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Abstract: Hyperspectral image (HSI) classification, due to its characteristic combination of images
and spectra, has important applications in various fields through pixel-level image classification. The
fusion of spatial–spectral features is a topic of great interest in the context of hyperspectral image
classification, which typically requires selecting a larger spatial neighborhood window, potentially
leading to overlaps between training and testing samples. Vision Transformer (ViTs), with their pow-
erful global modeling abilities, have had a significant impact in the field of computer vision through
various variants. In this study, an ensemble learning framework for HSI classification is proposed
by integrating multiple variants of ViTs, achieving high-precision pixel-level classification. Firstly,
the spatial shuffle operation was introduced to preprocess the training samples for HSI classification.
By randomly shuffling operations using smaller spatial neighborhood windows, a greater potential
spatial distribution of pixels can be described. Then, the training samples were transformed from
a 3D cube to a 2D image, and a learning framework was built by integrating seven ViT variants.
Finally, a two-level ensemble strategy was employed to achieve pixel-level classification based on the
results of multiple ViT variants. Our experimental results demonstrate that the proposed ensemble
learning framework achieves stable and significantly high classification accuracy on multiple publicly
available HSI datasets. The proposed method also shows notable classification performance with
varying numbers of training samples. Moreover, herein, it is proven that the spatial shuffle operation
plays a crucial role in improving classification accuracy. By introducing superior individual classifiers,
the proposed ensemble framework is expected to achieve even better classification performance.

Keywords: vision transformer; hyperspectral image classification; ensemble learning; spatial shuffle

1. Introduction

Remote sensing, with its advantages of wide observation ranges, short time cycles,
and dynamic tracking, has become the primary means of Earth observation. Hyperspectral
remote sensing technology, as an organic combination of spectral and imaging techniques,
uses imaging spectrometers to measure radiation intensity within a wide spectral range for
specific scenes, generating a data cube that combines one-dimensional spectral responses
with two-dimensional spatial information. This enables the synchronous acquisition of
geometric, radiometric, and spectral information pertaining to target objects. Compared
to traditional remote sensing, hyperspectral remote sensing provides more abundant
spectral–spatial information, greatly promoting the transition from qualitative analysis
to quantitative analysis in remote sensing [1]. The spectral fusion characteristic of hy-
perspectral image (HSI) data gives it prominent advantages in the fine classification and
identification of land cover, making it widely applied in fields such as geological survey [2],
precision agriculture [3], forest inventory [4], environmental monitoring [5], biomedical
research [6], and more.

HSI data has the advantage of high spectral resolution, allowing it to capture delicate
spectral characteristics of the interested target. This has made land cover classification a
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popular research direction in the field of HSI analysis [7]. Considering the high-dimensional
nature of HSI samples, researchers have applied various machine learning methods to HSI
classification over the past few decades, including logistic regression [8], Support Vector
Machines (SVM) [9], Sparse Representation [10], Random Forest (RF) [11], and Decision
Trees [12]. However, due to the limited number of available training samples regarding HSI
data, which often cannot satisfy the requirements of the spectral dimension, these classifiers
still exhibit inadequate classification performance on the original data [13]. Additionally,
the high-spectral-resolution HSI data inevitably contain a certain amount of redundant
information between adjacent spectral bands [14], and the original spectral features are
often not the most effective representation for distinguishing the target of interest.

To address the aforementioned problems, HSI feature extraction methods have emerged.
The purpose of these methods is to explore discriminative information of different objects
in order to enable more accurate category prediction in the feature space via the use of
classifiers. Early feature extraction methods include singular spectrum analysis (SSA) [15],
principal component analysis (PCA) [16], linear discriminant analysis (LDA) [17], and
independent component analysis (ICA) [18], which primarily extract features by learning
linear combinations of independent pixels. However, these methods often lack the consid-
eration of spatial contextual information, leading to issues such as outliers and pixel-level
misclassification in the resulting classification maps, seriously affecting the reliability of
the results. As a result, more research studies have focused on how to extract effective
spatial information and integrate it with spectral information for classification tasks [19].
Ref. [20] leverages the advantages of edge-preserving filters (EPF) in extracting image
spatial structures by adjusting the parameters of the filters to obtain hyperspectral image
spatial information at different scales. In [21], HSI data were treated as a complete tensor,
and a three-dimensional discrete wavelet transform was designed to decompose the data
into geometric and statistical spatial structures.

The deep learning techniques in HSI classification have received widespread attention
in recent years. Researchers have proposed deep learning-based multiscale spatial–spectral
classification methods. Compared to traditional methods, deep neural networks have the
advantage of extracting high-level nonlinear features from images [22]. In a study by Liang
et al., the VGG16 network was used to extract spatial information at different levels of HSI
as spatial features at different scales [23]. Wang et. al designed multiscale feature extraction
sub-networks for the spectral and spatial information of HSI data. They proposed an
adaptive spectral and spatial feature combination method, achieving the collaborative
classification of spectral information [24]. A model combining a Convolutional Neural
Network (CNN) and Recurrent Neural Network (RNN) was proposed to enhance the
discriminative ability of spectral features in [25]. A deep 1D CNN model, which takes pixel
vectors as input data and performs classification on hyperspectral data only in the spectral
dimension, achieved outstanding accuracy surpassing traditional SVM classifiers [26].
Wan et al. introduced a Graph Convolutional Network (GCN) to overcome the issue of
traditional CNN models’ inability to adapt to the distribution and geometric shapes of
different objects. They constructed multiple input graphs with different neighborhood
scales to achieve multiscale classification [27].

The Vision Transformer (ViT) [28] is the first transformer network for the visual do-
main. The network treats image patches as inputs and maps them into features that are
integrated into the ViT model. Following the emergence of ViTs, many studies have aimed
to incorporate transformers such as IPT [29], PVT [30], and the Swin Transformer [31] into
image processing. Wang et al. combined K-nearest neighbor attention to utilize the local
features of image patches and suppressed redundant information by only considering a
subset of attention weights with the highest similarity [32]. Mou et al. designed a spectral
attention module that applies different attention weights to guide the network to focus on
discriminative spectral information through a gating mechanism [33]. Refiner explored
the potential of attention expansion in high-dimensional space and enhanced the local
structural characteristics of attention maps using convolutional operations [34]. Zhu et al.
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studied the attention mechanism in spectral and spatial information and proposed the
Residual Spectral–Spatial Attention (RSSAN) mechanism [35], which selectively captures
useful features in the spectral and spatial dimensions to improve hyperspectral classifica-
tion. He et al. introduced a bidirectional encoder representation from a transformer (BERT)
model [36], and a new feature channel-based attention calculation method which improves
the processing efficiency of high-resolution images compared to existing token-based atten-
tion calculation methods was also proposed [37]. Hong et al. proposed SpectralFormer [38],
which captures local spectral sequence knowledge from neighboring spectral bands through
pixel- or patch-wise inputs. Zhong et al. introduced a spectral-spatial transformer network,
which includes a spatial attention module and a spectral correlation module [39]. Some
new transformer-based architectures [40–46] were employed in HSI classification fields and
achieved good performance.

