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Abstract: In this paper, we introduce Sonar image Augmentation with Cut and Paste based DataBank
for semantic segmentation (SACuP), a novel data augmentation framework specifically designed for
sonar imagery. Unlike traditional methods that often overlook the distinctive traits of sonar images,
SACuP effectively harnesses these unique characteristics, including shadows and noise. SACuP
operates on an object-unit level, differentiating it from conventional augmentation methods applied
to entire images or object groups. Improving semantic segmentation performance while carefully
preserving the unique properties of acoustic images is differentiated from others. Importantly, this
augmentation process requires no additional manual work, as it leverages existing images and masks
seamlessly. Our extensive evaluations contrasting SACuP against established augmentation methods
unveil its superior performance, registering an impressive 1.10% gain in mean intersection over union
(mIoU) over the baseline. Furthermore, our ablation study elucidates the nuanced contributions of
individual and combined augmentation methods, such as cut and paste, brightness adjustment, and
shadow generation, to model enhancement. We anticipate SACuP’s versatility in augmenting scarce
sonar data across a spectrum of tasks, particularly within the domain of semantic segmentation. Its
potential extends to bolstering the effectiveness of underwater exploration by providing high-quality
sonar data for training machine learning models.

Keywords: forward-looking sonar image; data augmentation; semantic segmentation; deep learning

1. Introduction

Deep neural networks (DNNs) have achieved remarkable growth with the emergence
of AlexNet [1], with convolutional neural networks (CNNs), and leading to VGG [2] with
deeper layers and ResNet [3] with much deeper layers. Through the development of
DNNs, transformers [4] have emerged in natural language processing and led to bidirec-
tional encoder representations from transformers (BERT) [5] and GPT-3 [6]. In computer
vision, great progress has been made with the emergence of regions with CNN features
(R-CNN) [7] and you only look once (YOLO) [8] in the detection area, as well as in the
emergence of fully convolutional networks (FCNs) [9], U-Net [10], and Mask R-CNN [11]
in the segmentation area. In the field of computer vision with DNNs, perception, such as
classification, detection, and segmentation, has been a major contributor to the realization
of visual intelligence in robots as well as autonomous vehicles. Among these, semantic
segmentation plays an essential role in unmanned mobile vehicles and remote sensing,
as it provides detailed location and class information about the environment sensed by the
mobile agent [12,13].

The application of DNNs has advanced the performance of unmanned underwater
exploration. In particular, it is mainly used to find objects using sonar in the water, such as
by detection and segmentation [14,15]. Underwater environments make detecting objects
using cameras quite difficult due to light absorption and scattering [16]. Therefore, sensing
in underwater environments relies on sonar sensors that use sound waves to detect and
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locate underwater objects, which are particularly useful in underwater environments where
light is not transmitted well.

However, achieving performance improvements using DNNs in sonar-based applica-
tions lags behind the advances seen in camera-based systems [17]. This discrepancy arises
from the inherent challenges associated with collecting data in underwater environments
using sonar technology, primarily due to accessibility issues that result in limited datasets.
Furthermore, the specialized equipment required for sonar-based data collection signifi-
cantly escalates the costs and complexity of underwater research. The resulting insufficient
data can constrain the performance of the model and potentially lead to overfitting.

Similarly, with the increasing size of DNN architectures in recent years, demand for
larger datasets is increasing [18]. Therefore, the creation of high-quality datasets has be-
come a significant research area to improve the performance and capabilities of DNNs. The
benefits of having a large and diverse dataset are enormous, including avoiding overfit-
ting and improving models’ generalization ability. Because there is a limit to obtaining
labeled data in real life, to obtain additional data a number of studies have recently been
conducted to improve the generalization of models using small amounts of data such as
data adaptation [19], few-shot learning [20], and data generation [21].

However, because these methods utilize data from other domains, it is difficult to
obtain performance improvements when data in the sonar domain are insufficient. On the
other hand, data augmentation [22] is effective in the sonar domain because it expands
data using existing sonar data. Data augmentation has become an important technology
in recent years for addressing the challenge of limited data in deep learning. Commonly
used data augmentation methods include random flipping, rotation, and scaling of images.
Methods such as CutOut [23] to drop out data and CutMix [24] to mix data can be used
to improve the robustness of the model. In addition, generative adversarial networks
(GANs) [25] have emerged as a powerful tool for data augmentation, creating new and
realistic data samples similar to the original data. In remote sensing, augmentation methods
such as random spatial shuffles [26] and manifold augmentation [27] have been studied
recently. Data augmentation can significantly improve the generalization and robustness
of deep neural network models by increasing the size and diversity of available datasets.

