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Abstract: In this study, The ENVISAT advanced synthetic aperture radar observations from 2003 to
2010 of a descending track covering an area of 100 km× 300 km were used to map the surface velocity
field in northwestern Tibet. The derived line-of-sight (LOS) velocity map revealed that interseismic
deformation was mainly located on the Altyn Tagh Fault (ATF) and other four immature subsidiary
faults (i.e., Tashikule Fault, Muzitage-jingyuhe Fault, Heishibeihu Fault, and Woniuhu Fault). A
2D elastic screw dislocation model was used to interpret the interferometric synthetic aperture
radar (InSAR) velocity profiles, which revealed the following results. (a) The oblique movement
is partitioned between left-lateral slip at a rate of 6.3 ± 1.4 mm/y on the ATF and 5.9 ± 2.8 mm/y
on the subsidiary faults. The low slip rate of the ATF indicates that the ATF does not drive the
northeastward extrusion of material, with most of the extrusion occurring in the eastern interior of
the plateau and the four subsidiary faults localizing the oblique convergence partitioned in the west.
This can reasonably explain why catastrophic earthquakes and rapid slip do not occur all over along
the ATF. (b) Based on the four subsidiary faults accommodating the oblique movement and the traces
amalgamation with the EKLF (delineated Bayan Har plate boundary to the northeast), we concluded
guardedly that the four subsidiary faults are the evoluting plate boundary of the Bayan Har block to
the northwest. (c) The Tanan top-up structure had an uplift rate of ~0.6 mm/y at the south of the
Tarim Basin.
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1. Introduction

The Tibetan Plateau (TP) is a consequence of the collision between the Indian and
Eurasian plates, which began approximately 50 million years ago. Continental collision
has resulted in widely distributed block boundary deformation in the TP [1–3] with crustal
shortening, thickening, and eastward extrusion [4,5]. Therefore, the understanding of
crustal deformation processes and mechanisms is important for the evaluation of potential
earthquakes.

The Altyn Tagh Fault (ATF), a lithospheric-scale boundary fault, is not only marked
by its surface trace, but is also revealed by seismic reflection profiles and tomographic
imaging [6–8]. The ATF has attracted broad attention because its slip rate is of great
significance in understanding present-day crustal deformation in the northern TP. Late
Quaternary slip rates have been reported along most of the ATF at both decadal and
millennial timescales [9–18]. Previous tectonic deformation studies reported high slip
rates of up to 20–30 mm/y. These results suggest the fast eastward movement of an
effectively rigid Tibetan lithospheric block [5,19]. Subsequently, space geodesy techniques
such as the global positioning system (GPS) and the interferometric synthetic aperture radar
(InSAR) indicate that the ATF experiences slip at a decadal time scale of approximately
6–10 mm/y [9,14,15,20,21]. One reason for the slip rate discrepancies by nearly a factor
of five may be the changes in the slip rate on the ATF over time [14]. How these changes
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occur and their long-term impact on the TP deformation mode is not well understood.
Understanding this problem requires detailed modern fault observations.

Other continental strike-slip faults, including the Kunlun, San Andreas, and North
Anatolian faults, have experienced numerous catastrophic earthquakes. In contrast, only
a minor level of seismicity has been detected by instrumental recordings along the entire
active strike-slip ATF over nearly 100 years (Figure 1). Because no catastrophic earthquakes
have occurred along the ATF, a high slip rate would accommodate a large part of the
India–Asia convergence [11,22,23]. Conversely, a low ATF rate requires deformation to
be distributed throughout the plateau. Consequently, questions remain as to whether
subsidiary faults accommodate slip rates, highlighting the need for better quantification of
slip rates on the ATF and its subsidiary faults.