In all supervised learning algorithms, the ultimate goal is to train a model that per-
forms well in all aspects and remains stable. However, achieving such ideal results is often
challenging. In many cases, only multiple models that excel in certain aspects can be trained
(known as weakly supervised models). Ensemble learning aims to combine these weakly
supervised models to create a more robust and accurate strongly supervised model. The
fundamental idea behind ensemble learning is that by fusing predictions from diverse weak
classifiers, errors made by one classifier can be corrected by others, ultimately improving
overall performance. Typically, we test new data using a well-converged network to achieve
good prediction results. However, in the case of HSI classification, when training samples
are limited, a single classification network may perform poorly. Continuously improving
the model structure and introducing more feature extraction modules can enhance the
network’s feature extraction ability, which can theoretically continuously improve clas-
sification accuracy. However, this approach requires more data and greater algorithm
requirements, meaning that it is more costly. The advantage of ensemble learning lies in
its fewer requirements for each participating algorithm. By designing different ensemble
strategies, it often achieves unexpectedly good classification accuracy, so it has a wide
range of practical applications. Therefore, this paper adopts an ensemble learning approach
using a two-level ensemble strategy to combine the outcomes of several single-classification
networks based on ViT. Due to their different architectural designs, each ViT model has
different feature extraction capabilities and can extract features for classification from mul-
tiple different aspects, which ensures that each basic ViT classifier has a large degree of
diversity. Hence, the proposed approach yields stable and high-performing classification
maps for HSI classification.

The main contributions of this paper are as follows:

1. Proposed an ensemble learning framework based on ViT that combines the classifica-
tion performance of multiple ViT models using two levels of ensemble strategies. The
two ensemble strategies consistently achieve higher classification accuracy compared
to individual ViT methods.

2. Introduced the spatial shuffle pre-processing technique, which converts the three-
dimensional cubic data into two-dimensional images for processing, making it more
suitable for the ViT architecture.

3. With the two-level ensemble strategies, there is no need to divide a validation set to
maximize the utilization of all precious and limited training data. Instead, the models
from each training epoch can be directly used for predictions on the test data. The
predictions are then ensemble, eliminating the impact of model fitting parameters and
achieving more stable and higher classification accuracy.

The following sections of this manuscript are structured as follows. Seven ViT-based
methods are described in Section 2, as well as the spatial shuffle preprocessing operation
and the ensemble strategy used in this study. Sections 3 and 4 present the comparative
experiments and the corresponding discussions, respectively. Section 5 presents the con-
cluding remarks of the study.
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2. Proposed Method
2.1. ViT [28]

ViT is a model that utilizes the transformer architecture for image classification pur-
poses. Its simplicity, excellent performance, and scalability have made ViT a significant
milestone for the application of transformers in computer vision. While transformers
have been widely used in natural language processing tasks, their application in com-
puter vision still has certain limitations. Presently, in the domain of computer vision,
attention mechanisms are either integrated with CNNs or employed to substitute specific
components of CNNs while keeping the overall structure intact. However, ViT challenges
this conventional reliance on CNNs by demonstrating that using pure transformers on
sequences of image patches can effectively perform image classification tasks. Through
the authors’ experiments, ViT has shown outstanding results while consuming fewer
computational resources.

ViT divides the input image into 16 × 16 patches and converts them into fixed-length
vectors. These vectors are then processed by a transformer for further computations. The
subsequent encoder operations maintain the same principles as the original transformer
model. However, for image classification purposes, a special token is included in the input
sequence. The output corresponding to this token determines the predicted class of the
image. The basic process is as follows: First, the input image is divided into patches, with
each patch having a size of 16 × 16. Then, each patch is passed through an embedding
layer known as the Linear Projection of Flattened Patches, which produces a series of
vectors (tokens), with each patch corresponding to one vector. Additionally, a special token
for classification is added before all the vectors, with the same dimension as the other
vectors. Positional information is also incorporated. Next, all tokens are input into the
transformer encoder, and the encoder is stacked L times. The output of the special token
for classification is then fed into an MLP Head, resulting in the final classification result.

2.2. SimpleViT [47]

The main differences from ViT are as follows: the batch size is 1024 instead of 4096,
it uses global average or max pooling without a class token, it incorporates fixed sin–cos
positional embeddings, and it applies data augmentation techniques such as Randaug-
ment and Mixup. This baseline model can further be optimized by adding regularization
techniques like dropout or random depth, advanced optimization methods like SAM, addi-
tional data augmentation methods like Cutmix, high-resolution fine-tuning, and knowledge
distillation for strong teacher supervision.

2.3. CaiT [48]

Based on previous experiences, increasing the depth of a model can allow the network
to learn more complex representations. For example, models like ResNet have shown
improved accuracy as the depth increases from 18 to 152 layers. However, in the case of
transformers, expanding the architecture leads to difficulties in training, and instability in
depth is one of the main challenges. To address this issue, CaiT proposes two improvements.

Firstly, after analyzing the interactions between different initialization methods, opti-
mization techniques, and architectures, CaiT introduces a method called LayerScale. This
method effectively enhances the training of deeper architectures. The technique known
as LayerScale introduces a trainable diagonal matrix to the branches of each residual
block in image transformers. This matrix is initialized near zero but not exactly zero. By
incorporating this layer after each residual block, the dynamic training capabilities are
enhanced, allowing for the training of deeper and higher-capacity image transformers. The
LayerScale method greatly facilitates convergence and enhances the accuracy of image
transformers with increased depth. Despite adding several thousand parameters to the
network during training, while the overall weight count remains negligible, the LayerScale
has a beneficial effect.
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Another aspect of CaiT is the inclusion of class–attention layers, which effectively
distinguish between the transformer layers responsible for processing patches and the
class–attention layers. The primary purpose of these class–attention layers is to extract the
information from processed patches into individual vectors, facilitating their use in a linear
classifier. By explicitly separating these layers, CaiT prevents conflicting objectives that
may arise when dealing with class embeddings. This architectural design is known as CaiT.

2.4. DeepViT [49]

Deep transformers exhibit increasingly similar attention maps as they get deeper, to
the point of being nearly identical in certain layers. In essence, the feature maps in the upper
layers of deep ViT models tend to exhibit similarity. This suggests that in deeper ViT models,
the self-attention mechanism struggles to learn effective representations and hinders the
expected performance improvement. Based on these observations, DeepViT introduces a
straightforward and efficient technique known as Re-attention to enhance the variety of
attention maps across various layers, all while incurring minimal computational costs and
storage. By making minor adjustments to existing ViT models, this method enables the
training of deeper ViT models, resulting in consistent performance enhancements. The
idea behind Re-attention comes from observing that the similarity between attention maps
from different heads in the same block is relatively low, even at higher layers. Therefore,
a learnable transformation matrix is multiplied with the multi-head attention maps to
generate new attention maps. The Re-attention layer enhances the diversity of attention
across different layers. The improved ViT-32 achieves a 1.6% improvement on the ImageNet-
1K dataset.