While traditional data augmentation is an effective method in image-based semantic
segmentation, traditional data augmentation methods designed for camera images have
certain limitations when applied to sonar imaging. Sonar images work on fundamentally
different principles from visual cameras, as they are based on using sound waves rather
than light. This results in a sonar image characterized by high noise and low resolution
compared to visual images [16]. Moreover, sonar images are created on a depth basis, unlike
cameras. In addition, when applying traditional augmentation to sonar images, shadows of
sonar images can cause problems with the direction of the object, which can consequently
impair the stability of the data. This means that traditional augmentation methods are not
suitable for sonar images, and that data augmentation technologies specialized for sonar
images should be explored. These methods should consider the characteristics of sonar
imaging, such as depth-based characteristics of data, noise levels, and shadow effects. By
designing augmentation methods tailored to these unique characteristics, it is possible to
improve the robustness and generalization capabilities of DNN models in sonar-based
semantic segmentation tasks. This means that traditional augmentation methods are not
suitable for sonar images, and that data augmentation methods specific to sonar images
should be explored to ensure reliable and accurate data and to improve the robustness
and generalization of DNN models. These limitations highlight the need for specialized
data augmentation methods tailored to sonar imaging that can improve the robustness and
generalization of DNN models applied to this domain.

Recently, many studies have been conducted on sonar image segmentation. Several
methods exist to directly improve sonar image segmentation and segmentation perfor-
mance through data augmentation. One way to improve segmentation is morphological
reconstruction combined with the level set method (MRLSM) [28], which improves upon
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the level set method [29] to perform sonar image segmentation. Deep learning-based meth-
ods include feature pyramid U-Net with attention (FPUA) [30], which features an improved
semantic segmentation network architecture. Recently, following the introduction of the
segment anything model (SAM) [31], there have been attempts to apply SAM to sonar [32].
Another approach that has improved sonar image segmentation performance through data
augmentation is augmentation using the pix2pix image translation method [33] for sonar
image segmentation [34].

In this paper, we propose Sonar image Augmentation with Cut and Paste based
DataBank for semantic segmentation (SACuP). Our goal is to overcome the limitations
of existing data augmentation methods when applied to the sonar domain. We seek to
solve the problem of existing augmentation techniques being difficult to use in the sonar
context. In order to increase the diversity of augmentation and improve the performance of
segmentation, data were extracted by object and stored in DataBank. The DataBank images
were attached based on the collected real data and shadows were artificially generated to
augment them realistically. The proposed pipeline consists of several steps. First, we use
images and masks to extract the backgrounds and objects from images. Second, we inpaint
the background from which the object was removed. Third, we find a random location in
the background at which to insert the object and insert it in such a way that it does not
overlap. Finally, to create a realistic image, we artificially draw shadows generated from
sonar images. Using this pipeline, we aim to improve the performance and generalization
of deep neural network models applied to sonar tasks such as semantic segmentation. The
contributions of this paper are as follows:

• We propose a novel data augmentation pipeline for sonar imaging applications that
uses a cut-and-paste-based DataBank approach for segmentation operations.

• Our proposed method creates a DataBank using only existing images and masks,
requiring no additional work and preserving the characteristics of sonar noise.

• We show that the proposed method improves performance when using only real data
for training as well as when using other augmentation methods.

2. Related Works
2.1. Semantic Segmentation

Semantic segmentation is a computer vision task involving dividing an image into
several regions or pixel-wise classifications with predefined category labels. Recently, many
semantic segmentation methods using deep learning have been studied. Long et al. [9]
proposed full convolution networks, the beginning of semantic segmentation based on
deep learning. Most semantic segmentation models are based on FCNs, which are networks
that enable end-to-end pixel-wise classification through a complete convolutional layer.
Ronneberger et al. [10] proposed a U-shaped design that combines a contracting encoder
and an extended decoder path. Currently, U-Net is a widely adopted architecture for image
segmentation. In the ongoing pursuit of more advanced semantic segmentation methods,
the field has transitioned to the DeepLab family of models. Chen et al. [35] proposed
DeepLabV3, which is a semantic segmentation model that employs atrous convolutions
to capture multi-scale features and achieve accurate object boundaries. Furthermore,
Chen et al. [36] proposed DeepLabV3+, which has an encoder–decoder structure, by
adding a decoder to DeepLabv3 and applying the depthwise separable convolution to the
atrous spatial pyramid pooling and decoder modules. Various encoders, such as VGG [2],
ResNet [3], and EfficientNet [37], are used as encoders in semantic segmentation models.

