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Abstract: The Geosynchronous Satellite Synthetic Aperture Radar (GEO SAR) operates at a high
orbital altitude, resulting in an extended imaging time and substantial variations in slant range. Addi-
tionally, the GEO SAR satellite orbit experiences a bending effect, and the target’s movement, caused
by the Earth’s rotation, is influenced by the Earth’s curvature. The back-projection (BP) algorithm has
been proven to be a highly effective technique for precise imaging with GEO SAR by processing these
specific echo signals. However, this approach necessitates considerable computational resources.
Existing BP algorithms, such as the fast BP algorithm, do not consider the “Stop-and-Go” error
present in GEO SAR. Consequently, we developed a Precise Slant Range Model that considers the
motion of both the satellite and targets. The model incorporates velocity and acceleration factors
to accurately represent the signal transmission from transmission to reception. Additionally, we
propose a Rapid Range History Construction Method to lessen the computational burden of generat-
ing the three-dimensional range history array. By utilizing the Precise Slant Range Model and the
Rapid Range History Construction Method, and employing parallel processing through aperture
segmentation, we propose an Accurate and Efficient BP imaging algorithm suitable for GEO SAR
applications. To validate its effectiveness, simulations were conducted using the parameters of a GEO
SAR system. The results indicated that the proposed algorithm enhances the imaging quality of GEO
SAR, reduces the processing time, and achieves high-precision rapid imaging, thereby improving
operational efficiency.

Keywords: geosynchronous spaceborne synthetic aperture radar (GEO SAR); SAR signal processing;
back-projection (BP) imaging; slant range calculation

1. Introduction

The Geosynchronous Synthetic Aperture Radar (GEO SAR), mounted on a geosyn-
chronous satellite platform at an altitude of approximately 35,800 km, has garnered signif-
icant attention in current research on next-generation spaceborne SAR [1]. The azimuth
resolution of spaceborne SAR depends primarily on the synthetic aperture angle accumu-
lation. GEO SAR requires a longer time to achieve the same synthetic aperture angle as
low-Earth-orbit (LEO) SAR, resulting in a significantly longer synthetic aperture time for
GEO SAR. The extended synthetic aperture time causes a pronounced orbit curvature for
GEO SAR. Consequently, the motion of targets is affected by the planet’s curvature induced
by the Earth’s rotation. This results in the errors of the “Stop-and-Go” assumption, where
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both the satellite’s and the target’s motion must be considered during transmission and
reception in SAR [2]. The conventional equivalent slant range velocity model is inadequate
for accurately characterizing the motion trajectory in GEO SAR scenarios. Therefore, the
conventional SAR imaging processing algorithms that rely on a linear trajectory model or
Fresnel approximation [3–6] are unsuitable for GEO SAR. Applying this method to GEO
SAR would result in significant errors due to the lengthy synthetic aperture time [7].

Additionally, the satellite’s orbit at an extremely high altitude results in a beam cov-
erage on the ground of approximately 400 km, despite the small radar beam width of
about 1 degree. The significant spatial variation in the imaging focusing parameters
within a large scene prevents the use of the focusing parameter at the scene’s center for
the entire scene. The existing frequency-domain imaging algorithms for GEO SAR pri-
marily aim for enhancement in terms of echo characteristics and range models. These
algorithms include the Omega-k algorithm [7,8], chirp-scaling (CS) algorithm [9,10], and
non-linear chirp-scaling (NLCS) algorithm [11–13]. However, applying the aforemen-
tioned frequency-domain algorithms in GEO SAR scenarios is highly challenging due
to the strong spatial variation and non-uniqueness of the time–frequency relation in cer-
tain orbital arcs. The back-projection (BP) algorithm is a method applicable for imaging
in complex observation geometries, as it is not limited by the linear trajectory model or
Fresnel approximation [14]. The BP algorithm can effectively meet the unique require-
ments of echo signal imaging processing and achieve precise imaging in GEO SAR sce-
narios [15–19]. Nevertheless, the necessity to calculate all points in the projection region
and the substantial computational demands of the BP algorithm hinder its broad usage
as a general SAR imaging method. The unique geometric structure of the GEO system,
combined with its significantly extended synthetic aperture time, presents challenges for
processing the direct full-resolution BP algorithm in parallel. This limitation hampers the
efficient utilization of computing resources and results in relatively low timeliness.

On the one hand, significant research findings exist regarding the GEO SAR “Stop-
and-Go” error phenomenon. A linear approximation was employed to describe the slant
range variation during pulse transmission and reception, leading to the establishment of
an accurate signal model for reverse equatorial GEO SAR [2]. However, only theoretical
models for signal characterization analysis have been provided, without any integration
with imaging algorithms or corresponding practical improvements. Additionally, an
accurate slant range model was devised for GEO SAR, taking into account the error
of the “Stop-and-Go” assumption. To compensate for this error and the impact of the
curved synthetic aperture trajectory, an enhanced imaging method was proposed [20].
However, the usage of SPECAN algorithms in this method still encounters the limitations
of the previously mentioned frequency-domain algorithms in practical applications. To
facilitate accurate imaging in the case of GEO-LEO bistatic SAR, improved propagation
delay models and their corresponding range models have been established. The GEO-LEO
bistatic SAR imaging problem was modeled as the recovery of low-rank matrices [21,22],
which effectively reduced the number of necessary receiving channels. However, these
methodologies are unsuitable for the BP algorithm. In summary, current research primarily
concentrates on frequency-domain algorithms for the GEO SAR “Stop-and-Go” error,
without any advancements made in the time-domain algorithm.

On the other hand, several accelerated BP imaging algorithms have been proposed
to enhance the efficiency of airborne and spaceborne SAR imaging [23,24]. One classic
approach is the utilization of subaperture imaging to decrease the computational load of
the BP algorithm. Currently, the most widely used algorithm is the fast factor BP (FFBP)
algorithm. Additionally, there are other accelerated BP algorithms based on Cartesian
coordinates, such as the Cartesian factor BP (CFBP) algorithm and the ground Cartesian BP
(GCBP) algorithm [24,25]. However, there is limited research on fast BP algorithms for GEO
SAR. Recently, Chen et al. proposed a fast Cartesian back-projection algorithm for GEO SAR,
which was based on ground subaperture imaging and multi-level fusion [26]. Nevertheless,
in the context of GEO SAR imaging, the signal model of a target exhibits two-dimensional
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spatial variation, requiring the calculation of slant range history for each pixel in the
scene. The expanded synthetic aperture duration and wider imaging width lead to a large
three-dimensional array for the slant range history, resulting in substantial computational
intensity. Specifically, the calculation of the range history consumes approximately 40%
of the processing time during each back-projection operation. Consequently, there is still
room for improvement in existing algorithms to further decrease the processing time for
image formation.

To tackle the problem of inaccurate slant range calculation arising from the failure of
the “Stop-and-Go” assumption in GEO SAR, we developed a Precise Slant Range Model
(PSRM) that incorporates the velocity and acceleration of both the satellite and the target.
This model accurately captures the radar’s curved motion along the satellite orbit and
the target’s circular motion resulting from the Earth’s rotation. We integrated this model
into the back-projection (BP) algorithm to facilitate the formation of GEO SAR images. To
tackle the computational complexity arising from the generation of the three-dimensional
range history array in GEO SAR, we propose a Rapid Range History Construction Method
(RRHCM). This method reduces the computational burden associated with calculating the
three-dimensional range array by utilizing mathematical techniques such as interpolation.
It significantly enhances the efficiency of the imaging process. In conclusion, we developed
an Accurate and Efficient Back-Projection (AEBP) imaging algorithm specifically designed
for GEO SAR, building upon aperture segmentation as the foundation. This algorithm
combines the Precise Slant Range Model and the Rapid Range History Construction Method.
We conducted simulations using parameters from the GEO SAR system, and the results
demonstrated that the proposed algorithm improves imaging quality while reducing
processing time.