2.5. ViT with Patch Merger (ViTPM) [50]

Transformers are widely used in natural language understanding and computer vision
tasks. While expanding these architectures can enhance performance, it often comes at
the cost of higher computational expenses. To make large-scale models practical in real-
world systems, it is necessary to reduce their computational costs. PatchMerger is a ViTs
module that minimizes the number of tokens/patches fed into each transformer encoder
block, preserving performance and reducing computational load. Utilizing a learnable
weight matrix, it achieves this by applying a linear transformation to the input with shape
N patches × D dimensions. The result is a tensor with shape M output patches × D
dimensions. From this, M scores are generated and softmaxed individually. The resulting
tensor, with shape M × N, is multiplied with the original input to yield an output of shape
M × D. PatchMerger achieves significant acceleration across different model scales and
matches the original performance in upstream and downstream tasks after fine-tuning.

2.6. Learnable Memory ViT (LMViT) [51]

Learnable memory ViT enhances visual transformer models by using learnable mem-
ory tokens. This method allows the model to adapt to new tasks with minimal parameters
while selectively retaining its capabilities from previous tasks. At each layer, a set of learn-
able embedding vectors, known as “memory tokens”, are introduced to provide contextual
information that is useful for specific datasets. Compared to traditional fine-tuning focused
only on the heads, this approach enhances model accuracy by using a small number of
tokens per layer, with performance being slightly below that of expensive full fine-tuning.
This model proposes an attention masking method that can be extended to new down-
stream tasks and allows for computational reuse. In this setup, the model can execute new
and old tasks as part of a single inference with a small incremental cost while achieving
high parameter efficiency.

2.7. Adaptive Token Sampling ViT (ATSViT) [52]

Traditional visual transformer models have high computational costs and large pa-
rameter sizes, making them unsuitable for deployment on edge devices. While reducing
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the number of tokens in the network can decrease the GFLOPs, it is not possible to set the
optimal tokens for different input images. During the classification process, not all image
information is necessary, and depending on the image itself, some pixels in the image
may be redundant or irrelevant. This model proposes the Adaptive Token Sampler (ATS)
module based on self-attention matrices, which scores tokens to minimize information
loss and remove redundant information from the input. This approach overcomes the
limitations of introducing additional overhead in DynamicViT and achieves a reduction
in computational costs and model parameters for visual transformers without the need
for pre-training. The accuracy of the model is related to the number of input patches.
Traditional CNNs use pooling operations, which gradually reduce the spatial resolution
of the network and decrease model accuracy. Static sampling can lead to the neglect of
important information or information redundancy. Therefore, this approach proposes a
method for adaptively adjusting the number of tokens at different stages to achieve the
goal of not ignoring important information while not wasting computational resources.
The ATS module is integrated into the self-attention layer of the ViT block. It first scores the
classification tokens using self-attention weights, then uses an inverse transformation to
select a subset of tokens based on the scores, and finally performs soft token downsampling
to remove redundant information from the output tokens with minimal information loss.

2.8. Spatial Shuffle Preprocessing

Fusing spatial and spectral features is a research hotspot in hyperspectral image
classification. By processing the pixel information in the N × N neighborhood surrounding
the current pixel, spatial features can be extracted and combined with spectral features
to achieve high-accuracy classification. In the study of HSI classification, it is crucial to
choose a specific number of labeled training sample pixels and capture the pixels within
a designated neighborhood window surrounding these samples. This process involves
two issues. The first issue is determining the number of training sample pixels to select.
Choosing more training sample pixels can improve accuracy, but it may be challenging to
obtain a large number of training sample pixels in practical applications, which reduces
usability. Selecting fewer training sample pixels increases the difficulty of classification and
may lead to the overfitting of deep learning models. Current research primarily focuses
on how to improve classification accuracy in low-training sample scenarios. The second
issue is determining the size of the neighborhood window. Using a larger neighborhood
window can improve accuracy but might lead to increased dependency between training
and testing samples. To mitigate this concern, a smaller neighborhood window is selected
to minimize the correlation between the training and testing samples. However, this choice
also reduces the number of spatial features and can potentially result in decreased accuracy.

In order to address the aforementioned issues, Wang et.al [53] proposes a strategy
called “spatial shuffle”. After obtaining the neighboring pixels of each training sample, this
strategy involves randomly shuffling the positions of the pixels within the neighborhood,
excluding the center pixel. Each shuffle generates a new neighborhood sample, which
simulates potential pixel distribution patterns in the real world. For a 5 × 5 neighborhood,
theoretically, it can produce 24! = 6.2 × 1023 unique samples. This approach effectively
alleviates the overfitting problem caused by a limited number of training samples in deep
learning. Additionally, by increasing the training sample size, more diverse spatial features
can be extracted, thereby improving classification accuracy.

Based on the principle of spatial shuffle and considering the requirements of the ViT
for input data, the following preprocessing steps, which are the same as Ref. [53], are
performed for HSI training samples:

1. For a given dataset, a training sample proportion is set, such as selecting 10% of
samples from each class. Then, the N × N neighborhood of each training sample is
obtained, resulting in a three-dimensional data cube with dimensions of N × N × B,
where B represents the number of spectral bands.
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2. The position of the center pixel is fixed, while the other pixels within the neighborhood
are randomly shuffled. Each shuffle transforms the N × N × B data cube into a two-
dimensional image with a height of N × N and a width of B.

3. The aforementioned shuffle operation is performed 100,000/M times for each training
sample from every class, where M is the number of training samples selected from
that class. Consequently, each class ends up with 100,000 training samples.

4. After applying the shuffle operation to all training samples, a new dataset consisting
of C × 100,000 training samples is formed, where C represents the total number of
classes in the dataset.

5. Based on this new training sample dataset, various ViT models can be trained.

2.9. Ensemble Strategy

The proposed HSI classification scheme based on ensembled ViT is illustrated in
Figure 1.
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The ensemble strategy described in this paper consists of two levels:
At the individual model level, due to the limited number of labels in each HSI dataset,

the paper only divides the dataset into training and testing sets, without creating a separate
validation set. Instead, a strategy based on majority voting is used for ensemble. Specifically,
after each training epoch, the trained model is used to predict the labels for all the test
samples, resulting in a predicted classification map. As the training progresses, multiple
predicted classification maps are generated. After several training epochs, a pixel-level
majority vote is conducted on all the generated predicted classification maps. This involves
counting the occurrences of each class for each pixel across the different predicted maps
and selecting the class with the highest count as the final classification result for that pixel.
By employing this approach, the prediction for all the test samples can be completed. This
voting-based ensemble strategy takes into account the prediction results from multiple
training epochs to improve classification accuracy.