Dynamic models of two major mechanisms have been proposed to explain the uplift
and faulting behaviors of the TP: the block [5,19,22,24–26] and continuum [4,9,27,28] models.
The block model considers the crust to be sliced into a limited number of blocks that are
internally rigid and move relative to each other along their boundary faults [19,29]. It has
been primarily applied to model the kinematics of deformation observed at the Earth’s
surface [30]. The continuum model attributes crustal deformation driven by a “soft”
lithosphere to be broadly distributed even within blocks [27,31,32]. It unites kinematics
and dynamics under the assumption that the deformation is controlled by the ductile
properties of the lithosphere [33]. These models describe the motion and construction
history of a plateau. Although the block and continuum models predict distinctly different
deformation patterns and mechanical behaviors, the differences between their kinematics
are ultimately gradational. As the block size decreases and the number of faults increases,
the block model approaches the deformation of the continuum model, and the kinematic
distinction between the two models becomes blurred [30]. Zhang et al. [2] analyzed the
GPS velocities in Tibet and revealed that the deformation field was largely continuous.
However, Meade [34] and Thatcher [35] interpreted the same dataset and found that the
rigid block motion model still holds if the crust is subdivided into smaller blocks than
previously envisioned. To date, crustal deformation studies have mostly concentrated on
block boundary faults or fault zones within Tibet [15,36–40]. However, the May 2021 Mw
7.4 Maduo earthquake that occurred in the interior of the Bayanhar Block implies that the
deformation of subsidiary faults within blocks cannot be neglected [18,41,42].

This study investigated the region located east of the junction zone, in the westernmost
central segment of the ATF system, and the western segment of the eastern Kunlun Fault
(EKLF) system. The geometric traces of subsidiary faults converge at the western end of
the EKLF in this region. In previous studies, the Heishibeihu Fault (one of four subsidiary
faults) was determined to be the northwestern margin of the Bayan Har block [43–45], which
is considered to be the block with the most active boundaries in China. Compared with
other broadly studied faults (ie., EKLF, Ganzi-yushu-Xianshuihe fault and Longmenshan
fault) around the Bayan Har block [18,46,47], its northwestern margin faults have not
been given the same attention and the relevant references can almost not be retrieved.
Interferometric synthetic aperture radar (InSAR), as a geodesy-based powerful monitoring
tool, is used to map spatially continuous surface deformation at a resolution ranging from
meters to hundreds of meters. The increasing SAR images enable substantial improvements
in precision of displacement measurements and provide routine observations of low-
amplitude deformation associated with tectonic plate motions and active fault systems
over a wide range of spatial. In this study, we used InSAR observations from 2003 to
2010 on one descending ENVISAT track with a spatial coverage between 84◦E and 86◦E
(Figure 1) to map the surface motions and gradients of an area of over 100 km× 300 km. We
investigated the slip rates of ATF and subsidiary faults and further discussed the current
deformation behavior of the TP. Our analysis suggests that the deformation mode of the
TP is similar to the continuum deformation. The results of this study can be valuable for
drawing the crustal structure of the TP and for insight into understanding the evolution
process of the TP.
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Figure 1. Tectonic setting of the ATF and four other faults in the study area. White box is the SAR 
coverage. Red dots are earthquakes with magnitudes >3.0 from 1966 to 2020 downloaded from 
http://data.earthquake.cn/data/index.jsp (accessed on 10 June 2020). Green arrows are GPS stations 
from Wang et al. [18] Red stars are two sub-branchpoints along the ATF. Black lines are active faults 
from Xu et al. [48]. 
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2.1.1. ENVISAT Dataset 

The ENVISAT archive dataset of descending track 391 from 2003 to 2010 was used to 
investigate the interseismic deformation of the study area (Figure 1). During the SAR data 
processing, multilook SAR images were generated 4 and 20 times in the range and azi-
muth directions, respectively. To resample a set of SLCs to a common reference SLC, all 
single-look complex images were registered to a single master image geometry based on 
the DEM. We compared the co-registration based on the digital elevation model (DEM) 
and coherence coefficient and found that the accuracy of co-registration in the range di-
rection was greatly improved (detailed see Figure S1). In this study, single-look complex 
images were registered to a single master image geometry based on the DEM. Precise 
DORIS orbital data from the ENVISAT satellite provided by the European Space Agency 
were used for interferometric processing. Affected by complex terrain, permanently co-
herent pixels do not cover a sufficiently large area for the observation of interseismic de-
formation. Therefore, we first constructed interferometric pairs with large spatial (3000 d) 
and temporal (500 m) baselines. Then, we selected the pairs with a ratio over 0.4 and a 
coherence over 0.5 from all pixels of the image, such that the highly coherent pixels could 
cover a sufficiently large area. This method is useful for time-series deformation analyses 
of complex terrain areas. We constructed 164 differential pairs and formed a redundancy 
network of interferograms (Figure 2). 

