efficiency is still challenging.
The Gooding method has become a widely used IOD method due to its wide range of
adaptability, high success rate, and computational efficiency, which is used in the IOD
toolkit for AGI [26]. To preserve its excellent features and, at the same time, make it perform
better in space-based observation environments to fulfill more application scenarios, the
Gooding method is improved in this paper.

2. IOD Method
2.1. Lambert’s Equation

The core process in the Gooding method is Lambert’s problem. Lambert’s problem
was formulated by Lambert in 1761 and named after him. The problem is to determine
the semi-major axis a of a space object when the two position vectors

→
r 1 and

→
r 2 and the

time interval ∆t are known. Lambert showed a relation between ∆t, a,
∣∣∣→r 1

∣∣∣+ ∣∣∣→r 2

∣∣∣, and
the length of the chord c between the two points, known as Lambert’s equation, based
on geometrical and diatomic equations. Also, the solution for the principle of minimum
energy is given. Lancaster built on this by giving a unified form of Lambert’s equation that
allows it to be applied to elliptic, hyperbolic, and parabolic orbital objects [21]. It is the
Lambert equation that is used in the Gooding method.

Assume that
∣∣∣→r 1

∣∣∣+ ∣∣∣→r 2

∣∣∣, c, and ∆t are known. Firstly, the equations are constructed
according to the Geometry Theorem and Kepler’s Theorem. This includes the relationship
between c, a, the eccentricity e, and the eccentric anomalies ϕ1 and ϕ2 at both times, as
in Equation (1); the relationship between ϕ1, ϕ2, and

∣∣∣→r 1

∣∣∣+ ∣∣∣→r 2

∣∣∣, as in Equation (2); the
relationship between ϕ1, ϕ2, and ∆t, as in Equation (3). Figure 1 illustrates the geometric
relationships of the variables.

c2 = 4a2[1− e2 cos2 1
2
(ϕ1 + ϕ2)] sin2 1

2
(ϕ1 − ϕ2) (1)

∣∣∣→r 1

∣∣∣+ ∣∣∣→r 2

∣∣∣ = 2a
[

1− e cos
1
2
(ϕ1 + ϕ2) cos

1
2
(ϕ2 − ϕ1)

]
(2)

n(∆t) = ϕ2 − ϕ1 − 2e cos
1
2
(ϕ1 + ϕ2) sin

1
2
(ϕ2 − ϕ1). (3)

Figure 1. Figure of Lambert’s equation construction.
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The three equations above can be solved to obtain the three unknowns a, ϕ2 − ϕ1, and
e cos 1

2 (ϕ1 + ϕ2). Let

cos
1
2
(a + β) = e cos

1
2
(ϕ1 + ϕ2), 0 ≤ a + β < 2π (4)

α− β = ϕ2 − ϕ1 − 2mπ, 0 ≤ α− β < 2π. (5)

For elliptical orbits, the following equations are obtained using Equations (1)–(5):

T sin3(α/2) = 2πm + α− β− sin α + sin β (6)

sin(β/2) = q sin(a/2) (7)

q = ±
√

k =

[(∣∣∣→r ∣∣∣
1

∣∣∣→r ∣∣∣
2

)1/2
/s
]

cos(θ/2) (8)

T = (8µ/s)1/2(t2 − t1)/s (9)

where q is determined by the geometric configuration of the two observation positions to
the focus, T is the dimensionless variable of the time interval, θ is the angle between

→
r 1

and
→
r 2, and s is half of the perimeter of the triangle formed by the two vectors and the

length of the chord. Up to this point, the knowns
∣∣∣→r 1

∣∣∣+ ∣∣∣→r 2

∣∣∣, c, and ∆t can be converted
to α and β using Equations (6) and (7), and a can be solved by Equations (1)–(5).