2. Precise Slant Range Model

Figure 1 shows a schematic of the relative motion between the satellite and the Earth
during the transmission and reception times of the synthetic aperture radar (SAR) signal.
For the n pulse signal, the radar position at the moment of signal transmission is denoted
as Rtr

s,n, and the target position is denoted as Rtr
t,n. The time elapsed for the signal to

travel from the radar to the target (i.e., the transmission delay) is denoted by τtr, during
which the target moves with the rotation of the Earth to position Rre

t,n. The time for the
backscattered signal from the target to reach the receiving antenna on the Earth’s surface
(i.e., the reception delay) is denoted by τre, during which the radar moves along the satellite
orbit to position Rre

s,n.
During an orbit period, the satellite follows a circular or elliptical motion trajectory,

while the target follows a circular trajectory. A uniform acceleration curve represents a
parabolic trajectory, which can better describe the motion of the satellite and the target
during the synthetic aperture time compared to linear motion with a constant velocity.
Based on the uniform acceleration curve motion, the radar velocity at the time of signal
transmission is denoted by Vs,n, and the target velocity is denoted by Vt,n. The velocities
of the satellite and the target vary uniformly over time during the signal transmission and
reception, while their accelerations remain constant and equal to the radar acceleration As,n
and the target acceleration At,n at the moment of signal transmission.

Firstly, using the Lagrange interpolation method based on the measured sequence
of the satellite’s position and velocity in the WGS84 coordinate system, the position and
velocity of the radar at each pulse signal transmission time can be obtained, and the
acceleration of the satellite is obtained by the difference in the satellite velocity. Using
measurements of satellite position and velocity, satellite attitude, and antenna pointing,
the target position can be calculated. Taking into account the Earth’s rotation, the target
velocity and acceleration can be further calculated.
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Figure 1. The relative motion between the satellite and the Earth during the transmission and
reception times. The green circle represents the target position at the moment of transmission. The
red box represents the target position at the moment of reception. The yellow triangle represents the
position of the target and the satellite at the intermediate moment.

Based on the uniformly accelerated curvilinear motion of the satellite, it follows that

Rre
s,n = Rtr

s,n + Vs,n(τtr + τre) +
1
2

As,n(τtr + τre)
2. (1)

Based on the uniformly accelerated curvilinear motion of the target, it follows that

Rre
t,n = Rtr

t,n + Vt,nτtr +
1
2

At,nτ2
tr. (2)

We establish the transmitting slant range equation as follows:

‖Rtr
s,n − Rre

t,n‖= ‖(Rtr
s,n − Rtr

t,n)−Vt,nτtr −
1
2

At,nτ2
tr‖= cτtr. (3)

A system of fourth-order equations is obtained by rearranging the equation

a4τ4
tr + a3τ3

tr + a2τ2
tr + a1τtr + a0 = 0, (4)

where the coefficients of the system of equations are:

a4 =
1
4
‖At,n‖2

a3 = 〈Vt,n, At,n〉
a2 = ‖Vt,n‖2−〈Rtr

s,n − Rtr
t,n, At,n〉 − c2

a1 = −2〈Rtr
s,n − Rtr

t,n, Vt,n〉
a0 = ‖Rtr

s,n − Rtr
t,n‖2.

(5)

According to the formula for solving fourth-order equations, four roots for τtr can be
obtained. Out of these four solutions, two are negative, and two are positive. The smaller
positive root is the valid solution for τtr.

Next, we establish the equation for the receiving slant range:
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‖Rre
s,n − Rre

t,n‖= ‖(Rtr
s,n − Rtr

t,n) + (Vs,n −Vt,n)τtr +
1
2
(As,n −At,n)τ

2
tr + (Vs,n + As,nτtr)τre +

1
2

As,nτ2
re‖= cτre. (6)

A system of fourth-order equations is obtained by rearranging the equation

b4τ4
re + b3τ3

re + b2τ2
re + b1τre + b0 = 0, (7)

where the coefficients of the system of equations are:

b4 =
1
4
‖As,n‖2

b3 = 〈Vs,n + As,nτtr, As,n〉

b2 = ‖Vs,n + As,nτtr‖2−〈(Rtr
s,n − Rtr

t,n) + (Vs,n −Vt,n)τtr +
1
2
(As,n −At,n)τ

2
tr, As,n〉 − c2

b1 = 2〈(Rtr
s,n − Rtr

t,n) + (Vs,n −Vt,n)τtr +
1
2
(As,n −At,n)τ

2
tr, Vs,n + As,nτtr〉

b0 = ‖(Rtr
s,n − Rtr

t,n) + (Vs,n −Vt,n)τtr +
1
2
(As,n −At,n)τ

2
tr‖2.

(8)

According to the formula for solving fourth-order equations, four roots for τre can be
obtained. Out of these four solutions, two are negative, and two are positive. The smaller
positive root is the valid solution for τre.

The precise calculation formula for the separation of the transmitting and receiving
slant range model for each pulse signal is

R̂η = c(τtr + τre). (9)

Utilizing Equation (10), the range history can be computed in order to rectify errors in
the time domain caused by the “Stop-and-Go” assumption.

The wide imaging width of GEO SAR leads to spatial variation in the slant range
within the scene. The accurate slant range for each pixel (P(i, j)) within the imaging scene
needs to be computed sequentially. Therefore, a Precise Slant Range Model (PSRM) can be
formulated for GEO SAR:

R̂η(i, j) = c(τtr(i, j) + τre(i, j)). (10)

For the BP imaging algorithm used in GEO SAR, each back-projection operation
accurately calculates the slant range for the grid points within the imaging scene by
Equation (10). By effectively mitigating imaging errors resulting from the separation be-
tween the GEO SAR transmission and reception, this approach enhances imaging accuracy.

3. Rapid Range History Construction Method

The signal model of the target in a GEO SAR imaging scene possesses two-dimensional
spatial variation, and slant range histories need to be calculated for each pixel point within
the scene. Due to the long synthetic aperture time and wide imaging swath, the calculations
involved in producing a three-dimensional range array are substantial. In contrast, for
low-orbit SAR, assuming azimuth invariance, only one range history needs to be calculated
for each pixel within each range gate, thereby creating a two-dimensional range array.
Therefore, GEO SAR could utilize mathematical methods such as interpolation fitting to
reduce the computational cost of generating a three-dimensional slant range array.

As shown in Figure 2, the coordinates of satellite Sη at azimuth time η are (Xη , Yη , Zη).
Based on latitude and longitude, an N × M-sized imaging grid is established on the
surface of the Earth, with intervals between grid points being ∆lat and ∆lon. Converting
longitude and latitude to coordinates results in the coordinates of the grid points, denoted
by (X(i, j), Y(i, j), Z(i, j)). The origin of the coordinate system is located at the center of the
Earth. The points within the grid can be represented as Pij = {(i, j)‖1 ≤ i ≤ M, 1 ≤ j ≤ N}.
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In order to create a precise range history, it is essential to calculate the slant range for every
grid point. In the case of LEO SAR, the slant range of grid points can be directly obtained
using the following equation:

Rη(i, j) = |PijSη | =
√(

Xη − X(i, j)
)2

+
(
Yη −Y(i, j)

)2
+
(
Zη − Z(i, j)

)2. (11)

Figure 2. Schematic diagram of the Rapid Range History Construction Method.

DSRC represents the direct calculation of the slant range using Equation (11). For GEO
SAR, a more accurate slant range of grid points can be obtained through the Precise Slant
Range Model, which is calculated by Equation (10). Although calculating the slant range
for each grid point individually yields a highly accurate range history, it indeed involves
a substantial amount of computation. This is especially prominent in GEO SAR, where
solving two quartic equations is required for every grid point in each azimuth sample. The
computational workload is significant, resulting in a considerable amount of time required
to compute the precise range history.

The interpolation method is utilized as a rapid slant range construction method within
the imaging grid. We will focus on three closely related interpolation methods. The Nearest
Interpolation method is known for its speed but produces the poorest results. Bicubic
Interpolation utilizes sixteen (4× 4) points from the original image to calculate a new
point in the resulting image. Despite yielding superior results, this interpolation method is
accompanied by a higher computational cost. Bilinear Interpolation, which utilizes four
(2× 2) points from the original image to compute a new point in the new image, yields
slightly inferior results compared to Bicubic Interpolation but offers faster performance.
Consequently, the Bilinear Interpolation method is chosen to construct the slant ranges
of grid points. A comparison among these three interpolation methods is presented in
Section 6.