Figure 1. Tectonic setting of the ATF and four other faults in the study area. White box is the SAR
coverage. Red dots are earthquakes with magnitudes >3.0 from 1966 to 2020 downloaded from
http://data.earthquake.cn/data/index.jsp (accessed on 10 June 2020). Green arrows are GPS stations
from Wang et al. [18] Red stars are two sub-branchpoints along the ATF. Black lines are active faults
from Xu et al. [48].

2. Methods
2.1. InSAR Processing
2.1.1. ENVISAT Dataset

The ENVISAT archive dataset of descending track 391 from 2003 to 2010 was used
to investigate the interseismic deformation of the study area (Figure 1). During the SAR
data processing, multilook SAR images were generated 4 and 20 times in the range and
azimuth directions, respectively. To resample a set of SLCs to a common reference SLC, all
single-look complex images were registered to a single master image geometry based on
the DEM. We compared the co-registration based on the digital elevation model (DEM) and
coherence coefficient and found that the accuracy of co-registration in the range direction
was greatly improved (detailed see Figure S1). In this study, single-look complex images
were registered to a single master image geometry based on the DEM. Precise DORIS orbital
data from the ENVISAT satellite provided by the European Space Agency were used for
interferometric processing. Affected by complex terrain, permanently coherent pixels do
not cover a sufficiently large area for the observation of interseismic deformation. Therefore,
we first constructed interferometric pairs with large spatial (3000 d) and temporal (500 m)
baselines. Then, we selected the pairs with a ratio over 0.4 and a coherence over 0.5 from
all pixels of the image, such that the highly coherent pixels could cover a sufficiently large
area. This method is useful for time-series deformation analyses of complex terrain areas.
We constructed 164 differential pairs and formed a redundancy network of interferograms
(Figure 2).

http://data.earthquake.cn/data/index.jsp
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Figure 2. Network of SAR interferograms defined using spatial and temporal baseline constraints
that ensure redundancy.

2.1.2. Multiple Error Correction

In order to construct a high accuracy velocity map, a series of refined data pro-
cessing approaches was used to correct multiple errors. Taking account of the empir-
ical method [49–51] may remove some displacement-related signals when deformation
correlates with topography, which is the case for major topographic steps such as ATF.
We used the predictive method [52–55] to correct the atmospheric delay using GACOS
(http://ceg-research.ncl.ac.uk/v2/gacos/ (accessed on 8 July 2016)) for InSAR [56] in
the wrapped phase to prevent unwrapping errors. We removed the atmospheric delay
from the original observations (Figure S2a) and obtained an atmospheric phase screen
(APS)-corrected interferogram (Figure S2b). Profiles a and b in Figure S3 show the phase
quantification of the original and APS-corrected interferograms. The atmospheric delay was
mostly reduced across the ATF. However, in the presence of steep topography, interpolating
weather model parameters between grid nodes at significantly different elevations can pro-
duce artifacts in phase-delay maps because the weather model must be extrapolated below
the Earth’s surface. Artifacts were decreased by following local DEM error correction.

InSAR is limited by DEM errors, which can result both in phase discontinuities and
in apparent decorrelation noise, especially in mountainous areas. Therefore, DEM error
correction is particularly important in high-topography areas. In this study, the DEM
errors were corrected (Figure S4) before unwrapping using the method described in [57].
Figure S4 demonstrates that DEM errors are larger in the presence of steep topography
and display typical oblique striations at short wavelengths near the edges of sedimentary
basins, where the phases are steeper. Sometimes, they exceed half a cycle, making phase
unwrapping difficult in these areas. A comparison between the original and corrected
differential interferograms shows that most of the residual topographic features were
successfully corrected, and the local phase variability was significantly reduced. The
DEM error correction before the unwrapping step can prevent unwrapping errors in steep
topographic areas. Simultaneously, DEM error correction significantly reduces the noise in
the wrapped phase for further processing.

The phase values in an interferogram are initially wrapped modulo 2 kπ, and an
unwrapping step during processing attempts to remove the 2 kπ ambiguity to produce
a continuous map of phase values. The resulting interferogram often has unwrapping
errors which appear as 2 kπ phase jumps in the presence of noise or no continuous spatial
coverage. The phase closure technique [58] was used to identify the major unwrapping
errors remaining in the interferograms. We only identified and corrected major unwrap-
ping errors, small unwrapping errors were still present and were masked in succeeding
processing (Figure S5).