However, there is an independent variable E = − sin2(α/2), 0 ≤ α ≤ 2π in the
process [21]. From the definition of this variable, it can be seen that there is a multiple
solution problem for α relative to E. Therefore, an improvement is needed to address this
problem by replacing the independent variable E by the following:

x = cos(α/2) − 1 ≤ x ≤ 1. (10)

The resulting other variables need to be transformed accordingly, and for elliptical
orbits they are as follows:

y = sin(α/2)

z = sin(β/2)

f = sin
1
2
(α− β)

g = cos
1
2
(α− β)

h =
1
2
(sin α− sin β)

λ = arctan( f /g).

Accordingly, Equation (6) becomes as follows:

T = 2(λ− h)/y3. (11)
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Through the above processes, it is possible to obtain a functional relationship between
∆t and a, with

∣∣∣→r 1

∣∣∣+ ∣∣∣→r 2

∣∣∣ and c determined. Meanwhile, if T, q, and x are expressed as
variables, the functional relationship between T and x can be obtained, with q determined.

2.2. Gooding Method

The above subsection provides an introduction to the improved Lambert equation. It
can be found that the constructed Lambert equation solves the problem of the semi-major
axis solution, but the required known quantities include

∣∣∣→r 1

∣∣∣+ ∣∣∣→r 2

∣∣∣ and c. This means that
it is necessary to first solve the values of the range between the sensor and objects ρ1 and
ρ2 corresponding to the two times and use the geometrical relationship between the object,
the center of the earth, and the sensor to obtain

∣∣∣→r 1

∣∣∣+ ∣∣∣→r 2

∣∣∣ and c, which are as follows:

ρj
→
λ j =

→
r j −

→
R j (12)

where
→
λ j is the direction vector of the objects to the sensor and

→
R j is the position vector of

the sensor relative to the center of the earth. This shows that there are more unknowns than
equations when applying Lambert’s equation to the IOD. So, Gooding uses an iterative
approach to the solution. The most critical of these is the construction of the objective
function and the choice of the iteration method. A brief description is provided below.

2.2.1. Construction of the Objective Function

T and q can be solved by assuming the initial values ρ1 and ρ2 and then using Lambert’s
equation for solving x. Gooding used the Halley process for the iterative solution. For very
short arcs, x should be greater than 0 [27]. Since the problem studied in this paper is for
elliptical orbits with short arcs, there is no need to discuss the case of multiple revolutions.
In order to find the initial value of an iterative process, it is necessary to make a fit to a
function T = T(q, x) of x > 0. Gooding chose to approximate with the hyperbolic function
y = (a + bx)/(c + dx). The specific form of this function should satisfy the following three
points: (1) T tends to 0 as x tends to infinity; (2) T = T0 = T(q, x = 0) when x = 0; and
(3) T′ = −4 when x = 0. From the above conditions, the function is as follows:

T = T2
0 /(T0 + 4x). (13)

The initial value of x can be solved by substituting T0 = T(q, x = 0) and the value of
T derived from Equation (9) as follows:

x0 = T0(T0 − T)/4T. (14)

Finally, x can be solved using the Halley process, and the corresponding orbital
parameters can also be solved. This result is solved based on assumed values. Its deviation
from the true result also needs to be judged using the objective equation. For it, Gooding
gives the radial and tangential velocities at the first and last times of the solution as follows:

V1r1 = γ((qz− x)− ρ(qz + x))/
∣∣∣→r 1

∣∣∣
V2r1 = −γ((qz− x) + ρ(qz + x))/

∣∣∣→r 2

∣∣∣ (15)

where γ =
√

µs/2, ρ =
(∣∣∣→r 1

∣∣∣− ∣∣∣→r 2

∣∣∣)/c, and the tangential velocity can be expressed
as follows:

V1t1 = γσ(z + qx)/
∣∣∣→r 1

∣∣∣
V2t1 = γσ(z + qx)/

∣∣∣→r 2

∣∣∣ (16)
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where σ = 2

√ ∣∣∣→r 1

∣∣∣∣∣∣→r 2

∣∣∣
c2 sin( θ

2 ). On this basis, the state vectors
→
r 3 and

→
v 3 at time t3 can then

be derived using orbit prediction. Substituting into Equation (12), the position vector
→
λ c of

the space debris to the sensor at t3 can be solved. If ρ1 and ρ2 are true and the observations

are error-free, the angle between this solution and the observation
→
λ3 should be zero. Based

on this theory, the objective functions can be constructed. The functions chosen by Gooding

are the moduli of the two vectors
→
f and

→
g constructed from the geometric relationship

between
→
λ c and

→
λ3, as shown in Figure 2.