Four points in the grid are selected as control points, as shown in Figure 2. The
positions of the control points in the grid are C = {(ic, jc)‖(1, 1), (1, M), (N, 1), (N, M)}.
The four control points are positioned at the four corners of the grid. The slant ranges of
the four control points are precisely calculated using equations. Equation (11) is employed
for LEO SAR, while Equation (10) is utilized for GEO SAR. The remaining grid points
serve as interpolation points, obtained through interpolation techniques. Using the Bilinear
Interpolation method, the corresponding slant range for other grid points within the range
of W = {(i, j)|1 ≤ i ≤ M, 1 ≤ j ≤ N} can be expressed as

Rη(i, j) =
1

(M− 1)(N − 1)
×∑

ic ,jc

|N + 1− ic − i||M + 1− jc − j|Rc(ic, jc), (12)
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where Rc(ic, jc) represents the precise slant range computed for the four control points
using the PSRM in the GEO SAR scenario. As a result, the slant range of the points within
the grid can be constructed rapidly. The slant range corresponding to each point within the
grid at each azimuth time can be calculated using the following equation:

Rη(i, j) =
|N − i||M− j|
(M− 1)(N − 1)

R(1, 1) +
|N − i||1− j|

(M− 1)(N − 1)
R(1, M) +

|1− i||M− j|
(M− 1)(N − 1)

R(N, 1) +
|1− i||1− j|

(M− 1)(N − 1)
R(N, M). (13)

Consequently, the entire process for constructing the Rapid Range History Construc-
tion Method (RRHCM) can be described. Initially, an imaging grid is established based
on latitude and longitude coordinates. Subsequently, the grid points are converted to
a Cartesian coordinate system. The control points of the grid are designated at its four
corners. Then, the slant ranges corresponding to the control points are computed using the
PSRM. Lastly, utilizing the Bilinear Interpolation method, the slant ranges of the remaining
interpolated points are efficiently calculated based on Equation (13). Importantly, the slant
range error increases as the interpolated points move further away from the control points.
This variation demonstrates that the maximum slant range error is located at the center of
the grid, while the minimum slant range error is observed at the edges. The Rapid Range
History Construction Method reduces the curvature of the original curved surface grid,
as illustrated in Figure 2 (right). A comprehensive analysis of the slant range error and its
implications for imaging can be found in Section 5.

4. An Accurate and Efficient BP Algorithm Based on the Precise Slant Range Model
and the Rapid Range History Construction Method

Utilizing the aforementioned Precise Slant Range Model and the Rapid Range His-
tory Construction Method, this study proposes an Accurate and Efficient Back-Projection
(AEBP) imaging algorithm based on subaperture for GEO SAR. The phenomenon of
range migration caused by the motion of the satellite and the target during the transmis-
sion and reception of the radar signal is considered by the PSRM. Therefore, the slant
range is more accurate. Due to the high computational complexity and intensive compu-
tation required for the solution of the PSRM, which involves solving two fourth-order
equations for each grid point at each azimuth time, the time and computational cost
can be significantly high. Therefore, the RRHCM is adopted to improve the speed of
slant range calculation without compromising the imaging accuracy and to enhance the
timeliness of the imaging.

Consider separating the slant range calculation and azimuth pulse processing to
reduce the computational load of calculating the three-dimensional array range history
by first constructing a full-aperture slant range history and then accumulating the sig-
nal for each grid point at different azimuth moments. The algorithm flowchart is dis-
played in Figure 3, comprising three parts: preprocessing; imaging (i.e., back-projection);
and postprocessing.
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Figure 3. Flowchart of the proposed Accurate and Efficient BP algorithm. The red dots represent
control points and the black dots represent other grid points.

4.1. The Preprocessing Stage: Aperture Division, Azimuth Segmentation, and Subgrid Division

Due to the long GEO SAR synthetic aperture time and the large amount of azimuthal
sampled data, the aperture division approach is still utilized by dividing the large beam into
multiple small beams. Full-aperture La is divided into γ subapertures. Each subaperture
contains Naγ azimuth pulses. The relationship between the three can be expressed as

La = ∑
γ

Naγ. (14)

Moreover, considering segmentation in the azimuth direction, it can be assumed that
the slant range of grid points remains constant within a certain period or varies gradually
during the azimuth segment. Each subaperture is divided into µ azimuth segments. Each
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azimuth segment contains Naµ azimuth pulses. The slant range at any time within an
azimuth segment can be expressed as

Rij(ηµ) ≈ Rij(η0), (15)

where ηµ is the azimuth time in an azimuth segment denoted as ηµ = {η|η0 + (nµ − 1)×
Naµ ≤ η ≤ η0 + nµ×Naµ}; η0 is the azimuth time of the first pulse in the subaperture; and
nµ denotes the nµ azimuth segment within the subaperture. Therefore, it is only necessary
to calculate the slant range of grid points at certain azimuth moments, and the slant range
at other moments within the azimuth segment can be approximated by the azimuth slant
range at the nearest azimuth moment. Alternatively, the slant ranges for all azimuth
moments can be obtained by fitting along the azimuth direction. With the proper length
of azimuth segments, the slant range error can be kept minimal and can be considered to
have no impact on imaging. The specific error analysis of azimuth segmentation, along
with its impact analysis, is addressed in Section 5. The echo signal in an azimuth segment
can be expressed as follows:

Sseg(ηµ) = {S(η)|η0 + (nµ − 1)× Naµ ≤ η ≤ η0 + nµ × Naµ}. (16)

Since the Rapid Range History Construction Method has certain requirements for grid
size and scene width, the further subdivision of the constructed scene grid is necessary. The
entire scene is further divided into m× n subgrids. The size of each subgrid is MS × Ns.

Ms = M/m

Ns = N/n
(17)

In Section 5, the impact of slant range error on imaging is analyzed in detail, and in
Section 5, the impact of grid interval and grid size on slant range calculation is analyzed
through simulation. The analysis of grid spacing and size is included in Section 6.

4.2. The Imaging Stage: Rapid Range History Construction, Range Processing,
and Signal Accumulation

First, the echo within each azimuth segment is range-compressed and range-upsampled.
The echo signal after range compression in an azimuth segment can be expressed as follows:

Sseg(τ, ηµ) = w(ηµ)sinc
(

B
(

τ −
2Rij(ηµ)

c

))
exp
(
− j

4π

λ
Rij(ηµ)

)
. (18)

Next, the slant range of each grid point in the subgrid is computed. The diagram
illustrating the slant range calculation is displayed in Figure 4. An azimuth moment η0 is
selected within each azimuth segment to calculate the slant range at this time. Based on the
PSRM, the exact slant range of the control points C = {(ic, jc)‖(1, 1), (1, M), (N, 1), (N, M)}
within the subgrid can be accurately calculated according to Equation (10), denoted as
R̂ic jc(η0).

Then, according to the RRHCM, the corresponding skew distances of the other points
within the subgrid are obtained by Equation (13), denoted as R̂is js :

R̂is js(η0) =
|Ns − i||Ms − j|
(Ms − 1)(Ns − 1)

R̂11(η0) +
|Ns − i||1− j|

(Ms − 1)(Ns − 1)
R̂1Ms(η0)

+
|1− i||Ms − j|

(Ms − 1)(Ns − 1)
R̂Ns1(η0) +

|1− i||1− j|
(Ms − 1)(Ns − 1)

R̂Ns Ms(η0),
(19)

where points within each subgrid can be expressede as Ps = {(is, js)|1 ≤ is ≤ Ms, 1 ≤ js ≤ Ns}.
Finally, the calculated slant ranges of the grid points within each azimuth segment are
fitted to obtain the slant ranges of the grid points at all azimuth moments.



Remote Sens. 2023, 15, 5191 10 of 25

Figure 4. Diagram of the slant range calculation for the proposed Accurate and Efficient BP algorithm.
The red dots represent control points and the black dots represent other grid points. The dashed lines
indicate azimuth sampling.

Subsequently, a back-projection process is conducted on a pulse-by-pulse basis. Corre-
sponding echo data are found based on time delay, and after phase compensation, coherent
accumulation is performed to generate a subaperture image for the subgrid. The GEO SAR
image of a subaperture in a subgrid can be expressed as

Isub(is, js) = ∑
Naγ

exp
(

j
4π

λ
R̂is js(η0)

)
· Sseg(ηµ)

1 ≤ is ≤ Ms, 1 ≤ js ≤ Ns.

(20)

4.3. The Postprocessing Stage: Subaperture Fusion and Scene Splicing

The imaging process described above is performed on each subaperture separately to
generate subaperture images. These sub-images are then coherently fused to produce SAR
images that are more accurate and clear.