At the multiple model level, two ensemble voting strategies are employed. The first
strategy (Ens1) involves conducting majority voting on the predicted classification maps
from all epochs of each individual method. For instance, if there are N methods and each
method undergoes M epochs of training, resulting in N × M predicted classification maps,
the strategy involves performing a majority vote for each pixel of the test samples among
the N × M predicted results and selecting the class with the highest number of votes as the
label for that pixel. The second strategy (Ens2) starts with conducting a majority vote for
each individual method, resulting in predicted classification maps for the N methods. Then,
another round of majority voting is performed on the predicted classification maps of each
method to obtain the final predicted classification map. The distinction between these two
strategies lies in the treatment of weights for each method. Since each method may have
different classification performance, the number of votes obtained through majority voting
may vary for each method. For example, assuming 100 epochs of training for three methods,
the highest votes obtained for each test pixel might be 90, 70, and 50 for the respective
methods. In the first strategy, the weights for the three methods would be calculated as
follows: 90/(90 + 70 + 50) = 9/21, 70/(90 + 70 + 50) = 7/21, and 50/(90 + 70 + 50) = 5/21.
However, in the second strategy, the weights for the three methods would be equal: 1/3,
1/3, and 1/3. Therefore, there could be slight differences in the final classification accuracy
values of these two strategies.

3. Experiments and Results
3.1. Parameter Settings

To validate the effectiveness of the algorithm proposed in this paper, four publicly
available HSI datasets were utilized, including Indian Pines (IP), Salinas Valley (SV), Uni-
versity of Pavia (UP), and Kennedy Space Center (KSC). Four traditional machine learning
algorithms, namely multinomial logistic regression (MLR) [54], SVM [9], extreme learning
machines (ELM) [55], and RF [11], were employed. Additionally, two convolutional neural
network models—CNN2D [56] and PPF [57]—were utilized. Moreover, seven ViT-based
algorithms, namely ViT, SimpleViT, CaiT, deepViT, ViT with Patch Merger, Learnable
Memory ViT, Adaptive token sampling, and the recently proposed SpectralFormer with
both pixel-wise and patch-wise models, were employed. For the seven ViT algorithms,
single-level ensemble strategy and two multi-level ensemble strategies were employed to
obtain classification images to facilitate a comparison in terms of algorithm performance.

The experimental system platform used in the study was Ubuntu 16.04.1 LTS, with
the deep learning library being Pytorch 1.0 and Python version 3.6. The GPU hardware
used was NVIDIA TITAN XP with 12 GB of VRAM.

The parameter settings for each algorithm were as follows:

- MLR, SVM, and RF were implemented using the scikit-learn machine learning library
in Python (with default parameters).

- ELM was implemented using the scikit-elm library in Python (also with default
parameters).
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- CNN2D utilized a patch size of 5 × 5. Its network structure, following the original
paper’s design, consisted of two convolutional layers (3 × 3), followed by a BN (Batch
Normalization) layer and ReLU activation. A fully connected layer was then employed
for pixel-level classification.

- PPF, similar to CNN2D, used a patch size of 5 × 5. The network structure was based
on the original paper’s design.

The seven ViT-based algorithms share the same backbone network hyperparameters.
The dimension (dim) is set to 512, the number of transformer modules (depth) is 6, the
number of heads in the multi-head attention is 16, the number of neurons in the hidden
layers of the multi-layer perceptron (mlp_dim) is 1024. The dropout rate for both the regular
dropout and the embedding dropout is set to 0.1. The patch size is 12, and the number of
input image channels (channels) is 1. The input is a 25 × B image after spatial shuffling
with a 5 × 5 patch size, where B is the total number of original bands in the dataset. In the
original ViT paper, a patch size of 14 or 16 is recommended. Considering that the input
image of 25 × B should be evenly divided into patch size × patch size small blocks, a patch
size of 12 is chosen. The input image is then resampled to 25 × 96, discarding the last row,
resulting in a final input image of 24 × 96. This slightly sacrifices some input information,
but since the University of Pavia dataset used in the experiment has only 103 bands while
other datasets have more than 103 bands, the input image is resampled to 96 bands for
the sake of using the same network architecture and maximizing the utilization of dataset.
This setting can be adjusted according to the specific use case. Every one of the seven ViT
variant algorithms also has specific hyperparameters. For example, in CaiT, the depth of
cross-attention of CLS tokens to patch (cls_depth) is set to 2, and the layer dropout is set to
0.05. In ViT with Patch Merger, the patch_merge_layer and patch_merge_num_tokens are
set to 6 and 8, respectively. In ATS, max_tokens_per_depth, which denotes the maximum
number of tokens any given layer should have, is set to (256, 128, 64, 32, 16, 8). If a layer
exceeds this number, it will undergo adaptive token sampling. In SpectralFormer, for the
patch-wise mode, the patch size is set to 7. The results for a patch size of 5 are also provided
to ensure alignment with the original paper.

3.2. IP Dataset

The IP dataset was obtained using the Airborne Visible Infrared Imaging Spectrometer
(AVIRIS) sensor. It has a spectral range of 400–2500 nanometers, a spatial resolution of
20 m, and a size of 145 × 145 pixels. After excluding 24 bands with missing values or water
vapor absorption, there are still 200 bands remaining. The labeled ground truth for this
experiment consists of 16 land cover classes. Overall, 10% of the labeled samples were
selected as training samples, while the remaining samples were used as testing samples.
The specific land cover classes and sample quantities are shown in Table 1.

From the classification results shown in Figure 2 (below), it can be observed that
all machine learning methods—CNN2D, PPF, and SF_pixel—have a significant degree
of misclassification, as indicated by the prominent noise speckles across multiple classes.
Patch-based SF and ViT-based methods using the spatial shuffle strategy have achieved
significant visual improvements, with a noticeable reduction in noise speckles. The ViT-
based approach has even achieved close to 100% accuracy on certain classes.

Tables 2 and 3 provides the classification performance of each method on each class
and the overall classification accuracy. It can be observed that the overall classification
accuracy and Kappa coefficient of the machine learning methods are significantly lower
compared to other methods. The PPF method even fails to correctly distinguish classes
1, 7, and 9 due to their small training sample sizes. CNN2D, SF_pixel, SF_Patch5, and
SF_Patch7 also perform poorly on classes 1, 7, and 9 due to the same reason, but the
Patch-based SF method performs noticeably better than the pixel-based SF method. The
ViT-based method with spatial shuffle and the two ensemble strategies achieve significantly
better classification accuracy compared to other methods and show clear advantages in
classes with few training samples. On this dataset, the classification accuracy of the two
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ensemble strategies surpasses other ViT-based methods, demonstrating the stability of the
ensemble strategies.