Because of the imperfect knowledge on the state vector of the ENVISAT satellite,
even after the effects of baseline separation have been removed, two or three orbital
ramp cycles can remain in the long strips and more cycles can remain in long-wavelength
ionospheric delay interferograms. Most previous studies individually estimated the orbital
ramps on interferograms [59,60]. A linear approximation is typically sufficiently accurate

http://ceg-research.ncl.ac.uk/v2/gacos/
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for short strips, whereas a quadratic approximation is required for long strips. Each
acquisition was used to construct several interferograms; therefore, the orbital contribution
to a single acquisition was estimated using the constraints from many interferograms. Biggs
et al. [58] presented a network approach to empirically estimate the orbital error for each
acquisition rather than for each interferogram. The network approach uses least squares
inversion to find the best fitting simultaneous linear ramp at each acquisition and the
static offset for each interferogram. This correction technique also accounts for other long-
wavelength signals such as ionospheric and long-wavelength tropospheric contributions
and orbital errors [58]. This method was used to remove the orbital ramps remaining in the
interferograms (Figure S6).

2.2. Constructing the Line-of-Sight (LOS) Velocity Map

In this study, the Time Series InSAR with Atmospheric Estimation Model (TSInSAR-
AEM), as proposed by Li et al. [61], was used to process the available error corrected
SAR images. This technique is performed iteratively by way of a pixel-by-pixel temporal
analysis to find a solution until convergence is achieved. Note, that is a component of
non-linear surface motion. The nonlinear displacements are correlated both in space and
in time, and we distinguished the nonlinear displacements by spatial and temporal filter
from the thermal noise, which spatially and temporally decorrelated in the whole set of the
unwrapped interferograms. The details can be found in Wen et al. [62] and Li et al. [61]. We
constructed the LOS displacement of the study area based on unwrapped interferograms.

3. Results
3.1. LOS Velocity Field

To obtain high-coverage and high-accuracy InSAR velocity maps, we implemented a
series of approaches to increase the signal-to-noise ratio. Co-registration based on the DEM
can enhance the coherence of interferograms and decrease the influence of orbit errors on
the range and clock drift [63,64]. Atmospheric delays and DEM error corrections were
applied to the wrapped phase to reduce the phase variability and phase jumps before
unwrapping. A global network orbital correction approach was applied to remove long-
wavelength orbital errors, and a closed-loop network method was used to detect and
correct phase-unwrapped errors. Using the approaches presented above, we constructed
an LOS velocity map that sheds light on continental deformation.