2.2. Data Augmentation in 2D Images

Data augmentation is a method in deep learning that combats overfitting by expanding
the training dataset, especially when data are limited. The quality of the dataset directly
influences model training, leading to ongoing research into data augmentation. Image
data augmentation techniques include both traditional approaches and deep learning-
based approaches. Traditional methods include flipping, color jittering, random cropping,
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rotation, and translation [38]. Furthermore, methods such as CutOut [23] and CutMix [24]
can increase the generalization and robustness of models. CutOut, proposed by DeVries and
Taylor, is a regularization method that randomly masks inputs to improve the robustness
of convolutional neural networks and improve overall model performance. Yun et al.
introduced CutMix, a method that surpasses CutOut in efficiently utilizing information.
By cutting portions of learning images and integrating parts from other images, CutMix
enhances data diversity and boosts generalization. Traditional augmentation methods
have a lot of information available in the data, but the data may not be well utilized.
Zhang et al. introduced ObjectAug [39], a method designed for semantic segmentation that
emphasizes augmenting object units. Additionally, recent studies have actively explored
copy-and-paste methods [40,41], which offer a straightforward yet potent approach to data
augmentation. However, the ObjectAug and copy-and-paste methods cannot reflect sonar
characteristics. As deep learning has evolved, there has been an increase in the variety of
model architectures available, which in turn has led to a greater diversity of methods for
data augmentation. Deep learning-based data augmentation methods include methods
such as generative adversarial networks (GANs) [25], variational autoencoders (VAEs) [42],
and neural style transfer [43]. These methods can generate new samples of data or modify
existing ones. However, deep learning-based data augmentation methods do not work
well on small datasets with insufficient amounts of data.

2.3. Data Augmentation in Sonar Images

As deep learning is increasingly applied to a wider range of fields, the domains of
perception tasks such as object detection and semantic segmentation are expanding to
include new types of data, including sonar images. This has led to a need for large amounts
of sonar image data to improve model performance and stability. Gathering sonar image
datasets is challenging due to limitations in equipment and personnel which hinder the
collection of extensive data. To tackle this problem, researchers are delving into methods
for augmenting sonar image data. While traditional image augmentation techniques such
as flipping, scaling, rotation, and shifting can be applied to generate sonar images, there
are geometric constraints associated with using these conventional methods. This means
that dedicated methods for augmenting the sonar image is required. One of the methods
to overcome geometric constraints is to use simulators to generate diverse datasets. This
approach is a more efficient way to obtain data than collecting it directly from the real world.
There are several methods [44–48] of underwater sonar image data augmentation using
simulators such as Gazebo [49]. In addition, other methods [50,51] use generative models
such as GANs. Lee et al. [34] proposed a method of sonar image augmentation using image-
to-image translation [33]. However, these methods have limitations, as simulation-based
techniques necessarily involve a gap between simulated and real-world data. In particular,
GAN-based methods remain sensitive to data quality, and show a tendency to fall into
local minima.

3. Methods

In this section, we propose SACuP, a method of augmentation that preserves the
characteristics of sonar images. Our method creates a DataBank by extracting background
images, object images, and information to exploit small amounts of data. Each object’s
position and shadow information are calculated to create one item of statistical information
for each class. When the DataBank is built, it can combine background and object images
based on realistic statistical information to generate a realistic dataset that retains the
characteristics of the source domain. The proposed pipeline consists of four steps: DataBank
generation, background inpainting, object insertion, and shadow generation. The first step
is to separate objects and backgrounds from source images with ground truth labels, then
extract and store the information used to generate the data. Second, while extracting
the object, it needs to be inpainted in the background with a hole. Then, the object and
background are synthesized at random locations to obtain an image and a corresponding
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mask. Finally, to increase the realism of the synthetic image, artificial shadows are added
to make it more closely resemble the source domain. The overall method is illustrated in
the Figure 1. Code is available at https://github.com/AIRLABkhu/SACuP, accessed on
1 September 2023.