In the case of multi-grid processing, the imaging process described above is performed
on each subgrid separately, and the resulting subaperture images are coherently fused until
the desired resolution is achieved. Then, the sub-scene images are stitched together to
generate a high-resolution image for the entire scene, expressed as

I(i, j) =
γ

∑
sub=1

Isub(i, j)

1 ≤ i ≤ M, 1 ≤ j ≤ N.

(21)

5. Algorithm Restriction Analysis
5.1. Computational Complexity Analysis

Assuming that the entire scene is divided into M×N grid points, the entire scene is fur-
ther divided into m× n subgrids. The raw data have La azimuth samples. The full aperture
is divided into γ subapertures, with each µ azimuth segment forming one subaperture.

5.1.1. Computational Complexity Analysis for Traditional BP Algorithms

For traditional BP algorithms as well as other fast BP algorithms, the calculation
of slant range adopts the direct slant range calculation method, expressed as (11). For
each azimuth moment, the direct calculation of the grid point slant range involves 4MN
floating-point addition operations, 3MN floating-point multiplication operations, and MN
floating-point square root calculations. Hence, within the entire aperture time, the direct
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slant range model calculation involves 4MNLa floating-point addition operations, 3MNLa
floating-point multiplication operations, and MNLa floating-point square root calculations.

5.1.2. Computational Complexity Analysis for the Proposed AEBP Algorithm

The Accurate and Efficient BP algorithm we propose utilizes the Rapid Range His-
tory Construction Method. For each azimuth sample, the rapid construction slant range
expression for points within each subgrid Ps = {(is, js)|1 ≤ is ≤ Ms, 1 ≤ js ≤ Ns} can be
represented as follows:

Rη(i, j) = C1R(1, 1) + C2R(1, Ms) + C3R(Ns, 1) + C4R(Ns, Ms) (22)

where the number of grid points in each subgrid is given by Ms × Ns, C1 = |Ns − is||Ms −
js|/{(Ms − 1)(Ns − 1)}, C2 = |Ns − is||1− js|/{(Ms − 1)(Ns − 1)}, C3 = |1− is||Ms −
js|/{(Ms − 1)(Ns − 1)}, and C4 = |1− is||1− js|/{(Ms − 1)(Ns − 1)}.

For a specific azimuth sample, within a subgrid, the RRHCM involves 3MsNs floating-
point additions, 4MsNs floating-point multiplications, and 4 exact slant range computations.
There are a total of (m + 1)(n + 1) control points within the entire grid of the scene. The
number of control points is significantly smaller than the total number of grid points, (that
is, m� M, and n� N). Therefore, the computational cost of calculating slant ranges for
control points is negligible and can be ignored. For a specific azimuth sample, within the
entire grid, the Rapid Range History Construction Method involves 3MN floating-point
additions and 4MN floating-point multiplications.

Within the full aperture time, there are γ × η azimuth segments included. Only
the slant range of each grid point is calculated once within each azimuth segment. The
slant ranges sampled at other azimuth times within the segment can be approximated
or fitted. Therefore, only La/γ/η azimuth samples require the calculation of the slant
range. The slant ranges for all grid points across the entire scene within the full aperture
can be constructed, involving floating-point additions of 3MNLa/γ/η and floating-point
multiplications of 4MNLa/γ/η.

5.1.3. Comparison of Computational Complexity Analysis

A comparison between the traditional BP algorithm (involving the fast BP algorithm)
and the proposed BP algorithm in terms of computational complexity for slant range
calculations is shown in Table 1. The operation that consumes the most time among these
three computation types is the square root operation. The proposed algorithm significantly
reduces the need for square root calculations while reducing the amount of computation
for addition and subtraction, thereby reducing the computation time for the slant range
and shortening the time required for each BP operation.

Table 1. Comparison of computational complexity between traditional BPA and proposed BPA.

Algorithm
Computational Complexity

Addition Multiplication Square Root

Traditional BPA 4MNLa 3MNLa MNLa
Proposed BPA 3MNLa/γ/η 4MNLa/γ/η 0

5.2. Slant Range Error Analysis

The imaging grid generated using the method of Bilinear Interpolation for the RRHCM
exhibits reduced curvature in comparison to the imaging grid established based on latitude
and longitude, as illustrated in Figure 2. Further analysis is needed to assess the impact of
rapid slant range calculation errors. Let P(i, j) be a point within the grid to be inspected.
The precise slant range, R̂p, for point P is also computed under the imaging grid established
according to latitude and longitude using Equation (10), expressed as

R̂P = c(τtr_P + τre_P) (23)
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where the value of τtr_P was derived from solving a system of one-variable fourth-degree
equations using the transmitting slant range Equation (5) of point P, while τre_P was
obtained by solving a system of one-variable fourth-degree equations using the receiving
slant range Equation (8) of point P.

Additionally, The precise slant range histories for the four control points are com-
puted under the latitude and longitude grid, expressed as R̂(1, 1), R̂(1, Ms), R̂(Ns, 1), and
R̂(Ns, Ms). The slant range value of point P, RPs, can be obtained through linear weighting
of the slant range of four control points within the grid, and it can be calculated using the
Rapid Range History Construction Method (RRHCM), expressed as

R̂Ps(i, j) =
|Ns − i||Ms − j|
(Ms − 1)(Ns − 1)

R̂(1, 1) +
|Ns − i||1− j|

(Ms − 1)(Ns − 1)
R̂(1, Ms)

+
|1− i||Ms − j|

(Ms − 1)(Ns − 1)
R̂(Ns, 1) +

|1− i||1− j|
(Ms − 1)(Ns − 1)

R̂(Ns, Ms).
(24)

Therefore, the slant range error of point P is expressed as follows:

∆RPS = |R̂P − R̂PS|. (25)

Generally, in order to ensure the imaging quality of the BP algorithm, it is necessary
to calculate the round-trip delay time tij based on the slant range Rij between the radar
and each grid point for every azimuth moment (the time of the transmitting pulse) and
perform accurate back-projection. However, not every round-trip time delay tij can find its
corresponding data due to the limited range sampling rate. In such cases, the algorithm
only approximates to the nearest values.

Therefore, errors in the slant range directly affect the accuracy of the echo values
during back-projection within each grid at a particular azimuth moment, which in turn
impacts the quality of the image, as shown in Figure 5. The left side illustrates a schematic
diagram of the compressed echo signal after range compression expressed as an oblique
orange line. The green line represents the range gate. The small diagram on the right side
shows how to find closely matching data values based on the round-trip delay tij within
a range gate. The red dashed line represents the middle line of the range gate, and the
yellow line represents the position of the echo signal obtained through the Rapid Range
History Construction Method. The orange echo signal is approximated to the range gate
on the right side, and then the signal value within the range gate is projected onto the grid.
The yellow solid line is approximated to the nearby range gate, projecting the signal from
the blue solid line on the left side onto the grid. Ultimately, errors in the slant range are
manifested by the inaccuracy of the range gate found based on the round-trip delay. As
long as the error is controlled within a range gate, it will not have a significant impact on
image quality, expressed as

∆RPS ≤ Rgate, (26)

where Rgate represents the width of a range gate. Therefore, this can serve as a basis for grid
construction to make the grid more suitable. Section 5 provides a more detailed verification
analysis of the error.

Similarly, the fitting error of the slant range within each azimuth segment should also
be within a range gate.

∆RPS(ηµ) = |RP(ηµ)− RPS| ≤ Rgate

η0 + (nµ − 1)× Naµ ≤ ηµ ≤ η0 + nµ×Naµ.
(27)
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Figure 5. Diagram for error analysis in back-projection processing.

In general, to ensure the imaging quality of the algorithm, the maximum phase error
should be less than π/4. ∆RPS and ∆RPS(ηµ) also need to satisfy the following formula:

∆φ =
4π

λ
∆R ≤ π

4
. (28)

Hence, as long as the slant range of the proposed AEBP algorithm satisfies Equation (26),
Equation (27), and Equation (28), the quality of the imaging results is not impaired.