The InSAR LOS velocity field (Figure 3a) shows a left-lateral slip deformation pattern
across the ATF with a velocity difference of approximately 1.5–2.0 mm/y (Figure 3a,b). Two
sub-branchpoints are located along the trace of the ATF (red stars in Figure 3): the Meletche
outlet (western star) and Dalaku’an outlet (eastern star). Two thrust faults are located north
of the ATF near the two sub-branch points. We obtained three LOS velocity profiles (CC′,
DD′, and EE′ in Figure 3a) paralleling the ATF. We compared the three profiles and found
that the velocity was almost below zero near the sub-branchpoints, with larger values being
farther from the sub-branchpoints. The velocity field also shows a pop-up belt between the
two linear structures south of the Tarim Basin, as indicated by the arrows and dotted lines
(Figure 3a,b,e). The two-line structure is referred to as the south-dipping Cherchenhe Fault
and north-dipping Qiemo-Ruoqiang Fault [65,66], which control the development of the
pop-up structure in the form of a facing–dipping structure. The velocity profiles indicate a
slight gradient to the north of approximately 0.5 mm/y across the Cherchenhe Fault, and
the velocity gradient across the Qiemo-Ruoqiang Fault was 0.6 mm/y. The rivers across the
Qiemo-Ruoqiang Fault are straight and undeflected (Figure 3e), all of which show typical
characteristics associated with a thrust fault. Thus, we inferred that the Qiemo-Ruoqiang
Fault is dominated by pure dip-slip.
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Figure 3. (a) Line-of-sight (LOS) velocity field of track 391. Black solid lines represent fault traces.
Red solid lines represent thrust faults located at the northern front of ATF (Xu et al. [67]). Positive
motion is toward the satellite. The red arrow shows the south dipping thrust and the black arrow
shows the north dipping thrust south of the Tarim basin. AA′ and BB′ are described in (b,c). Red stars
indicate sub-branchpoints of the ATF: Meletche outlet and Dalaku’an outlet. LOS velocity profile
(dark line) with 2σ deviation (gray area) of (b) AA′, (c) BB′, and (d) CC′, DD′, and EE′, which parallel
the ATF in (a). (e) ETM 15 m resolution false color synthesis image, stars and arrows as in (a), dot
lines are two traces of the Pop-up structure.
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The deformation field in the study area is dominated by lateral shear, which is driven
by the strong north–south squeezing energy of the Indian plate and Tarim Basin, pro-
ducing a cluster of wrenching NEE subsidiary faults. The Tashikule, Muzitage-jingyuhu,
Heishibeihu, and Woniuhu Faults are almost parallel to the ATF (Figure 4). South of the
ATF, the total displacement rate is likely divided among the ATF and four subsidiary
faults. The LOS velocity field (Figure 3a) and profiles (Figure 3b,c) show that the velocity
values of the Heishibeihu Fault are small and those of the other three subsidiary faults are
generally larger (up to 0.5–0.8 mm/y). The tectonic activity on the four subsidiary faults
was generally mild in comparison with the ATF.
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Figure 4. The four subsidiary faults (red lines), 1© Tashikule, 2© Muzitage-jingyuhu, 3© Heishibeihu,
and 4© Woniuhu, and 5© the EKLF. Solid circles show earthquakes with magnitudes≥3.0 from 1966 to
2020; earthquake data were downloaded from http://data.earthquake.cn/data/index.jsp (accessed
on 10 June 2020). The faults were based on the work of Xu et al. [48]. Green arrows are GPS stations
from Wang et al. [18]. The white frame denotes the study area.

3.2. Displacement Modeling

To interpret the characteristics of the LOS velocity map, we used a 2D screw dislocation
model [68] (Equation (1)) to invert the fault-parallel slip rate and locking depth. Using
single-fault geometry, this approach models the fault as a buried infinite screw dislocation
in a homogeneous, isotropic, elastic half-space where aseismic slip occurs at a rate (V0)
below the locking depth (D) during the interseismic period. V(x) is the displacement at a
distance x perpendicular to the fault trace:

V(x) = (V0/π)× arctan(x/D) (1)

We assumed that LOS deformation is a combination of parallel fault deformation
and vertical deformation, ignoring normal fault deformation. Under this assumption, the
converted displacement in the LOS direction was decomposed into a horizontal displace-
ment parallel to the fault. Here, we only considered horizontal displacement. The ATF is
dominated by left-lateral strike-slip movements accompanied by extremely small thrusting
motions [14,15,17,18]. The main error source remaining in the velocities was related to
the residual turbulent atmosphere and residual orbit in the interferograms. We used a
Monte Carlo simulation approach to account for uncertainties in InSAR velocities. The
fault-parallel velocities are perturbed up to a value of 1σ uncertainties of the data using
a normal noise distribution. Subsequently, a simulated annealing method was used to
obtain the best curve-fitting solution (Figure 5). Five hundred Monte Carlo simulations
were implemented for each profile, from which the fault slip rate, locking depth, and
uncertainties were derived. The best-fit model corresponding to the minimum of root mean
square (RMS) misfit estimated a 6.3± 1.4 mm/y slip rate and a 16.3± 2.5 km locking depth.
The slip rate of the ATF was a little lower than the previously reported values in Table 1.
The total slip rate of the four subsidiary faults was 5.9 ± 2.8 mm/y in 84.5–85.5◦E and the
eastward decomposition of the slip rate was 5.7 ± 2.7 mm/y.

http://data.earthquake.cn/data/index.jsp
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Figure 5. Interseismic fault-parallel InSAR velocities (black points) calculated using the average rates
and standard deviation of all the pixels (error bars) within a 20 km-wide bin along the profile. Blue
lines correspond to the best fitting model using the 2D screw dislocation model [68], with values
of locking depth and slip rate and their uncertainties labeled. Diagrams (a,c,d) show the results
from the Monte Carlo error analysis of the ATF and the higher frequencies of the slip rate and depth
concentrate at 6.3 mm/y and 16.3 km, respectively. The best-fit slip rates (SR) and locking depths
(LD) and their uncertainties for the Tashikule, Muzitage-jingyuhu, Heishibeihu, and Woniuhu Faults
are 2.1 ± 0.7 mm/y and 12.8 ± 2.6 km (b), 0.8 ± 0.3 mm/y and 4.6±1.7 km (e), 0.2 ± 0.1 mm/y and
5.7 ± 1.2 km (f), 2.8 ± 1.7 mm/y and 5.2 ± 1.1 km (g), respectively.