Figure 1. Overview of sonar image augmentation with cut and paste-based DataBank procedure.

3.1. DataBank Generation

The DataBank serves as a repository for components essential in generating synthetic
data, encompassing background images, object images, and statistical information such
as location and shadow information. DataBank generation is divided into two processes,
namely, image extraction and information extraction. Image extraction uses images and
semantic segmentation masks to separate objects and backgrounds. In the information
extraction process, statistical information is collected, specifically, the location and shadow
information of the extracted object. The process of DataBank generation is illustrated in the
Figure 2.

https://github.com/AIRLABkhu/SACuP
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Figure 2. The process of DataBank generation. Objects and backgrounds are separated using images
and ground truth, and information from extracted objects is collected to obtain statistical information.

3.1.1. Images Extraction

Datasets for semantic segmentation typically include images paired with ground truth
annotations, which are called semantic segmentation masks. This ground truth allows for
the direct extraction of foreground objects and backgrounds from the images. Although
semantic segmentation provides class-type information, objects with the same values can
have different shapes. Therefore, if the masks are adjacent to each other, we identify them
as independent objects and extract them. This consolidation ensures that the extracted
objects accurately represent distinct entities within the image. Instead of only extracting the
individual objects, we apply a dilation operation to expand their boundaries to encompass
more of the surrounding background. With each dilation iteration, this region gradually
grows larger, providing a buffer around the objects. These extracted and dilated objects are
then saved to the DataBank for each class separately, facilitating subsequent processing
and analysis.

3.1.2. Information Extraction

During the object extraction process, the object’s center point is initially determined.
This center point’s coordinates are then used to generate a heatmap for each object class,
which is subsequently stored in the DataBank. Simply separating objects from the back-
ground overlooks shadows, which are essential properties of sonar images. To address this,
we extract shadow information concurrently to restore these shadowed regions. Consid-
ering that shadows typically extend away from the sonar source, we initially transform
the polar coordinate system used by the sonar into an orthogonal coordinate system. This
transformation results in shadows appearing as square-shaped regions. To ensure that
shadows are discernible in the noisy sonar images, we overlap all the shadows of the ob-
jects. Because the objects in the same class are all similar in shape and size, we incorporate
information from the objects in order to more accurately estimate the shadows. We then
define the shadow area to the point where the gradient is the largest, where the brightness
value changes the most as the shadow ends. Because non-shadow areas can be included at
this stage, only darker images are overlapped when comparing the previously obtained
shadow area with the background to obtain the shadow area again. Using this refined
shadow area, we compute various shadow characteristics, such as shadow length, shadow
intensity, and the standard deviation of sonar noise. These shadow-related data are stored
in the DataBank for further analysis. This process excludes the chain, valve, and wall
classes, which have few shadows, and the shampoo-bottle and standing-bottle classes,
which are already masked by shadows in the dataset.
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3.2. Background Inpainting

We address the challenge of filling the void left after removing objects from sonar
images using pix2pix [33], a kind of conditional GAN that uses images and labels as
inputs to generate images via unsupervised learning. Our primary hurdle was finding an
appropriate background to replace the removed object in the absence of reliable ground
truth data. To tackle this issue, we devised a novel strategy. Instead of relying on the
original mask and paired image, we introduced a new mask that did not overlap with the
previous one. We then extracted the background regions devoid of the object and paired
them with the original background image. This approach allowed us to generate a fitting
background for the vacant area left by the removed object. Importantly, this method does
not necessitate precise ground truth data, as it teaches the model how to generate suitable
backgrounds for object-free areas. An example of the background inpainting is illustrated
in the Figure 3.

(a) (b) (c)
Figure 3. Example of the background inpainting step: (a) the original image, (b) background with
holes after removing objects, and (c) the inpainted background with filled hole.

3.3. Object Insertion

Object insertion consists of four steps: selecting the object, object positioning, checking
object overlapping, and adjusting the brightness. In the first step, objects are randomly
selected from the DataBank based on the proportions of the classes. Next, object positioning
is performed according to the distribution using the heatmap information of the class in the
DataBank. Object overlapping is checked to ensure that there are no impossible images in
which objects overlap with other objects. If objects overlaps, the object positioning step is
repeated. In the last step, the brightness of the object is adjusted according to the brightness
of the background to ensure that the brightness of the object to be added and the brightness
of the target background are the same.