6. Computer Simulation and Experimental Results
6.1. Precise Slant Range Model Validation

The simulation verification was conducted using the parameters of the GEO SAR
satellite [27–30]. Operating in an inclined geosynchronous orbit (IGSO), this advanced satel-
lite offers SAR observation capabilities with hourly coverage, a wide swath (500–3000 km),
a moderate resolution (20–50 m), all-weather capabilities, and continuous monitoring
throughout the day. The obtained SAR images in the L-band can be applied to industries
including disaster reduction, land management, seismic activities, water resources, me-
teorology, oceanography, agriculture, environmental protection, and forestry. The orbital
elements and radar parameters of the GEO SAR satellite are provided in Table 2.

Table 2. Simulation parameters of GEO SAR.

Parameter Name Value Units

Orbital Elements

Semimajor axis 42,164,563.2 m
Inclination 0.2792450 rad
Eccentricity 3.724359 × 10−6 -

Longitude of the ascending node 3.746894 rad
Argument of perihelion 5.925221 rad

Mean anomaly 0.7583125 rad

Radar Parameters

Look angle 5.335 deg
Incidence angle 35.10–40.87 deg

Squint angle 58 deg
Chirp bandwidth 70 MHz

Pulse width 500 us
Carrier frequency 1.25 GHz

Synthetic aperture time 3600 s

Scene Parameters

Central point target longitude 102.83 °E
Central point target latitude 24.88 °N

Subgrid width 10 km
Grid spacing 4 m
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The satellite operates in a geosynchronous orbit with a revisit cycle of 1 day. Figure 6
illustrates the orbital path of the satellite based on the orbital elements provided in Table 2.
The target in Figure 6 is the central point of the observed target array set by the simulation,
located at 102.83 degrees east longitude and 24.88 degrees north latitude. The target array
consists of nine point targets with an array size of 7× 7 km.

Figure 6. Trajectory diagram for GEO SAR based on the orbital elements.

The SAR satellite operates in a geosynchronous orbit at a height of 36,000 km. The
separation between the transmitter and receiver is more than 1 km, and this separation
phenomenon intensifies with the increasing imaging off-nadir angle of the GEO SAR.
The curvature effect of the satellite orbit should be taken into account, as the motion of
the target caused by the Earth’s rotation is influenced by the Earth’s curvature. Directly
calculating the slant range without considering the orbit curvature effect, the Earth’s
curvature impact, and the elliptical shape of the satellite orbit can introduce errors in the
precise slant range modeling of the geosynchronous SAR. These errors are magnified with
an increased synthetic aperture time, larger off-nadir imaging angles, and greater satellite
orbit eccentricity. The magnitude of slant range errors for different azimuth samples is
illustrated in the graph shown in Figure 7. Figure 8a represents the imaging results obtained
without accounting for the satellite and target motion during the pulse transmission and
reception process. As a result, each point target in the target array showed significant
defocusing in the azimuth direction and experienced a displacement.

Figure 7. Slant range errors for different azimuth samples.
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Figure 8. The imaging results: (a) based on the DSRC, (b) based on the PSRC.

A Precise Slant Range Model was constructed using the satellite’s velocity and acceler-
ation to describe the curvature motion of the radar along the satellite orbit and the circular
motion of the target caused by the Earth’s rotation during the signal’s travel time from
transmission to reception. The imaging results of one of the point targets based on the
PSRM are shown in Figure 8b. The azimuth and range profiles are presented in Figure 9. A
significant improvement in the focusing quality of the point targets was observed compared
to the direct calculation of the slant range. The peak sidelobe ratio and integrated sidelobe
ratio of the focused point targets are provided in Table 3. The Precise Slant Range Model
considered the motion of the satellite and target points in the GEO SAR “Stop-and-Go”
assumption errors, enabling a more accurate calculation of the slant range between the
satellite and target and enhancing the imaging quality.

Figure 9. The range and azimuth profiles: (a,b) based on the DSRC, (c,d) based on the PSRC.
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Table 3. Evaluation results of central point target based on DSRM and PSRM.

Range Azimuth

PSLR (dB) ISLR (dB) 3 dB Width IRW (m) PSLR (dB) ISLR (dB) 3 dB Width IRW (m)

DSRM −15.6429 −12.5680 25.8967 2.4261 −12.0882 −9.4243 50.4878 13.7756
PSRM −13.3495 −10.5069 25.7286 2.4104 −13.1940 −10.3970 51.1031 13.0364

6.2. Interpolation Method Selection Validation

The key to the proposed AEBP algorithm is utilizing interpolation instead of directly
calculating the slant range for each grid point. By employing interpolation methods, the
computational burden of three-dimensional array slant range calculation is reduced, leading
to a significant improvement in computational efficiency. There are various interpolation
algorithms available, and the choice of interpolation method is crucial. In this study, we
considered three closely related interpolation methods:

(1) Nearest-Neighbor Interpolation: The numerical value of the nearest neighboring grid
point is replaced with that of the grid control point.

(2) Bilinear Interpolation: This method extends the linear interpolation of an interpolation
function with two variables. The core idea is to perform a linear interpolation in each
direction separately.

(3) Bicubic Interpolation: Bicubic interpolation is a sophisticated method that utilizes
the numerical values of the 16 surrounding points to calculate a cubic interpolation.
It considers the influence of the four adjacent points as well as the variation rates
between neighboring points.

To determine the optimal interpolation method, an experiment was conducted using a
grid of size 3000× 3000 with 1 m grid spacing. The target point was positioned at the grid’s
center. The slant range between the satellite and each grid point was calculated using the
three aforementioned interpolation methods, as well as the direct slant range calculation
method. The errors in the slant range between the three interpolation methods and the
directly calculated range were measured and are illustrated in Figure 10. The computation
time and maximum slant range error are presented in Table 4.

Figure 10. The slant range errors of the three interpolation methods and the directly calculated range:
(a) Nearest-Neighbor Interpolation, (b) Bilinear Interpolation, (c) Bicubic Interpolation.

The Nearest-Neighbor Interpolation method demonstrated the fastest calculation
speed but introduced larger slant range errors, resulting in lower image quality. Bilinear
Interpolation, which employed 4 (2× 2) grid points to compute a new point, performed
slightly worse than Bicubic Interpolation but offered a faster calculation speed. Bicubic
Interpolation, on the other hand, employed 16 (4× 4) grid points to compute a new point,
resulting in the smallest slant range error and superior image quality. However, this
advantage was accompanied by a significant increase in computational load. Therefore,
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Bilinear Interpolation was selected as the method for efficiently computing the slant range
of grid points in the AEBP algorithm.

Table 4. The computational time and maximum slant range error.

Direct Slant Range
Calculation

Nearest-Neighbor
Interpolation

Bilinear
Interpolation Bicubic Interpolation

Computational Time (s) 0.035849 0.01596 0.017598 0.128078
Maximum Range Error (m) - 1.2034 × 103 0.0411 1.7136 × 10−7

6.3. Validation of AEBP Based on PSRM and RRHCM

GEO SAR for Earth observation possesses the characteristics of frequent revisits, broad
coverage, and the ability to conduct focused observations of particular areas. To prevent the
occurrence of blind zones, the receiving pulse window of spaceborne Synthetic Aperture
Radar (SAR) must be distinct from the transmitting pulse window. A higher resolution and
slant angle lead to an increased synthetic aperture time and range cell migration (RCM). In
certain azimuth positions, specific beam placements in the system design must be chosen
near blind zones. However, due to the influence of range cell migration (RCM), echo pulses
received from these positions may surpass the receiving window. Conversely, reducing
the width of the range swath is necessary to ensure the complete reception of all echo
pulses. To overcome these challenges and mitigate the influence of range cell migration
(RCM) on the range swath, GEO SAR utilizes a variable Pulse Repetition Frequency (PRF)
technique. The continuous modification of the PRF results in a more dispersed distribution
of blind zones. The positions of the blind zones and the choice of PRF are deterministically
linked. A fixed PRF would result in a fixed distribution of blind zones, while continuous
PRF variation causes the blind zone positions to change along the azimuth direction. The
combination of the variable PRF technique and high-resolution oblique SAR staring mode
in satellite-borne SAR ensures a reduced data volume for the echo while maintaining the
range swath width.