Figure 2. Schematic figure of objective function construction.

2.2.2. Iterative Solution

Since the Halley process was found to be more suitable for solving the Kepler equa-
tions, applying it to the solutions of ρ1 and ρ2 will have a better performance [27]. The
Halley process is essentially the Newton–Raphson method extended to give third-order
convergence. Since the construction of the objective function is complex, it is more likely to
use the finite difference method to solve the approximation of the partial derivatives. The
following section describes the Halley process for solving corrective values.

For ease of writing, let x, y. Solving for the first-order corrective value δxNR and δyNR
of the Newton–Raphson iterative method is the first step as follows:(

δxNR
δyNR

)
= −

(
fx fy
gx gy

)−1( f
g

)
. (17)

Next, determine the solution for the corrective value of the conserved second-order
partial derivative.

− f = ( fx fy)

(
δx
δy

)
+ 1/2 · (δx δy)

(
fxx fxy
fxy fyy

)(
δx
δy

)
−g = (gx gy)

(
δx
δy

)
+ 1/2 · (δx δy)

(
gxx gxy
gxy gyy

)(
δx
δy

). (18)

From Equation (18), it can be found that this is a quadratic equation for δx and
δy. In order to conveniently solve it using linear equations, Equation (18) needs to be
reduced of order. Therefore, δxNR and δyNR can be substituted as a known value to obtain
the following:(

δx
δy

)
= −

(
fx +

1
2
(

fxxδxNR + fxyδyNR
)

fy +
1
2
(

fxyδxNR + fyyδyNR
)

gx +
1
2
(

gxxδxNR + gxyδyNR
)

gν +
1
2
(

gxyδxNR + gνyδyNR
))−1(

f
g

)
. (19)
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The values of ρ1 and ρ2 can be corrected by δx and δy of the above equation. Finally,
ρ1 and ρ2 can be solved by setting the convergence condition for the end of the iteration.
The introduction of the Gooding method in the above section provides some insight into its
principles. The method utilizes the improved Lambert’s equation to construct the objective
functions for ρ1 and ρ2 and solves them using Halley’s process. This leads to better
performance in terms of solution speed and error reduction. However, some shortcomings
of the Gooding method of IOD for very-short-arc space debris have been identified through
simulation experiments in a space-based observation environment: (I) The solution results
depend heavily on the initial value; (II) There exists an erroneous solution that converges to
the sensor; (III) The success rate of IOD is low (requirements needed for other applications,
such as initial orbit association); (IV) Measurement errors in the data seriously affected
the calculation of the results. Therefore, in order to meet the needs of IOD missions using
space-based space debris, there is an urgent necessity to carry out the improvement work
based on the Gooding method.

3. Improvement of the Gooding Method
3.1. SIVD Method

To address Problem (I), this paper proposes a method applicable to the initial value
selection of the Gooding method, the single-parameter initial value determination (SIVD)
method. A brief introduction is given below.

From Equations (1), (2), (4) and (5), it follows that

cos α = 1− s/a. (20)

Substituting Equation (10) into Equation (20), we obtain the following:

x2 = 1− s
2a

. (21)

The relationship between x and a can be seen from Equation (21). Since s is always
greater than 0, a < 0 can be derived when x > 1. This is not consistent with the elliptical
orbit parameter case. Therefore, the initial value should be chosen to avoid the case that
makes x > 1.

We first assume that the orbit of the object is a circular orbit, and an objective function
can be constructed using the angular data obtained from observations [28]. Obviously, in
theory ∆n(a) = 0.