3.3.1. Selecting the Object

The object selection process consists of two steps, namely, selecting a class and se-
lecting an instance. Each class that makes up a dataset has a different number of classes.
To maintain this, we randomize and select the classes according to the ratio of classes in
the dataset.

Before adding an object to a background, we first choose the class to be generated.
The probability of selecting a given class can be adjusted to address imbalances in the
dataset. This probability adjustment addresses class imbalance issues by assigning higher
probabilities to classes that are underrepresented in the original dataset that is being
augmented. When the class has been determined based on these probabilities, the next step
is to randomly select an object from the DataBank that belongs to the chosen class. This
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process helps maintain diversity in the generated scenes while ensuring that objects are
selected in a balanced and controlled manner according to the desired class distribution.

3.3.2. Object Positioning

The DataBank, contains a heatmap representing the positional distribution for each
class. This heatmap is derived by analyzing the position of objects in existing datasets
and constructing a probability distribution based on the heatmap generated for individual
objects. To clarify, these heatmaps are essentially probability distributions generated for
each object class. When selecting a two-dimensional position, we rely on these class-specific
heatmaps to ensure that the chosen positions align with the likelihood of objects appearing
in the sonar image. This process carries out a random selection guided by the probability
of the heatmaps. The heatmap is shown in Figure 4.

(a) Bottle. (b) Can. (c) Chain. (d) Drink-carton. (e) Hook.

(f) Propeller. (g) Shampoo-bottle. (h) Standing-bottle. (i) Tire. (j) Valve.

Figure 4. Heatmaps representing the probability distributions for each object class. The position of
the object is randomly selected depending on the probability in the heat map.

3.3.3. Check Object Overlapping

This step checks whether the inserted object overlaps with other objects. In the
previous step, the positioning of objects in the background is random; thus, there is a
possibility of objects overlapping. Before inserting the object, we temporarily generate
a mask to verify whether it overlaps with the masks of other objects in the background
where it is being placed. If the masks do not overlap, the test is passed. However, if there is
overlap, the test fails. In the event of an unsuccessful test, the process reverts to the object
positioning step and all steps are repeated until a synthesized image that meets the criteria
is achieved. This iterative approach ensures that, while objects may overlap due to random
placement, there are mechanisms in place to detect and prevent such occurrences, thereby
enhancing the quality of the generated data.

3.3.4. Adjusting Brightness

In this process, when the brightness of the object is different from the brightness of the
target background to be added, the brightness is adjusted to bring it into harmony with the
background. The pasted object is partially overlapped because the surrounding background
was extracted together through dilation. The average brightness of this overlapping
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background is calculated and the brightness of the object is adjusted based on the difference.
To adjust the brightness of the surrounding background except for the object, we select I,
the surrounding background of the object to be pasted, as follows:

I = {Oextracted|M = 0}, (1)

where Oextracted is the extracted object image and M is the mask. Next, the surrounding
background B of the target background is selected as follows:

B = {Obackground|M = 0}, (2)

where Obackground is the target background image and M is the mask. The average of the
surrounding background of the object to be pasted is

µI =
1
H

1
W ∑

i∈H
∑

j∈W
I(i, j), (3)

where H is the height of the image and W is its width. The average of the surrounding
background of the target background is

µB =
1
H

1
W ∑

i∈H
∑

j∈W
B(i, j). (4)

The difference d between the two means is calculated as follows:

d = µB − µI . (5)

We obtain Oadjusted by adjusting the brightness:

Oadjusted = Oextracted + d. (6)

The shampoo-bottle and standing-bottle class images are shadows; thus, when adjust-
ing brightness they lose information when it becomes too dark and are unrealistic when it
becomes too bright. Therefore, for these classes we adjust the brightness based on the ratio
instead of the difference. The ratio r between the two means is calculated as follows:

r =
µB
µI

. (7)

We obtain Oadjusted by adjusting the brightness:

Oadjusted = Oextracted × r. (8)

After all the processes are completed, the object is pasted to the target background.
The object is alpha-blended using a Gaussian filter to harmonize with the surrounding
background. The final combined Synthetic Image is

Synthetic Image = α×Oadjusted + (1− α)×Obackground, (9)

where α is the weight of the transparency produced by the Gaussian distribution. The
process of adjusting brightness is illustrated in the Figure 5.
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Figure 5. The process of adjusting the brightness and inserting it into the background. First, we
create a Gaussian kernel for smooth insertion into the background. At this point, the object part is
modified by overlapping the object mask to ensure that it is not lost by the Gaussian kernel. The
object is then alpha-blended with the background using a Gaussian filter to create a synthetic image.