Table 1. Land cover classes and sample quantities of IP dataset.

No Class Name Training Num Testing Num

1 Alfalfa 5 41
2 Corn-notill 143 1285
3 Corn-min 83 747
4 Corn 24 213
5 Grass/Pasture 48 435
6 Grass/Trees 73 657
7 Grass/pasture-mowed 3 25
8 Hay-windrowed 48 430
9 Oats 2 18
10 Soybeans-notill 97 875
11 Soybeans-min 246 2209
12 Soybean-clean 59 534
13 Wheat 21 184
14 Woods 127 1138
15 Bldg-Grass-Tree-Drives 39 347
16 Stone-steel towers 9 84

Total 1027 9222

Table 2. Objective evaluation of methods on IP dataset.

MLR SVM RF ELM CNN2D PPF SF_Pixel SF_Patch5 SF_Patch7

1 14.29 0.00 0.00 2.38 9.52 0.00 4.76 16.67 42.86
2 74.18 60.19 66.72 75.89 78.30 85.07 70.68 85.38 86.70
3 45.82 32.56 53.89 51.30 84.58 71.61 56.05 85.59 91.07
4 40.19 24.30 26.64 26.17 56.07 64.49 62.62 71.50 69.16
5 88.33 90.95 85.95 85.24 90.95 92.38 84.29 88.10 89.76
6 93.76 94.98 93.15 94.98 99.54 98.48 94.98 98.63 98.63
7 23.08 15.38 0.00 7.69 7.69 0.00 53.85 23.08 26.92
8 98.38 99.30 99.30 97.45 100.00 99.54 99.30 100.00 100.00
9 22.22 0.00 11.11 5.56 44.44 0.00 22.22 44.44 50.00

10 61.61 60.92 58.28 61.95 85.06 72.76 72.07 82.87 84.71
11 80.90 88.65 91.24 76.75 92.44 94.83 89.39 96.45 96.40
12 45.88 26.97 42.70 62.55 79.96 75.47 50.19 74.34 82.77
13 94.05 90.81 90.81 97.84 98.92 98.38 97.30 84.86 88.11
14 95.43 95.87 93.50 97.01 98.33 98.86 95.79 97.19 97.54
15 56.67 48.33 43.33 57.67 74.67 72.67 32.67 68.00 80.67
16 78.57 80.95 80.95 59.52 75.00 54.76 84.52 85.71 77.38

OA 75.18 72.33 75.39 75.43 87.74 86.65 78.64 88.93 90.81
AA 63.34 56.89 58.60 60.00 73.47 67.46 66.92 75.18 78.92

Kappa 71.30 67.70 71.42 71.66 85.92 84.60 75.35 87.28 89.47

3.3. SV Dataset

The SV dataset was also acquired using the AVIRIS sensor, with an image size of
512 × 217 pixels. It includes 204 valid bands and has a spatial resolution of 3.7 m. There are
16 labeled land cover classes. Table 4 (below) displays the specific names of the 16 land cover
classes, along with the quantities of the 10% training samples and 90% testing samples.

The classification results derived from using multiple methods on this dataset are
shown in Figure 3 (below). It can be observed that the four machine learning methods
and SF_pixel have a significant amount of misclassification in the 15th class, “Vinyard-
untrained”, and they are often confused with the 8th class, “Grapes-untrained”. The main
misclassification of the Patch-based SF method and the ViT-based method with spatial
shuffle is that they misclassify the 8th class as the 15th class, but to a much lesser degree
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compared to the four machine learning methods and SF_pixel. CNN-based methods such
as CNN2D and PPF perform better on these two classes compared to the machine learning
methods. However, in other classes, the performance of all methods does not differ signifi-
cantly, and the machine learning methods still exhibit a certain level of misclassification.
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Figure 2. Classification results on IP dataset. (a) original HSI; (b) ground truth; (c) MLR; (d) SVM;
(e) RF; (f) ELM; (g) CNN2D; (h) PPF; (i) SF_pixel; (j) SF_patch5; (k) SF_patch7; (l) ViT; (m) SimpleViT;
(n) CaiT; (o) DeepViT; (p) ViTPM; (q) LMViT; (r) ATSViT; (s) Ens1; (t) Ens2.

Table 3. Objective evaluation of methods on IP dataset.

ViT SimpleViT CaiT DeepViT ViTPM LMViT ATSViT Ens1 Ens2

1 90.48 97.62 100.00 85.71 80.95 80.95 90.48 90.48 88.10
2 92.69 90.67 93.23 91.14 93.00 92.46 92.22 93.62 93.62
3 96.11 93.08 95.68 93.23 95.68 95.10 96.54 96.97 96.40
4 92.52 86.92 87.85 90.65 88.32 90.65 90.19 91.59 91.59
5 94.52 94.52 95.48 94.52 95.00 94.52 94.29 94.76 94.29
6 99.24 99.09 99.54 99.39 99.39 98.93 99.39 99.39 99.39
7 100.00 100.00 69.23 57.69 96.15 100.00 88.46 100.00 100.00
8 98.38 99.54 98.38 97.22 98.38 98.84 99.07 98.84 98.84
9 100.00 77.78 100.00 100.00 100.00 94.44 100.00 100.00 100.00

10 91.84 91.38 91.49 90.23 91.38 92.99 92.07 92.18 92.41
11 96.31 95.99 95.76 94.60 95.71 95.76 96.31 96.40 96.22
12 91.39 91.76 95.69 86.33 91.76 91.20 92.32 92.32 92.70
13 95.68 98.92 95.14 95.14 92.43 98.38 97.84 96.76 96.22
14 96.75 96.84 98.07 96.93 96.84 97.28 96.84 97.19 97.28
15 94.67 93.67 95.33 95.33 95.00 97.67 95.67 96.33 96.00
16 97.62 98.81 97.62 98.81 89.29 98.81 96.43 98.81 97.62

OA 95.19 94.53 95.41 93.70 94.79 95.18 95.26 95.67 95.57
AA 95.51 94.16 94.28 91.68 93.70 94.87 94.88 95.98 95.67

Kappa 94.51 93.76 94.76 92.82 94.06 94.50 94.59 95.05 94.94
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Table 4. Land cover classes and sample quantities of SV dataset.