∆n(a) = n1(a)− n2(a) (22)

where

n1(a) =
√

µ

a3 , n2(a) = arccos

(→
r 1 ·

→
r 2

a2

)
1

∆t

[
1 +

3J2

4a2

(
6− 8 sin2 i

)]
. (23)

The i is the inclination of orbit. According to Kepler’s third law, n1 in Equation (23)
can be calculated directly from the assumed a. The computation of n2 obviously needs the
geocentric vectors

→
r 1 and

→
r 2 of the target, which are computed as follows:

→
r i = ρi

→
λ i +

→
R i (24)

ρi =
√

a2 − R2
i sin2 zi − Ri cos zi (25)

Ri cos zi =
→
λ i ·

→
R i (26)

R2
i sin2 zi = R2

i − (Ri cos zi)
2 (27)
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where zi is the zenith angle. The geometric relationships are shown in Figure 3.

Figure 3. Geometry to compute geocentric vectors.

Finally, fast convergence can be achieved by using Newton’s iterative method (the
initial value can be chosen as a = 10, 000 km). Thus, the required initial value is obtained
(ρ1 and ρ2).

Since the above process is performed under the assumption that the orbit is circular,
further processing is required to minimize the effect of eccentricity. From Equations (6)–(9),
it can be seen that when the angle between the geocentric vectors of the two calendar ele-
ments is fixed, the larger the modulus of the two vectors, the larger x is. From Equation (23),
it can be seen that the solution of ∆n2 involves only the angle of the vectors. So, when
x is too large, it is usually caused by

∣∣∣→r 1

∣∣∣ or
∣∣∣→r 2

∣∣∣ being too large. The problem can be
solved by reducing ρ1 and ρ2. Since the eccentricity of the LEO target is generally less than
0.25 [29], the corrections (∆ρ1 and ∆ρ2) can be set to 10% of the values of ρ1 and ρ2, and
several iterations will converge.

3.2. Improvement of the Objective Function

In Section 2.2, Question (II) is posed. From Equation (12), it can be seen that there is
no essential difference in the geometrical relationship between the ground-based optical
surveillance and the space-based optical surveillance. Lambert’s equation is built on the
basis that the object follows Kepler’s motion as follows:

..
→
r = − µ∣∣∣→r ∣∣∣3

→
r . (28)

Clearly, the motion of ground-based sensors does not follow this equation, whereas

space-based sensors do. Thus, the object position vector
→
r j =

→
R j when ρi = 0 in

Equation (12). For space-based platforms, this still satisfies the solution of Lambert’s
equation. By substituting this result into the objective equation, it can be found that there is
still a solution.

To remove this trivial solution, the objective Function (29) needs to be downgraded.

f =

∣∣∣∣→ρ c

∣∣∣∣sin
〈→

λ3,
→
λ c

〉
. (29)

The objective function after being downgraded is f∣∣∣→ρ c

∣∣∣ = sin
〈→

λ3,
→
λ c

〉
= 0. It can be

noticed that the objective function becomes dimensionless. Since the magnitude of the
independent variable is in units of length, if this value is used for iteration, the deviation
from its required corrective value is too large. Therefore, the objective function can be set
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to f∣∣∣→ρ c

∣∣∣ ·
∣∣∣→r c

∣∣∣. Since the minimum value of
∣∣∣→r c

∣∣∣ is min{
∣∣∣∣→R3

∣∣∣∣ · sin z3,
∣∣∣∣→R3

∣∣∣∣} when
∣∣∣→ρ c

∣∣∣ > 0,

the objective equation constructed by this function will no longer have a trivial solution.
Figure 4 illustrates two objective function figures. It can be seen that (a) is a figure of the
original objective function with two equation solutions, one of which is the trivial solution,
while (b) is the figure of the improved objective function; there is only one solution to the
equation, and it still has the original convergence.

Figure 4. Objective function. (a) Figure of the original objective function; (b) Figure of improved
objective function. (The above figures are obtained by thresholding the function values, which are
retained when the function value is less than 50,000 m and set to null when it is greater than that.).