The GEO SAR staring mode adopts a segmented variable PRF technique. In the vari-
able PRF SAR, the echo signal is non-uniform solely in the azimuth direction. By applying
the BP algorithm to echo signals obtained with the variable PRF, data focusing is directly
accomplished in the time domain. The BP algorithm can be regarded as a coherent pulse-
by-pulse accumulation process of point targets in the scene along the azimuth direction in
the time domain. This overcomes the requirement for uniform sampling in the azimuth
direction, as necessitated by frequency-domain algorithms. However, the computational
complexity of the BP algorithm scales proportionally to the product of the number of
pixels within the imaging area and the number of azimuth sampling points in the echo.
Consequently, the BP algorithm entails a significant computational burden. To tackle
this issue, according to the variation pattern of the PRF, the subaperture decomposition
technique is employed. The BP algorithm is applied within each subaperture to generate
a coarse-resolution image, while coherent synthesis between subapertures is carried out
to achieve a high resolution. Table 5 presents the pulse repetition time (PRT), number of
sustained pulses, and acquisition window width for each of the three subapertures.
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Table 5. Simulation parameters of three subapertures.

Parameter Name Value Units

Pulse Repetition Time
Subaperture 1 5457 us
Subaperture 2 5329 us
Subaperture 3 5102 us

Number of Sustained Pulses
Subaperture 1 109,895 -
Subaperture 2 112,533 -
Subaperture 3 117,541 -

Acquisition Window Width
Subaperture 1 2.12992 ms
Subaperture 2 2.08896 ms
Subaperture 3 2.048 ms

Subsequently, it is crucial to ascertain the suitable grid size and grid spacing. Excessive
grid points or an enlarged grid spacing can amplify the error between the interpolated
slant range and the precise slant range. As a consequence, the accuracy of the echo signals
in the back-projection process is compromised, resulting in scattered point targets and
the degradation of image quality. Conversely, an inadequate number of grid points or
a reduced grid spacing may result in an excessive quantity of subgrids, consequently
prolonging the processing time for subgrid imaging. Thus, it is crucial to opt for a larger
grid size without compromising image quality. To guarantee image quality, it is necessary
for the back-projection echo values to be accurate, which means that the range error at the
grid points should be smaller than a range gate. This range error is primarily related to the
range sampling rate expressed as Fs. Since the range errors at different grid points within
the grid are not the same, the average range error of all grid points in the grid can be used
to assess the range error for that particular grid.

Figure 11 illustrates the analysis of the average range error under different grid sizes
and grid spacings. As more grid points are used and the grid spacing increases, the average
range error of the grid increases, resulting in poorer image quality in the respective grid.
Additionally, Figure 11 depicts the range gate variation for different range sampling rates.
The upper-left portion of the curve indicates that the grid range error is smaller than the
range gate for that particular range sampling rate. In this case, the back-projection echo
values at the grid points within that grid are accurate, ensuring that the grid’s image quality
remains unaffected. Therefore, Figure 11 can be used to select suitable grid sizes and
spacing for constructing subgrids.

We also examined the factors affecting the slant range computation time. Figure 12
showcases the time needed to compute the slant range for all grid points at a specific
azimuth moment, considering different grid sizes and grid spacing values. The pixel values
of the image are measured in seconds. In the graph on the left, the slant range is directly
calculated, while in the graph on the right, the RRHCM is used. It can be observed that the
slant range computation time is not affected by the grid size but instead depends on the
number of grid points. As the number of grid points increases and the grid size becomes
larger, more time is required to compute the slant range values.
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Figure 11. An analysis graph depicting the average distance error for different grid sizes under
varying grid spacings.

Figure 12. The relationship between the time required for calculating the slant range and the number
of grid points and grid spacing: (a) based on DSRC, (b) based on RRHCM.

With a constant grid spacing of 4 m, we compared the time required by four different
slant range methods for varying numbers of grid points, as shown in Figure 13. The DSRC
method represents the direct calculation of slant range, PSRM represents the Precise Slant
Range Model, DSRC & RRHCM represents direct slant range calculation for control points
using the Rapid Range History Construction Method, and PSRM & RRHCM represents
the use of the Precise Slant Range Model for control points with the Rapid Range History
Construction Method applied for the rest of the grid points. As shown in the graph on
the left, there was a significant increase in the time needed for PSRM to compute the grid
slant range. However, using the Rapid Range History Construction Method could reduce
the computation time. When compared to PSRM, the time required for PSRM & RRHCM
remained nearly constant. In the graph on the right, DSRC & RRHCM exhibits a slower
increase rate compared to DSRC, indicating that the Rapid Range History Construction
Method also reduced the time needed for direct slant range calculation. PSRM & RRHCM
required nearly half the computation time of DSRC but a slightly longer computation time
than DSRC & RRHCM. In conclusion, the Rapid Range History Construction Method could
effectively reduce the computation time for slant range calculation, decrease the compu-
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tational workload, and consequently shorten the processing time for imaging, thereby
enhancing the imaging timeliness.

Figure 13. Comparison charts of computation time based on PSRM, DSRC, and RRHCM: (a) compar-
ison of PSRM and PSRM&RRHCM, (b) comparison of DSRC, DSRC&RRHCM and PSRM&RRHCM.

Next, we analyzed the imaging quality of the AEBP algorithm using the Precise
Slant Range Model and the Rapid Range History Construction Method. The grid was
2500× 2500 with a spacing of 4 m. The point target was positioned at the center of the
grid. Imaging was conducted separately for three subapertures. The slant range for the
control points of the grid was calculated using the Precise Slant Range Model, while
the slant range for the remaining grid points was interpolated using the RRCHM. The
imaging results for the three subapertures and their fusion are illustrated in Figure 14.
The first row shows the focused image of the point target, while the second and third
rows display the range direction envelope and azimuth direction envelope, respectively.
The quality analysis of the point target imaging and the reduced time (RT) for imaging
are summarized in Table 6. The peak sidelobe ratio (PSR) and integrated sidelobe ratio
(ISR) (normalized to the theoretical value) were −13.26 dB and −9.68 dB, respectively.
The RT value was obtained by comparing the time taken to shorten the experiment with
the time taken to directly calculate the subaperture grid point slant range. A higher RT
indicates that the AEBP algorithm could save more time. PSRM represents the focal results
of point targets obtained by calculating the slant ranges of all grid points in the azimuth
direction using the Precise Slant Range Model. Conversely, PSRM & RRHCM represents
the focal results of point targets obtained using the Precise Slant Range Model and the
Rapid Range History Construction Method. It is evident that the imaging results obtained
using the Precise Slant Range Model exhibited excellent imaging performance. The parallel
processing of subapertures significantly reduced the imaging time, while the coherent
fusion of subapertures enhanced the azimuth resolution. The RRCHM further improved
the computational efficiency. The proposed algorithm ensured high imaging quality and
enhanced the timeliness of imaging processing. It could also be combined with the aperture
segmentation approach.
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Figure 14. Contour plots of subaperture imaging: (a,e,i) subaperture 1; (b,f,j) subaperture 2;
(c,g,k) subaperture 3; (d,h,l) subaperture fusion.

Table 6. Evaluation results of central point target based on PSRM and RRHCM.

PSRM PSRM & RRHCM

PSLR (dB) ISLR (dB) IRW (m) PSLR (dB) ISLR (dB) IRW (m) RT (%)

Subaperture 1 Range −13.3495 −10.5069 2.4104 −15.2689 −12.4618 2.4016 19.6Azimuth −13.1940 −10.3970 13.0364 −13.4383 −11.0106 13.4475

Subaperture 2 Range −13.3813 −10.4784 2.4026 −13.9364 −11.2681 2.3898 19.3Azimuth −13.2537 −10.3610 13.7244 −13.3595 −10.6602 13.7032

Subaperture 3 Range −13.4015 −10.4835 2.4150 −14.6586 −12.0621 2.4355 19.5Azimuth −13.2674 −10.3630 13.2863 −13.2715 −10.4040 12.9067

Subaperture Fusion Range −13.3833 −10.5028 2.4083 −14.6116 −11.9683 2.3829 19.5Azimuth −13.0613 −9.8639 4.3344 −12.8042 −9.7834 4.6223

The fusion of three subapertures improved the azimuth resolution, resulting in a high-
precision image, as shown in Figure 14. Table 6 presents an analysis of the image quality.
PSRM represents the focal results of point targets obtained by calculating the slant ranges
of all grid points in the azimuth direction using the Precise Slant Range Model. PSRM &
RRHCM represents the focal results of point targets obtained using both the Precise Slant
Range Model and the Rapid Range History Construction Method. The imaging results
obtained using the Precise Slant Range Model demonstrated excellent imaging performance.
The parallel processing of subapertures reduced the imaging time, while the coherent fusion
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of subapertures enhanced the azimuth resolution. Furthermore, the RRCHM improved the
computational efficiency, ensuring high-quality imaging and timely processing.