Table 1. Parameters of the ATF in recent studies.

Reference Slip Rate (mm/y) Locking Depth (km) Longitude

Zhu et al. [15] 8.0 ± 0.7 14.5 ± 3.0 84.0–85.5◦E
Zheng et al. [16] 8.1 ± 0.7 13.0 ± 4.0 86◦E
Daout et al. [20] 10.5 17 83.5–87.0◦E
Shen et al. [69] 12.3 ± 1.5 10.0 ± 2.3 85.3◦E
Wang et al. [18] 11 - 83◦E

He et al. [14] 9.0 ± 4.0 14.5 86◦E
Li et al. [17] 8.5 ± 1.0 23.1 ± 9.8 86◦E
Xu et al. [70] 7.4 ± 0.8 18.0 83.0–84.0◦E
This paper 6.3 ± 1.4 16.3 ± 2.5 84.5–85.5◦E
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4. Discussion

A surface velocity gradient occurs in the NEE direction along the active faults (Figure 3).
Surface displacements suggest that the strain is localized along the ATF zone and is par-
titioned at the subsidiary faults. The sharp deformation gradient is the Tanan pop-up
structure identified by Zhou and Liu [65,66] along the southern rim of the Tarim Basin.
The structure is controlled by the south-dipping Cherchenhe Fault and north-dipping
Qiemo-ruoqiang Fault. These are deep basement faults formed during the Early Paleozoic
that affect the overlying sedimentary distribution [71]. The faults show no clear surface
traces in the ETM images (Figure 3e).

The slip rate of ATF was lower than the other geodetic inversion results (Table 1),
and the discrepancy was mainly due to the distance of the constraint data to the ATF in
the southern direction. The distance in this paper is 40 km, which excludes the cluster of
wrenching NEE subsidiary faults almost paralleling ATF. In other studies, the distance is
>100 km. This means the strain is distributed between the ATF and the four subsidiary faults
in our result, while the previous result showed the strain only located on the ATF. Previous
studies showed that deformation is broadly distributed throughout TP [27,32]. Broadly
distributed deformation also accumulates strain energy on faults within the blocks [72].
Our result supported the distributed deformation mode by geophysical observation. Earth-
quakes with magnitudes of no less than 3.0 occurred from 1966 to 2020, including two
M 5.3 earthquakes (Figure 4), which implies that strain energy accumulated on the four
subsidiary faults. A shear strain rate of 18–24 nanostrain/y of GPS was found in the four
fault zones, and the GPS parallel velocity profile H showed a significant gradient across
the four faults [18]. The seismic and GPS evidence also showed that the dominant defor-
mation is distributed shear deformation and also proved our result is correct. The eastern
velocity component difference between the two GPS stations (GRUB and J343; Figure 1)
was 5.3 mm/y. The best-fit total slip rate of the four subsidiary faults is 5.9 ± 2.8 mm/y in
the section 84.5–85.5◦E and the eastward decomposition of the slip rate is 5.7 ± 2.7 mm/y.
The modeling slip rate in this paper is consistent with the GPS results. This consistency
indicates the accuracy of the slip rate of the subsidiary faults, as well as disregarding
deformation produced by the subsidiary faults in the study area which will significantly
over estimate the slip rate of ATF.