No Class Name Training Num Testing Num

1 Brocoli-gree-weeds-1 201 1808
2 Brocoli-gree-weeds-2 373 3353
3 Fallow 198 1778
4 Fallow-rough-plow 139 1255
5 Fallow-smooth 268 2410
6 Stubble 396 3563
7 Celery 358 3221
8 Grapes-untrained 1127 10,144
9 Soil-vinyard-develop 620 5583

10 Corn-senesced-green-
weeds 328 2950

11 Lettuce-romaine-4wk 107 961
12 Lettuce-romaine-5wk 193 1734
13 Lettuce-romaine-6wk 92 824
14 Lettuce-romaine-7wk 107 963
15 Vinyard-untrained 727 6541

16 Vinyard-vertical-
trellis 181 1626

Total 5415 48,714

The objective evaluation results are shown in Tables 5 and 6. The four machine
learning methods and SF_pixel have much lower accuracy on the 15th class compared to
other methods. The classification accuracy of the 8th class is relatively lower compared to
other classes as well, which aligns with the results of subjective visual evaluation. In terms
of the OA and Kappa coefficients, the ViT-based method with spatial shuffle performs the
best among all methods, followed by CNN2D and PPF. The Patch-based Spectralformer
also demonstrates better performance than the pixel-based Spectralformer. Among all ViT-
based methods, the accuracy of the two ensemble strategies surpasses that of individual
methods, demonstrating the superiority of the ensemble strategies.
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Figure 3. Classification results on SV dataset. (a) original HSI; (b) ground truth; (c) MLR; (d) SVM;
(e) RF; (f) ELM; (g) CNN2D; (h) PPF; (i) SF_pixel; (j) SF_patch5; (k) SF_patch7; (l) ViT; (m) SimpleViT;
(n) CaiT; (o) DeepViT; (p) ViTPM; (q) LMViT; (r) ATSViT; (s) Ens1; (t) Ens2.
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Table 5. Objective evaluation of methods on SV dataset.

MLR SVM RF ELM CNN2D PPF SF_Pixel SF_Patch5 SF_Patch7

1 96.96 99.43 99.60 99.71 99.83 100.00 99.43 99.20 99.71
2 99.05 99.94 99.94 99.73 99.97 100.00 95.23 100.00 99.91
3 73.47 99.21 98.65 91.74 98.82 99.89 97.13 99.94 99.94
4 98.65 99.60 99.36 98.88 99.76 99.92 99.60 99.84 99.68
5 98.42 99.00 98.22 99.17 99.29 98.84 98.47 99.50 99.92
6 99.75 99.94 99.77 99.86 99.97 100.00 99.97 100.00 100.00
7 99.38 99.84 99.31 99.75 99.44 100.00 99.47 99.78 99.41
8 90.21 90.84 85.20 89.90 95.57 94.88 84.47 90.25 93.22
9 98.92 99.91 99.28 99.98 99.98 100.00 99.73 100.00 100.00

10 83.41 95.27 92.88 95.40 99.48 97.68 90.81 97.58 99.14
11 44.21 96.28 96.17 94.69 98.41 99.26 93.30 99.68 100.00
12 99.88 100.00 99.53 99.94 100.00 100.00 99.71 100.00 100.00
13 98.89 98.15 97.53 98.52 99.88 98.15 97.65 100.00 99.88
14 90.89 98.20 93.96 93.43 99.36 99.15 93.75 98.83 99.47
15 43.71 66.24 64.61 63.60 90.94 91.25 56.53 84.66 83.84
16 89.63 98.57 97.89 98.50 98.91 99.25 97.20 98.50 98.98

OA 86.44 93.02 91.16 92.06 97.63 97.48 89.45 95.64 96.28
AA 87.84 96.28 95.12 95.18 98.73 98.64 93.90 97.99 98.32

Kappa 84.81 92.20 90.15 91.14 97.36 97.20 88.23 95.14 95.85

Table 6. Objective evaluation of methods on SV dataset.

ViT SimpleViT CaiT DeepViT ViTPM LMViT ATSViT Ens1 Ens2

1 100.00 100.00 100.00 100.00 99.83 100.00 100.00 100.00 100.00
2 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
3 99.66 99.49 99.49 98.82 99.72 99.61 99.78 99.66 99.66
4 99.68 99.36 99.92 99.28 99.68 99.60 99.84 99.76 99.76
5 99.67 99.54 99.63 99.63 99.59 99.54 99.63 99.67 99.67
6 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
7 99.94 100.00 100.00 99.84 99.94 99.97 99.97 99.97 99.97
8 94.92 94.67 94.66 93.00 94.25 94.42 95.20 95.26 95.21
9 100.00 99.98 100.00 99.98 100.00 100.00 100.00 100.00 100.00

10 98.89 99.07 99.55 98.10 98.89 98.58 98.89 99.21 99.10
11 99.36 99.89 99.89 97.87 98.72 98.19 99.68 99.26 99.57
12 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
13 98.27 99.26 98.02 98.77 99.01 98.02 98.15 98.64 98.52
14 99.79 99.68 99.89 99.89 100.00 99.79 99.79 99.79 99.89
15 96.21 96.51 97.43 95.55 96.26 95.93 96.83 97.24 97.21
16 99.86 99.73 99.86 98.98 99.86 99.93 99.80 99.93 99.93

OA 98.28 98.28 98.43 97.64 98.14 98.08 98.43 98.52 98.50
AA 99.14 99.20 99.27 98.73 99.11 98.97 99.22 99.27 99.28

Kappa 98.08 98.08 98.26 97.38 97.93 97.87 98.25 98.35 98.33

3.4. UP Dataset

The UP dataset was acquired using the Reflective Optics System Imaging Spectrometer
(ROSIS) sensor and is a part of the University of Pavia campus. It has an image size of
610 × 340 pixels and consists of 103 valid bands. The spatial resolution is 1.3 m, and the
spectral range spans from 430 to 860 nanometers. The ground truth of the dataset includes
nine land cover classes. Overall, 10% of the labeled samples were selected as training
samples. The specific land cover classes and the quantities of samples are shown in Table 7.

From the thematic classification map shown in Figure 4, it can be observed that the
misclassified categories are mainly concentrated in Class 6 and Class 7. Similar to the SV
dataset, the four machine learning algorithms and SF_pixel exhibit severe misclassification
in these two classes. On the other hand, methods based on CNN and ViT perform relatively
well, especially the ViT-based methods with spatial shuffle. They have lower misclassifi-
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cation rates compared to the SpectralFormer-based methods, demonstrating a relatively
stable advantage.

The objective evaluation metrics shown in Tables 8 and 9 also reflect the results of the
subjective evaluation mentioned above. The four machine learning algorithms and SF_pixel
exhibit very low accuracy on Class 6, while they perform relatively better on Class 7. On
the other hand, other methods show better performance on these two classes. For example,
CNN2D and the ViT-based method with spatial shuffle, as well as their ensemble strategies,
achieve accuracy rates exceeding 99%. The accuracy of the two ensemble strategies is also
higher than all individual ViT-based methods, indicating the effectiveness of spatial shuffle
and ensemble strategies.
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Figure 4. Classification results on UP dataset. (a) original HSI; (b) ground truth; (c) MLR; (d) SVM;
(e) RF; (f) ELM; (g) CNN2D; (h) PPF; (i) SF_pixel; (j) SF_patch5; (k) SF_patch7; (l) ViT; (m) SimpleViT;
(n) CaiT; (o) DeepViT; (p) ViTPM; (q) LMViT; (r) ATSViT; (s) Ens1; (t) Ens2.