6.4. Performance Evaluation

The proposed AEBP algorithm, when combined with the Precise Slant Range Model
(PSRM), exhibited enhanced imaging quality compared to traditional BP algorithms. PSRM
provides a more accurate estimation of slant range, which contributes to improved imaging
quality. By incorporating the velocity and acceleration of both the satellite and target, PSRM
ensures that slant range values are computed with higher precision. Utilizing the precise
slant range values provided by PSRM, the AEBP algorithm can more effectively focus the
radar signals, resulting in sharper and more detailed images.

Additionally, the Rapid Range History Construction Method (RRHCM) significantly
improves the imaging speed of the AEBP algorithm. RRHCM offers a more expedient
approach to computing slant range. Although it may introduce some trade-offs in terms of
precision compared to PSRM, it still produces satisfactory imaging quality. By significantly
reducing the computation time for non-control grid points, the fast calculation method
enables faster image generation without compromising the overall quality. Additionally,
RRHCM is not limited by the type of coordinate system used. The introduction of previous
methods and experimental validation were conducted in the Cartesian coordinate system.
However, for the polar coordinate system, it was shown that the RRHCM still exhibited
promising performance, as demonstrated in Table 7. RTRHC represents the time reduction
for constructing the grid range history, while RTBPO represents the reduced time for the
back-projection operation.

Table 7. The time reduction for the RRCHM in the Cartesian coordinate system and polar coordi-
nate system.

Method RTRHC (%) RTBPO (%)

Cartesian Coordinate System (BP, GCBP) 85 35
Polar Coordinate System (FBP, FFBP) 90 40

The combination of the PSRM and RRCHM enables enhanced timeliness and efficiency
in generating high-quality radar images. The algorithm effectively handles large datasets
and complex scenes, making it suitable for real-time applications and scenarios that require
rapid image processing.

In summary, the Accurate and Efficient Back-Projection (AEBP) algorithm, based
on the Precise Slant Range Model (PSRM) and the Rapid Range History Construction
Method (RRHCM), provides superior imaging quality and speed compared to traditional
BP algorithms and fast BP algorithms. The accuracy of the slant range model contributes
to sharper images, while the fast calculation method ensures efficient processing without
sacrificing quality. This combination makes the algorithm well-suited for real-time imaging
tasks that demand both accuracy and speed. The proposed AEBP algorithm optimizes
each back-projection operation and the construction of the grid range history, independent
of the coordinate system used. It does not affect the performance of subaperture fusion
and exhibits strong universality. Consequently, the AEBP algorithm can be integrated
with existing fast BP algorithms to reduce the speed of back-projection during the fast BP
imaging process, thereby further enhancing the imaging speed of fast BP.

The current implementation of the proposed method is limited to uniform imaging
grids. These limitations restrict the division of imaging grids. However, due to grid
approximation, there may be errors in the calculated slant ranges. The proposed method
does not incorporate range error compensation. Thus, the influence of range error can
only be managed by selecting a smaller grid size for imaging. Subsequently, we will
further refine the Rapid Range History Construction Method to enable its applicability to
non-uniform imaging grids. Additionally, we will investigate a compensation method to
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correct the slant range error. Moreover, the validation was limited to simulation targets.
Subsequently, we will also apply the proposed method to real data for further evaluation.

7. Conclusions

This paper presented the Accurate and Efficient Back-Projection (AEBP) algorithm,
an imaging algorithm designed for GEO SAR. The algorithm utilizes the Precise Slant
Range Model (PSRM) and the Rapid Range History Construction Method (RRHCM) as
its foundation.

In this study, the PSRM was developed to compensate for “Stop-and-Go” assumption
errors in the time domain, considering both the curved motion along the satellite orbit and
the circular motion caused by the Earth’s rotation. Additionally, we proposed the RRHCM,
which utilizes interpolation to generate the range history for all grid points directly. This
approach effectively reduces the computational complexity associated with the three-
dimensional array of range history. Following a theoretical analysis and experimental
comparisons of different interpolation methods, we concluded that Bilinear Interpolation is
the most suitable method for approximating the slant range within the grid. We performed
an analysis to evaluate the RRHCM in terms of its error and its impact on the final imaging
results. Based on the error analysis findings, we proposed a set of criteria for constructing
the imaging grid and validated them through simulations.

In conclusion, this paper introduced the AEBP algorithm for GEO SAR imaging. The
algorithm was developed by utilizing the PSRM and the RRHCM. It includes preprocessing,
imaging processing, and postprocessing stages. The proposed AEBP imaging algorithm
separates the calculation of slant range from the processing of azimuth pulses. Initially, the
range history for the entire azimuth is constructed, followed by the accumulation of signals
at various grid points for different moments in the azimuth. The PSRM is used to calculate
the range at the four control points of the grid, while the RRHCM is used for the remaining
grid points. Utilizing the PSRM ensures high precision in the range history, thus enhancing
image quality. Additionally, the RRHCM improves computational speed while maintaining
image quality. Finally, the proposed imaging algorithm was validated through simulations
using the parameters of the GEO SAR system. A comparative analysis was conducted to
evaluate both the image quality and computational speed. The experimental results clearly
demonstrated that the proposed AEBP algorithm achieved high precision and efficiency
in GEO SAR imaging processing. The proposed algorithm optimizes the back-projection
operation, displaying strong versatility and the ability to be integrated with other fast BP
algorithms, thus further enhancing the efficiency of fast BP imaging.

Author Contributions: Conceptualization, Y.W. and L.H.; methodology, Y.W.; software, L.H.; valida-
tion, Y.W. and L.H.; formal analysis, Y.W.; investigation, Y.W.; resources, L.H.; data curation, L.H.;
writing—original draft preparation, Y.W.; writing—review and editing, Y.W.; visualization, B.Z.;
supervision, X.W., X.Q.; project administration, L.H.; funding acquisition, L.H. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the Youth Innovation Promotion Association No. 2019127,
Chinese Academy of Sciences.

Data Availability Statement: Data available on request from the authors. The data that support the
findings of this study are available from the corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2023, 15, 5191 24 of 25

References
1. Bruno, D.; Hobbs, S.E.; Ottavianelli, G. Geosynchronous synthetic aperture radar: Concept design, properties and possible

applications. Acta Astronaut. 2006, 59, 149–156. [CrossRef]
2. Xu, H.; Huang, L.; Qiu, X.; Han, B.; Zhong, L.; Meng, D. A new geosynchronous SAR constellation and its signal characteristics.

IEEE Access 2019, 7, 101539–101551. [CrossRef]
3. Mittermayer, J.; Moreira, A.; Loffeld, O. Spotlight SAR data processing using the frequency scaling algorithm. IEEE Trans. Geosci.

Remote Sens. 1999, 37, 2198–2214. [CrossRef]
4. Bamler, R. A comparison of range-Doppler and wavenumber domain SAR focusing algorithms. IEEE Trans. Geosci. Remote Sens.

1992, 30, 706–713. [CrossRef]
5. Raney, R.K.; Runge, H.; Bamler, R.; Cumming, I.G.; Wong, F.H. Precision SAR processing using chirp scaling. IEEE Trans. Geosci.

Remote Sens. 1994, 32, 786–799. [CrossRef]
6. Wong, F.; Yeo, T.S. New applications of nonlinear chirp scaling in SAR data processing. IEEE Trans. Geosci. Remote Sens. 2001,

39, 946–953. [CrossRef]
7. Hu, C.; Long, T.; Liu, Z.; Zeng, T.; Tian, Y. An improved frequency domain focusing method in geosynchronous SAR. IEEE Trans.

Geosci. Remote Sens. 2013, 52, 5514–5528.
8. Hu, B.; Jiang, Y.; Zhang, S.; Zhang, Y.; Yeo, T.S. Generalized omega-K algorithm for geosynchronous SAR image formation. IEEE

Geosci. Remote Sens. Lett. 2015, 12, 2286–2290. [CrossRef]
9. Sun, G.C.; Xing, M.; Wang, Y.; Yang, J.; Bao, Z. A 2-D space-variant chirp scaling algorithm based on the RCM equalization and

subband synthesis to process geosynchronous SAR data. IEEE Trans. Geosci. Remote Sens. 2013, 52, 4868–4880.
10. Li, D.; Wu, M.; Sun, Z.; He, F.; Dong, Z. Modeling and processing of two-dimensional spatial-variant geosynchronous SAR data.

IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3999–4009. [CrossRef]
11. Zhang, T.; Ding, Z.; Tian, W.; Zeng, T.; Yin, W. A 2-D nonlinear chirp scaling algorithm for high squint GEO SAR imaging based

on optimal azimuth polynomial compensation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 5724–5735. [CrossRef]
12. Chen, J.; Sun, G.C.; Wang, Y.; Xing, M.; Li, Z.; Zhang, Q.; Liu, L.; Dai, C. A TSVD-NCS algorithm in range-Doppler domain for

geosynchronous synthetic aperture radar. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1631–1635. [CrossRef]
13. Hu, C.; Liu, Z.; Long, T. An improved CS algorithm based on the curved trajectory in geosynchronous SAR. IEEE J. Sel. Top. Appl.

Earth Obs. Remote Sens. 2012, 5, 795–808. [CrossRef]
14. Munson, D.C.; O’Brien, J.D.; Jenkins, W.K. A tomographic formulation of spotlight-mode synthetic aperture radar. Proc. IEEE

1983, 71, 917–925. [CrossRef]
15. Chen, J.; Sun, G.C.; Xing, M.; Yang, J.; Li, Z.; Jing, G. A two-dimensional beam-steering method to simultaneously consider

Doppler centroid and ground observation in GEOSAR. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 10, 161–167. [CrossRef]
16. Li, Z.; Li, C.; Yu, Z.; Zhou, J.; Chen, J. Back projection algorithm for high resolution GEO-SAR image formation. In Proceedings

of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; IEEE:
Piscataway, NJ, USA, 2011; pp. 336–339.

17. Ding, Y.; Munson, D.J. A fast back-projection algorithm for bistatic SAR imaging. In Proceedings of the International Conference
on Image Processing, Rochester, NY, USA, 22–25 September 2002; IEEE: Piscataway, NJ, USA, 2002; Volume 2, p. II.

18. Bie, B.; Xing, M.; Xia, X.G.; Sun, G.C.; Liang, Y.; Jing, G.; Wei, T.; Yu, Y. A frequency domain backprojection algorithm based on
local cartesian coordinate and subregion range migration correction for high-squint SAR mounted on maneuvering platforms.
IEEE Trans. Geosci. Remote Sens. 2018, 56, 7086–7101. [CrossRef]

19. Juan, C.; Jintao, X.; Yulin, H.; Jiangyu, Y. Research on a novel fast backprojection algorithm for stripmap bistatic SAR imaging. In
Proceedings of the 2007 1st Asian and Pacific Conference on Synthetic Aperture Radar, Huangshan, China, 5–9 November 2007;
IEEE: Piscataway, NJ, USA, 2007; pp. 622–625.

20. Hu, C.; Long, T.; Zeng, T.; Liu, F.; Liu, Z. The accurate focusing and resolution analysis method in geosynchronous SAR. IEEE
Trans. Geosci. Remote Sens. 2011, 49, 3548–3563. [CrossRef]

21. An, H.; Wu, J.; Teh, K.C.; Sun, Z.; Yang, J. Geosynchronous spaceborne–airborne bistatic SAR imaging based on fast low-rank and
sparse matrices recovery. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5207714. [CrossRef]

22. An, H.; Wu, J.; Teh, K.C.; Sun, Z.; Yang, J. Nonambiguous Image Formation for Low-Earth-Orbit SAR With Geosynchronous
Illumination Based on Multireceiving and CAMP. IEEE Trans. Geosci. Remote Sens. 2021, 59, 348–362. [CrossRef]

23. Ulander, L.M.; Hellsten, H.; Stenstrom, G. Synthetic-aperture radar processing using fast factorized back-projection. IEEE Trans.
Aerosp. Electron. Syst. 2003, 39, 760–776. [CrossRef]

24. Dong, Q.; Sun, G.C.; Yang, Z.; Guo, L.; Xing, M. Cartesian factorized backprojection algorithm for high-resolution spotlight SAR
imaging. IEEE Sens. J. 2017, 18, 1160–1168. [CrossRef]

25. Chen, X.; Sun, G.C.; Xing, M.; Li, B.; Yang, J.; Bao, Z. Ground Cartesian back-projection algorithm for high squint diving TOPS
SAR imaging. IEEE Trans. Geosci. Remote Sens. 2020, 59, 5812–5827. [CrossRef]

26. Chen, Q.; Liu, W.; Sun, G.C.; Chen, X.; Han, L.; Xing, M. A fast Cartesian back-projection algorithm based on ground surface grid
for GEO SAR focusing. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5217114. [CrossRef]

27. Hobbs, S.; Mitchell, C.; Forte, B.; Holley, R.; Snapir, B.; Whittaker, P. System Design for Geosynchronous Synthetic Aperture Radar
Missions. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7750–7763. [CrossRef]

http://doi.org/10.1016/j.actaastro.2006.02.005
http://dx.doi.org/10.1109/ACCESS.2019.2930759
http://dx.doi.org/10.1109/36.789617
http://dx.doi.org/10.1109/36.158864
http://dx.doi.org/10.1109/36.298008
http://dx.doi.org/10.1109/36.921412
http://dx.doi.org/10.1109/LGRS.2015.2470516
http://dx.doi.org/10.1109/JSTARS.2015.2418814
http://dx.doi.org/10.1109/JSTARS.2017.2765353
http://dx.doi.org/10.1109/LGRS.2016.2599224
http://dx.doi.org/10.1109/JSTARS.2012.2188096
http://dx.doi.org/10.1109/PROC.1983.12698
http://dx.doi.org/10.1109/JSTARS.2016.2544349
http://dx.doi.org/10.1109/TGRS.2018.2848249
http://dx.doi.org/10.1109/TGRS.2011.2160402
http://dx.doi.org/10.1109/TGRS.2021.3081099
http://dx.doi.org/10.1109/TGRS.2020.2992744
http://dx.doi.org/10.1109/TAES.2003.1238734
http://dx.doi.org/10.1109/JSEN.2017.2780164
http://dx.doi.org/10.1109/TGRS.2020.3011589
http://dx.doi.org/10.1109/TGRS.2021.3125797
http://dx.doi.org/10.1109/TGRS.2014.2318171


Remote Sens. 2023, 15, 5191 25 of 25

28. Long, T.; Dong, X.; Hu, C.; Zeng, T. A New Method of Zero-Doppler Centroid Control in GEO SAR. IEEE Geosci. Remote Sens.
Lett. 2011, 8, 512–516.[CrossRef]

29. Hu, C.; Li, Y.; Dong, X.; Wang, R.; Ao, D. Performance Analysis of L-Band Geosynchronous SAR Imaging in the Presence of
Ionospheric Scintillation. IEEE Trans. Geosci. Remote Sens. 2017, 55, 159–172. [CrossRef]

30. Hu, C.; Zhang, B.; Dong, X.; Li, Y. Geosynchronous SAR Tomography: Theory and First Experimental Verification Using Beidou
IGSO Satellite. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6591–6607. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/LGRS.2010.2089969
http://dx.doi.org/10.1109/TGRS.2016.2602939
http://dx.doi.org/10.1109/TGRS.2019.2907369

	Introduction
	Precise Slant Range Model
	Rapid Range History Construction Method
	An Accurate and Efficient BP Algorithm Based on the Precise Slant Range Model and the Rapid Range History Construction Method
	The Preprocessing Stage: Aperture Division, Azimuth Segmentation, and Subgrid Division 
	The Imaging Stage: Rapid Range History Construction, Range Processing, and Signal Accumulation
	The Postprocessing Stage: Subaperture Fusion and Scene Splicing

	Algorithm Restriction Analysis
	Computational Complexity Analysis
	Computational Complexity Analysis for Traditional BP Algorithms
	Computational Complexity Analysis for the Proposed AEBP Algorithm
	Comparison of Computational Complexity Analysis 

	Slant Range Error Analysis

	Computer Simulation and Experimental Results
	Precise Slant Range Model Validation
	Interpolation Method Selection Validation
	Validation of AEBP Based on PSRM and RRHCM 
	Performance Evaluation

	Conclusions
	References