The traces of the four subsidiary faults were the western splay of the EKLF (Figure 4),
and in addition to the Tashikule Fault, the locking depths of the other three subsidiary faults
were approximately 5.0 km. The locking depth is 6.3 ± 3.6 km across the splay segment of
the EKLF [47]. The consistency of the locking depth also implied our result is accurate. The
amalgamation of the traces of the subsidiary faults with the EKLF (Figure 4) illustrates to
a certain extent that they have the same source of deformation, while the displacements
of the subsidiary faults are tectonic deformations and not permafrost freeze–thaw defor-
mation. The locking depth of Tashikule Fault (12.8 ± 2.6 km) is closer to that of the ATF
(16.3 ± 2.5 km). A shallow locking depth, indicating a localized gradient deformation, and
a deep locking depth are consistent with spread-out gradients of deformation, which stand
out in observations (Figure 5). The across-fault velocity gradients (Figure 3) suggested that
the strain was partitioned between the south of ATF and the subsidiary faults. Such strain
partitioning on numerous discontinuous faults is a signature of an unstable evolving plate
boundary [73]. The Bayan Har block is the largest tectonic block and its range is delineated
by the Ganzi–Yushu–Xianshuihe fault to the southwest, the Longmenshan and Jiuzhaigou–
Huya faults to the east, and the East Kunlun fault to the northeast. These block boundaries
attract broad attention from Earth scientists because more than a dozen strong earthquakes
occurred in the last half century. However, the Heishibeihu Fault (one of four subsidiary
faults) determined to be the northwest margin of the Bayan Har block [43–45], has been
neglected as an interblock subsidiary fault. The strain distributed between the ATF and
the four subsidiary faults in our result confirmed that the subsidiary faults accommodate
oblique convergence. Based on the snapshot of evolution of a distributed plate bound-
ary [73] and the traces amalgamation of the subsidiary faults with the EKLF (delineated
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Bayan Har plate boundary to the northeast), we can infer that the four subsidiary faults are
the evoluting plate boundary of the Bayan Har block to the northwest. The evoluting plate
northwest boundary of the Bayan Har block may provide insight into understanding the
deformation behavior of the plateau.

Other continental strike-slip faults (such as the Kunlun Fault, the San Andreas Fault
and the North Anatolian Fault) have numerous catastrophic earthquakes, conversely, only
a minor level of seismicity has been detected along the entire active strike-slip ATF over
nearly 100 years [9]. Since there have been no catastrophic earthquakes along the ATF, a
high slip rate would accommodate a large part of the India–Asia convergence. In reality,
the ATF does not have rapid slipping (Table 1) and the slip rate is even lower in our result.
The low slip rate indicates that the ATF played only a secondary role in the northeastward
extrusion of material in the TP, with most of the extrusion occurring in the interior of the
plateau [15]. The reason that the slip rate of the ATF was a little lower than the previously
reported values in Table 1 is that the subsidiary faults accommodate part of the strain in the
study area. Therefore, our results are close to the continuum deformation models requiring
low fault slip rates.

The profile in Figure 3d shows that the LOS velocity is generally reduced near the
sub-branchpoints (indicated by two red stars), where two branch thrust faults are located
south of the ATF, as shown in Figure 3a. In this region, a little energy is transferred to the
thrusts that build the mountains. Previous studies [10,48] reported the same results—the
slip rate decreased at the branchpoints along the ATF.

5. Conclusions

We constructed an LOS velocity map covering a 100 km × 300 km area by a series
of refined data processing approaches. The surface displacement gradient faults showed
that the strain not only was localized along the ATF but also accumulated on the four
subsidiary faults. The simple 2D kinematic fault model showed that the oblique movement
is partitioned between a left-lateral slip at a rate of 6.3 ± 1.4 mm/y on the ATF and
5.9 ± 2.8 mm/y on the four subsidiary faults. The discrepancy of the slip rate on the ATF
between our result and other space geodesy techniques at approximately 10 mm/y (Table 1)
resulted due to four subsidiary faults accommodating the oblique movement. Meanwhile,
the low slip rate of the ATF indicates that the ATF does not drive the northeastward
extrusion of material, with most of the extrusion occurring in the eastern interior of the
plateau and the four subsidiary faults localizing the oblique convergence partitioned in
the west. This can reasonably explain why catastrophic earthquakes and rapid slip do not
occur all over along the ATF and also show that deformation is broadly distributed in TP,
and the deformation pattern is close to the continuum deformation models.

Based on the four subsidiary faults accommodating the oblique movement and the
traces amalgamation with the EKLF (delineated Bayan Har plate boundary to the northeast),
we concluded guardedly that the four subsidiary faults are the evoluting plate boundary of
the Bayan Har block to the northwest; this may be provide insight into understanding the
evolution process of the TP.
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