Table 7. Land cover classes and sample quantities of UP dataset.

No Class Name Training Num Testing Num

1 Asphalt 663 5968
2 Meadows 1865 16,784
3 Gravel 210 1889
4 Trees 306 2758
5 Painted metal sheets 135 1210
6 Bare Soil 503 4526
7 Bitumen 133 1197
8 Self-Blocking Bricks 368 3314
9 Shadows 95 852

Total 4278 38,498

3.5. KSC Dataset

The KSC dataset was captured using the AVIRIS sensor at Kennedy Space Center in
Florida on 23 March 1996. The dataset consists of 224 bands, with 176 bands remaining
after removing water vapor noise. The images are 614 × 512 pixels in size, and the spatial
resolution is 18 m. There are a total of 13 land cover classes. Table 10 (below) displays the
specific land cover class information and sample quantities.

Figure 5 (below) presents the performance of all methods on the KSC dataset, and
Figure 6 is the enlarged sub-images in the red rectangle in the ground truth image. Due
to the limited number of labeled ground truth samples and the even smaller number of
samples used for training, there is a significant variation in accuracy among different
methods across different classes.
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Table 8. Objective evaluation of methods on UP dataset.

MLR SVM RF ELM CNN2D PPF SF_Pixel SF_Patch5 SF_Patch7

1 92.56 94.18 91.50 97.34 99.49 97.13 88.29 97.17 97.71
2 96.38 97.57 97.81 99.37 99.83 98.21 99.04 99.79 99.86
3 40.95 79.01 64.00 52.91 93.64 77.71 62.91 93.42 94.83
4 77.17 94.66 90.49 87.56 98.50 94.88 86.06 96.30 98.57
5 98.27 99.01 97.94 98.02 99.92 99.67 98.76 99.92 100.00
6 52.02 90.83 73.56 60.02 99.98 93.84 44.29 94.88 94.76
7 0.58 88.39 70.59 1.92 98.66 88.47 83.71 85.21 88.30
8 90.56 89.08 89.29 81.65 95.62 89.92 87.36 94.54 96.89
9 99.77 100.00 100.00 99.41 100.00 99.88 100.00 99.53 99.53

OA 82.90 94.17 90.15 86.47 98.99 95.31 86.55 97.30 97.94
AA 72.03 92.52 86.13 75.36 98.40 93.30 83.38 95.64 96.72

Kappa 76.83 92.32 86.89 81.65 98.68 93.83 81.79 96.43 97.28

Table 9. Objective evaluation of methods on UP dataset.

ViT SimpleViT CaiT DeepViT ViTPM LMViT ATSViT Ens1 Ens2

1 98.87 99.18 99.18 97.66 98.82 99.10 98.94 99.25 99.13
2 99.83 99.86 99.91 99.86 99.84 99.78 99.84 99.87 99.86
3 96.41 93.58 95.98 95.49 96.14 96.14 95.21 96.68 96.52
4 97.51 97.51 98.02 97.26 97.59 97.95 97.26 97.80 97.73
5 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
6 99.54 99.49 99.62 99.49 99.65 99.82 99.71 99.87 99.80
7 99.33 98.75 99.75 99.50 99.50 99.00 99.33 99.58 99.50
8 97.89 97.16 97.83 96.29 97.89 97.80 98.49 98.52 98.58
9 99.88 99.77 99.88 99.77 99.88 99.88 99.88 99.88 99.88

OA 99.13 98.96 99.24 98.74 99.14 99.18 99.14 99.34 99.30
AA 98.81 98.37 98.91 98.37 98.81 98.83 98.74 99.05 99.00

Kappa 98.85 98.63 99.01 98.35 98.86 98.92 98.87 99.14 99.08

Table 10. Land cover classes and sample quantities of KSC dataset.

No Class Name Training Num Testing Num

1 Scrub 33 728
2 Willow swamp 23 220
3 CP hammock 24 232
4 Slash pine 24 228
5 Oak/Broadleaf 15 146
6 Hardwood 22 207
7 Swamp 9 96
8 Graminoid marsh 38 393
9 Spartina marsh 51 469
10 Cattail marsh 39 365
11 Salt marsh 41 378
12 Mud flats 49 454
13 Water 91 836

Total 459 5752

From the objective evaluation metrics in Tables 11 and 12 (below), it can be observed
that all methods exhibit low accuracy on Class 5. SF_pixel and SF_patch5 even completely
misclassify this class. The ViT-based method with spatial shuffle performs relatively
better. On Classes 3, 4, 6, and 7, the performances of the four machine learning methods
and SF_pixel are comparatively poor, with SF_pixel being the worst. On the other hand,
the ViT-based method with spatial shuffle and its ensemble strategies demonstrate good
performances across all classes, with overall accuracies (OA) exceeding 96%. The OAs
of the two ensemble strategies are higher than other methods, indicating that ensemble
strategies can consistently achieve higher classification accuracies.
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Figure 5. Classification results on KSC dataset. (a) original HSI; (b) ground truth; (c) MLR; (d) SVM;
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Figure 6. Classification results on KSC dataset in the enlarged area. (a) original HSI; (b) ground truth;
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Table 11. Objective evaluation of methods on KSC dataset.

MLR SVM RF ELM CNN2D PPF SF_Pixel SF_Patch5 SF_Patch7

1 96.33 96.62 95.15 97.50 99.27 98.53 93.98 98.68 100.00
2 90.87 86.76 88.58 99.09 95.89 92.24 37.44 81.28 79.00
3 71.86 61.04 83.55 85.28 94.81 84.42 0.00 84.85 87.01
4 52.86 44.93 58.59 40.09 63.00 37.89 0.00 19.38 32.60
5 35.17 40.00 55.17 44.83 66.21 35.17 0.00 0.00 3.45
6 17.39 29.47 44.93 25.12 74.40 3.38 0.00 71.01 90.82
7 23.16 75.79 89.47 20.00 96.84 0.00 0.00 92.63 100.00
8 58.59 71.35 79.95 88.02 91.93 78.91 8.07 76.04 88.02
9 88.25 95.51 96.79 87.39 100.00 89.32 76.71 80.77 81.41

10 81.59 84.62 82.97 95.33 77.20 93.96 48.90 91.21 97.25
11 97.09 95.77 95.50 93.12 99.74 98.15 93.39 100.00 97.62
12 73.95 81.46 84.99 88.52 73.73 88.74 80.57 90.07 93.60
13 99.52 100.00 99.88 99.16 94.85 99.88 100.00 100.00 100.00

OA 79.33 82.72 86.79 84.92 89.50 82.82 60.66 84.23 87.86
AA 68.20 74.10 81.19 74.11 86.76 69.27 41.47 75.84 80.83

Kappa 76.84 80.66 85.28 83.12 88.32 80.65 55.17 82.42 86.48
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Table 12. Objective evaluation of methods on KSC dataset.