3.3. Restricted Corrective Value Solution Method

Gooding’s method has a high success rate but still fails to converge on about 10% of
the data. This is mainly caused by the large deviation from the corrective value. When the
independent variable is in the region where the slope tends to zero and the function value is
again large, according to Equation (19), the corrected value becomes extremely large at this
point. In the case of reasonable initial values, this is mainly due to the large corrective value,
which leads to an error in the x > 1 or ρi < 0 obtained from the independent variable.
Therefore, the problem that the independent variables will iterate to unreasonable values
needs to be removed. In this paper, we propose an approach to corrective value-solving
using constraints.

When the independent variable appears to be less than 0 (i.e.,
∣∣∣→ρ 1

∣∣∣ + D1 < 0 or∣∣∣→ρ 2

∣∣∣+ D2 < 0), let D1new = D2new = 1, 000, 000m · i (where i is the number of times the
independent variable appears to be less than 0). Similarly, for the independent variable
corresponding to the desired x > 1, let D1new = f sign(D1) · |D1|, D2new = f sign(D2) ·
|D2|, where f sign() is a signum function, −1 when the parameter value is greater than 0,
and 1 otherwise.

3.4. Fitted-Curve Noise Suppression Method

In a certain observation condition for many repeated measurements or in a time
series of measurements, there is always a value and sign are not fixed, without any law of
change, but the overall compliance with certain statistical characteristics (mean, variance
and distribution) of the error is called random noise. Problem (IV), obtained from the
analysis, shows that this error has a non-negligible effect on the Gooding method.

Polynomial fitting is simple, fast, and practical, which is more suitable for quickly solv-
ing the initial orbit. Two important parameters that affect the effectiveness of polynomial
fitting are the number of fitted points and the polynomial order. Since the observational arc
segment is very short, the variations in both right ascension and declination are extremely
small, and the change process is smooth. Therefore, the improvement needs can be achieved
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by using a third–order polynomial and fitting using all observations. For validation, the
existing observations are added to 4” Gaussian noise and then processed and compared
with higher–order polynomial fitted-curve noise suppression, respectively, and the results
are shown in Figures 5 and 6.

Figure 5. Right ascension error after the fitted-curve noise suppression method with different polyno-
mial orders. (a) third–order polynomial; (b) fifth–order polynomial; (c) seventh–order polynomial.

Figure 6. Declination error after the fitted–curve noise suppression method with different polynomial
orders. (a) third–order polynomial; (b) fifth–order polynomial; (c) seventh–order polynomial.

The three respective plots in Figures 5 and 6 show, from left to right, the error compared
to the original observation after noise suppression of the data points using third–, fifth–,
and seventh–order polynomials. It can be seen that the processed error is on the order of
10−6, with an RMS value of about 3.8 × 10−6. This shows that the method is effective in
minimizing the original noise. Also, from the comparison, it can be seen that higher-order
polynomials do not provide better noise suppression.

Aiming at the specific characteristics of space-based space debris observation and
combining with the improvement method proposed above, this paper proposes a very-
short–arc IOD method for LEO objects applicable to space–based sensors, the main flow of
which is shown in Figure 7.
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Figure 7. Flowchart of the improved Gooding method.

4. Results
4.1. Simulated Data

To validate the applicability of the proposed space-based IOD method, simulated data
are designed in this paper. The SWARM B satellite is selected as a space-based sensor. The
first set of data is obtained by predicting the global laser satellite observation data from
the ILRS (International Laser Ranging Service, LRS, Greenbelt, MD, USA) official website
(http://ilrs.gsfc.nasa.gov (accessed on 12 August 2023)) after precise orbit determination.
Another set of data comes from observations from the electrical-optical telescope array (EA) at
the Changchun Observatory. Observations after precise orbit determination are predicted and
then converted to the space-based sensor to obtain space-based space debris observations.

NP (normal point data) is a data product provided free of charge by ILRS (International
Laser Ranging Service, LRS) to researchers around the world, aiming to provide key technical
support and assurance for research in the fields of geodynamics, geodesy, geophysics, and
astronomy [30]. The electrical-optical telescope array (EA) at the Changchun Observatory
consists of eight transmission optical telescopes, imaging detectors, telescope bases, master
computers, GPS clocks, and observational positioning software systems. Each telescope has
an aperture of 150 mm, a focal length of 150 mm, a field of view of 198.81 square degrees,
and an overall surveillance sky coverage of up to 1590 square degrees. The main observation
object size can reach a 0.5~1 m space object; the time interval of the angular data of the same
object is about 1.7 s; and the error is about 8 arcseconds. In addition, each telescope has
a CCD camera with a resolution of 3056 pixel × 3056 pixel and a dedicated computer for
image processing [31–33]. Figure 8 shows a physical view of the device.

Figure 8. The electrical-optical telescope array (EA) at the Changchun Observatory.

http://ilrs.gsfc.nasa.gov
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Figures 9–11 show the target orbital characteristics of the two data sources, with a total
of 59 NP objects and 1330 objects observed by EA.

Figure 9. Distribution of SMA and the eccentricity for simulated data. (a) NP; (b) observations by EA.

Figure 10. Distribution of the inclination and the right ascension of the ascending node for simulated
data. (a) NP; (b) observations by EA.

Figure 11. Distribution of the argument of perigee for simulated data. (a) NP; (b) observations by EA.
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4.2. IOD Results

Firstly, the noise suppression effect is verified. A 4” Gaussian noise error is added
to the original NP data to generate control data. The same initial values (error less than
100 km) are used, and both utilize the Gooding method for IOD, and the results are shown
in Table 1. Since the position of the orbit is mainly related to SMA, inclination, and the
right ascension of the ascending node, the results of the comparison of the three errors are
shown in the table.

Table 1. Orbital parameter errors with and without noise suppression.

Noise Suppression SMA Errors Incl Errors Omega Errors
<200 km <1◦ <1◦

N 50% 60% 40%
Y 66% 84% 59%

Secondly, the SIVD is tested using the same data with a 4” Gaussian noise error. The
initial orbit determination is performed by Gooding. The SIVD was used for one set of
tests, and the usual initial value of 1.1 times the Earth’s radius was chosen for the other; the
results are shown in Table 2. Thirdly, Table 3 demonstrates the validation of the improved
objective equation using the same data. The initial value is 1.1 times the Earth’s radius.
Then, the restricted corrective value solution method is also validated using the control
variables method, and the result is shown in Table 4.

Table 2. Orbital parameter errors with and without SIVD.

SIVD
SMA Errors Incl Errors Omega Errors

<200 km <1◦ <1◦

N 50% 43% 19%
Y 80% 65% 44%

Table 3. Orbital parameter errors with and without improved objective function.

Improved Equation SMA Errors Incl Errors Omega Errors
<200 km <1◦ <1◦

N 50% 43% 19%
Y 83% 83% 57%

Table 4. Orbital parameter errors with and without the restricted corrective value solution method.

Improved Equation SMA Errors Incl Errors Omega Errors
<200 km <1◦ <1◦

N 50% 43% 19%
Y 60% 58% 23%

Finally, the validation of the improved method is carried out using larger quantities
of simulated data obtained from EA and real-world ground-based observations from EA.
The initial orbit is determined using the Gooding method and the proposed method for the
above-simulated data. The data arc length is 30 s to 40 s. In this paper, the success of IOD
is defined as the size of its SMA, ranging from 6400 km to 20,000 km in the case that the
iterative solution can converge. Since the table shows that 97% of the SMA errors of the
proposed method are less than 200 km, this definition does not make the results favorable to
one side of the proposed method. For simulated data obtained from EA, Table 5 shows the
statistical results of the SMA errors computed by the two methods, as well as the success
rates. Table 6 demonstrates the error statistics for the inclination and the right ascension of
the ascending node.
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Table 5. Performance of success rate and SMA errors of processing simulated data from EA with two
IOD methods.

Method
SMA Errors Success

Rate≤20 km ≤50 km ≤100 km ≤200 km

Gooding 29% 43% 48% 57% 90%
Proposed method 71% 88% 94% 97% 99%

Table 6. Performance of inclination errors and right ascension of ascending nod errors of processing
simulated data from EA with two IOD methods.