ViT SimpleViT CaiT DeepViT ViTPM LMViT ATSViT Ens1 Ens2

1 99.41 98.68 100.00 99.71 99.12 100.00 99.71 99.85 100.00
2 98.63 99.54 99.54 100.00 98.63 98.63 96.80 99.09 99.09
3 94.37 92.64 91.77 93.07 93.51 94.37 93.94 95.24 94.81
4 91.63 81.50 94.71 88.11 88.99 88.99 90.75 93.83 92.95
5 73.10 68.28 70.34 75.17 75.17 72.41 71.03 72.41 72.41
6 99.03 89.86 100.00 99.52 97.58 99.03 99.03 100.00 100.00
7 98.95 98.95 100.00 98.95 98.95 100.00 98.95 98.95 98.95
8 97.66 96.88 98.96 99.48 97.66 98.44 96.61 98.44 97.92
9 97.44 97.01 97.44 98.93 96.58 98.08 97.86 98.08 97.86

10 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
11 100.00 100.00 100.00 99.21 100.00 100.00 100.00 100.00 100.00
12 100.00 99.12 100.00 100.00 98.45 100.00 100.00 100.00 100.00
13 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

OA 97.82 96.44 98.06 98.02 97.38 97.91 97.61 98.21 98.10
AA 96.17 94.03 96.37 96.32 95.74 96.15 95.75 96.61 96.46

Kappa 97.58 96.03 97.84 97.79 97.08 97.67 97.34 98.00 97.89

4. Discussion
4.1. Effects of Training Sample Numbers

The number of training samples is one of the key factors that impact classification
accuracy. Generally, with more training samples, the final classification accuracy tends
to be higher. In the previous experiments, 10% of the labeled ground truth samples were
randomly selected as training samples. In this section, based on the UP dataset, 1%, 2%,
and 5% of the samples were randomly chosen as training samples. The experiments
were conducted using the same parameters and testing procedures as the 10% sample
scenario. The OA, AA, and Kappa coefficients were calculated for different training sample
proportions. The results are illustrated in Figure 7.

From the above results, it can be observed that for each specific method, increasing the
sample proportion leads to a significant improvement in classification accuracy. However,
the magnitude of improvement decreases as the sample proportion increases. In other
words, the improvement in classification accuracy from 10% training samples compared to
5% training samples is smaller than the improvement from 5% training samples compared
to 2% training samples. This implies that when the proportion reaches a certain threshold,
it becomes difficult to achieve further significant improvements in classification accuracy, or
in other words, it may reach 100% classification accuracy. At a specific sample proportion,
the ranking of classification accuracy among all methods remains relatively consistent, and
the stability of the two ensemble strategies is also verified.

4.2. Effects of Spatial Shuffle

In the previous experiments, the ViT-based method with spatial shuffle and its ensem-
ble strategies demonstrated significant classification performances and visual advantages.
To demonstrate the effect of spatial shuffle, this section selects several ViT-based methods
and compares the thematic maps obtained with and without spatial shuffle on different
datasets. Figure 8 (below) illustrates the comparison.
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Figure 7. Effects of sample numbers on UP dataset. (a) OA; (b) AA; (c) Kappa.

From Figure 8, it can be observed that without spatial shuffle, there are significant
differences in the thematic maps, especially for classes with larger training samples, making
the contrast more pronounced. This demonstrates the significant improvement in perfor-
mance achieved through spatial shuffle. Figure 9 presents the classification performance of
various ViT-based methods with and without spatial shuffle on four datasets. It can be seen
that after incorporating spatial shuffle, all methods show a significant increase in overall
accuracy, with more pronounced improvements on the IP and KSC datasets. Without
spatial shuffle, the performance of the two ensemble strategies is not always superior to
individual methods. However, after incorporating spatial shuffle, the ensemble strategies
consistently demonstrate advantages.
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Figure 8. Classification results with and without spatial shuffle on IP, SVm and UP datasets. (a) ViT
without spatial shuffle; (b) ViT with spatial shuffle; (c) SimpleViT without spatial shuffle; (d) Sim-
pleViT with spatial shuffle; (e) CaiT without spatial shuffle; (f) CaiT with spatial shuffle; (g) LMViT
without spatial shuffle; (h) LMViT with spatial shuffle; (i) ATSViT without spatial shuffle; (j) ATSViT
with spatial shuffle; (k) Ens1 without spatial shuffle; (l) Ens1 with spatial shuffle.
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5. Conclusions

The fusion of spatial–spectral information in classification methods by combining
spatial and spectral features can result in higher accuracy. This has become a topic of
interest in hyperspectral image classification. Generally, larger neighborhood sizes for
extracting spatial features lead to higher classification accuracy, but this also introduces the
problem of overlap between the training and testing sets. ViT, by segmenting the image
into independent patches, achieves a classification principle different from CNN and even
surpasses CNN in terms of accuracy. This is also a current research hotspot. Combining
the classification results of multiple models often yields higher accuracy than individual
models. In this paper, to address the issue of spatial feature extraction, a preprocessing step
called spatial shuffle is introduced. By randomly shuffling the spatial pixels, it not only
simulates potential patterns in the real world but also increases the training sample size.
Then, an ensemble learning framework based on various variants of ViT is constructed.
Through two-level ensemble strategies, high-accuracy ensembles of multiple methods
are achieved. Experimental results demonstrate that incorporating spatial shuffle as a
preprocessing step effectively improves the classification accuracy of individual models,
and the ensemble strategies also achieve stable high accuracy. Moreover, through ensemble
strategies, valuable testing samples can be fully utilized without the need for a validation set.
The proposed approach consistently achieves high classification accuracy across different
training sample proportions. Compared to traditional machine learning, CNN architectures,
and transformer models, the proposed ensemble strategy exhibits significant advantages
on multiple datasets. According to the fundamental theory of ensemble learning, the more
basic the used classifiers are, the higher the possible classification accuracy. For this paper,
only seven ViT-based basic classifiers were used, and the ensemble strategy was a simple
average. Therefore, using more advanced ensemble strategies may also lead to higher
classification accuracy, but it may also bring higher training and inference costs. However,
these costs can be greatly reduced through offline training. Our future research will focus
on further optimizing ViT models and constructing more powerful individual models to
enhance the fine classification capability of the ensemble framework.
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