Method
Incl Errors Omega Errors

≤0.1◦ ≤1◦ ≤0.3◦ ≤1◦

Gooding 29% 49% 15% 33%
Proposed method 59% 98% 49% 94%

For real-world ground-based observations from EA, Table 7 shows the results of
processing using the Gooding method, the improved Gooding (I-Gooding) [26], the RS
method (range-search-based IOD method, RS method) [20], and the proposed method.
The I-Gooding method is to change the matrix of iteration coefficients (calculated from
the observed data with errors) by using the matrix of iterative coefficients obtained from
multiple observations to improve the iterative process. The error |O− C| of the result
can be found by obtaining all the orbital parameters obtained from Two Line Elements
(TLEs) of the public NORAD (North American Aerospace Defense Command, NORAD,
Colorado Springs, CO, USA) catalog. Due to the cyclic variation of the right ascension of
the ascending node, the statistics of its error extend to 3◦. Also, the average computation
time for each algorithm was counted. The above experiments are implemented on the
MATLAB R2022a platform based on the MATLAB language. The processor of the computer
used for the experiment is an AMD Ryzen 5 5600U with Radeon Graphics 2.30 GHz.

Table 7. Performance of processing real-world ground-based observations from EA with some
IOD methods.

Success Rate Computing
Time/s

SMA Errors
≤100 km

Omega
Errors ≤3◦

Incl Errors
≤1◦

Gooding 90% 0.04 28% 98% 98%
I-Gooding 61% 0.38 34% 30% 35%
RS method 85% 0.82 92% 89% 99%

Proposed method 99% 0.07 93% 99% 99%

5. Discussion

The simulated data are reasonable. From Figure 9, we can see that the objects’ SMA
(semi-major axis) ranges from 6500 km to 13,000 km, and the eccentricity ranges from 0
to 0.14. In addition, the eccentricity of less than 0.05 and the SMA of less than 8500 km
are both 99% of the quantity. From Figure 10, it can be seen that the objects’ inclination
ranges from 0 to 360◦, and the right ascension of the ascending node ranges from 0 to
120◦ (this has a strong relationship with the sensor’s location at high latitudes and its
observation methodology). However, Figure 10b shows that some objects have the same
inclination. Many of these co-planar satellites are star-link satellites. Figure 11 shows that
the argument of perigee ranges from 0 to 360◦. As can be seen, these data distributions
above are comprehensive and homogeneous and contain the orbital characteristics expected
of LEO targets.

From Table 1, it can be seen that after processing with the proposed noise suppression
method, the accuracy of each track is significantly improved. The improvement in the
SMA, the inclination, and the ascending node declination is relatively greater, reaching
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32%, 40%, and 47.5%, respectively. At the same time, this shows that the 4” level of noise
error in the observations does have a significant influence on the IOD calculation using the
Gooding method. However, in conjunction with Figures 5 and 6, it can be seen that the
processed observations still have Gaussian noise errors of about 1” and still affect the IOD
results. Therefore, the proposed method may not give better results when the accuracy of
the observation equipment used is high.

The SIVD method and the improvement of the objective function have significantly
improved the accuracy of the Gooding method for processing space-based observations.
From Table 2, it can be seen that the Gooding method with SIVD has better performance for
solving each parameter. The improvement reaches 40~65%. This is mainly due to the fact
that the SIVD can provide an initial value with a small error, which makes the convergence
result converge to the true solution instead of incorrect solutions (e.g., trivial solutions,
negative values, etc.) and also reduces the number of iterations. The result shown in Table 3
indicates that the improved objective function allows the Gooding method to be applied to
space-based observations. In the example of the SMA, the percentage of errors less than
200 km reaches 83%, which is a 33% improvement compared to the Gooding method. The
improved objective equation removes the trivial solution, which makes it possible for even
large errors in the initial value not to cause the result to converge to the trivial solution, so
the overall accuracy is improved. From Table 4, we can see that the restricted corrective
value solution method offers relatively little improvement to the Gooding method, mainly
due to the fact that the corrective value does not have a significant effect on the solution
and convergence trend.

The improved method in this paper has better performance in processing larger
quantities of simulated space-based data. As can be seen from Table 5, the method proposed
in this article has better performance in terms of success rate, reaching 99%. Secondly, for
each interval of the semi-major axis error, the proposed method is consistently better than
the Gooding method. Especially in the smaller error interval of ≤20 km, the proposed
method accounts for 71%, equivalent to 2.4 times that of the Gooding method. In Table 6, it
can be seen that the proposed method still performs better. Within the error range of ≤1◦,
the proportions of the proposed method’s output results are 2 to 3 times higher compared
to the Gooding method and are all above 90%. Then, the proposed method still performs
better in intervals where the error is much smaller. Taking the error of the right ascension
of the ascending node as an example, within the error range of ≤1◦, the proportion of
the proposed method’s output results is 3.1 times higher compared to Gooding’s method,
reaching 49%. Next, the comparison reveals that the algorithms in this paper have the same
and uniform degree of accuracy enhancement for the inclination and the right ascension of
the ascending node.

The improved method has the best performance in processing larger quantities of
real-world data (results in Table 7). Firstly, in terms of success rate, the proposed method
still achieves a success rate of 99%, which shows that it has excellent stability in handling
different types of data. Secondly, the proposed method inherits the computational efficiency
of the Gooding method, and due to the characteristics of the geometric model used in the
method, the computational speed of the method does not decrease due to the increase in the
number of data points in the arc length. The computing time of the average improvement
method is about 0.07 s, which is much less than the period (1~2 s) for the sensor to collect
data. The I-Gooding method has a 61% success rate. This is mainly due to the fact that
the method requires an initial value with high precision (error less than 5 km), and the
experience threshold also affects the result [26]. The average computation times of the RS
method and the I-Gooding method are 0.82 s and 0.38 s, respectively. This is because both
of them need to compute all the observations of a segment (the computation time increases
as the arc length increases), and the RS method needs to perform the orbital prediction, so
its computation time is longer.

In terms of accuracy, the proposed method performs best on all three orbit parameters
of the solutions. Three methods have the same performance in terms of inclination errors.
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The Gooding method has a significant gap in solving SMA relative to the other two methods.
Errors of less than 3◦ in the right ascension of the ascending node reached only 89% of the
solutions calculated by the RS method. This may be related to its general performance in
describing track-plane pointing [26].

Through the above experimental results, it can be seen that the proposed method is
better than the Gooding method in terms of overall results. First, the proposed methods all
achieved a success rate of about 99%. Secondly, in terms of error, there is an improvement
in all orbital parameters. For example, in terms of the SMA of the orbit, the proportion of
results with an error of less than 100 km is around 94%. Compared to the Gooding method,
this result has improved by nearly double. The proposed method also performs well in
terms of computational efficiency. The average computation time is about 0.065 s, which is
much smaller than the arc length of the observed data as well as the sampling period.

6. Conclusions

In this paper, the Gooding method is analyzed for application to IOD in space-based
observation environments, and a new method for IOD is proposed based on it. We evaluate
the proposed method in comparison to the Gooding method, and the simulation results
not only validate our theoretical derivation but also show that the overall results of the
proposed method are better than those of the Gooding method. Among them, the proposed
method can reach 99% in terms of success rate. The proportion of computed results with an
SMA error of less than 100 km, an inclination error of less than 1◦, and a right ascension of
the ascending node of less than 1◦ all exceed 90%. Since IOD is the key to cataloging space
debris, the proposed method would significantly contribute to cataloging space debris in
the future. For example, the higher the initial orbit accuracy, the faster the convergence
speed of accurate orbit determination. In addition, with higher accuracy of the initial
orbit parameters, the arc segments can be briefly categorized, which is very helpful for the
efficiency of the initial orbit association. Secondly, the improvement of its success rate is
also based on this. In the future, we plan to conduct a study of the initial orbit association
based on the proposed method, followed by applying the method to the IOD of GEO objects
and analyzing its performance. Meanwhile, we will further study the noise processing of
the observations in the hope of finding a more effective noise-suppression method.
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