3.4. Shadow Generation

Because sonar images are tilted at a certain height and represented by converting data
taken as if viewed from above, dark areas similar to shadows appear in blind spots where
sound waves do not reach. Unlike the original dataset image, the inserted object has no
shadow. To create a more realistic synthetic dataset, this step creates artificial shadows.

The direction of the shadow is created away from the sonar. Therefore, as shown in
Figure 6, the length of the shadow varies depending on the object. The information in
the semantic segmentation dataset, which has only images and masks, does not include
the location and angle between the sonar and the object. Therefore, we calculate the
position and angle between the sonar and the object, assuming that the lower middle
point is the sonar’s position, where the field of view of the sonar image converges into one
place. To maintain the noise characteristics of the sonar, shadows are not created to have a
value of zero. Shadows are created differently for each class using information stored in
the DataBank. The DataBank stores the shadow length, shadow intensity, and standard
deviation of the shadow noise. To artificially create shadows, we set the shadow area
based on the shadow length in the DataBank in the direction away from the sonar then
fill the area with Gaussian noise, with the shadow intensity as the mean and the standard
deviation of the noise as the standard deviation. Because the shadow’s intensity represents
the rate at which it becomes darker than the surrounding background, multiplying it by
the background darkens and preserves the sonar’s characteristics. As in Figure 6, shadows
are formed longer when an object has a long height. The comparison of shadow generation
is shown in Figure 7.

(a) (b)
Figure 6. Shadows appear differently depending on the height of the object: (a) when an object
has a long height, the shadow appears long; (b) when an object has a short height, the shadow
appears short.
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(a) (b)
Figure 7. Comparison of (a) a synthetic image without a shadow and (b) a synthetic image with a
generated shadow.

4. Experiments
4.1. Dataset

We used forward-looking sonar marine debris data [52] as the dataset. The data
were collected by an ARIS Explorer 3000 [53] forward-looking sonar at frequencies of
3.0 MHz in an artificial water tank of 3 m width, 2 m height, and 4 m depth. This sonar
has a field of view of 30° × 15° with 128 beams. The sonar was set to have a pitch angle
between 15° and 30°. The images are 480 × 320 grayscale images, and the mask classifies
each pixel by class. There are a total of twelve classes: background, bottle, can, chain,
drink-carton, hook, propeller, shampoo-bottle, standing-bottle, wire, valve, and wall. The
dataset contains a total of 1868 images and masks. We found 113 images and masks with
incorrect or ambiguous masks; after excluding them, we used 1755 images and masks in
our experiments. The data were randomly divided into 1053 images in the training set,
351 images in the validation set, and 351 images in the validation set with five folds.

We used real underwater sonar image (USI) datasets [34] for additional experiments.
These data were collected be a Teledyne BlueView M900–90 forward-looking sonar at a
frequency of 900 kHz. This sonar has a field of view of 90° × 20° and a range of 100 m. The
collected underwater environments were of two types, reservoir and water pool; the water
pool had a width of 10 m, a length of 12 m, and a depth of 1.5 m. Each environment was
collected with two different conditions of sensitivity. This dataset contains only two classes,
namely, backgrounds and objects. The dataset contains 800 training images and masks
and 40 testing images and masks. We randomly divided these into a training set of 600 and
validation set of 200 with four folds.

4.2. Experiment Setup

The the semantic segmentation performance of the proposed method was evaluated
using the U-Net [10] model. U-Net is a U-shaped encoder–decoder structure. Various
encoders are used in the U-Net architecture. We evaluated the proposed method based
on U-Net with the ResNet-18 encoder [3]. In our experiments, the Adam optimizer [54]
was used. The learning rate = 0.001, β1 = 0.9, and β2 = 0.999. The learning rate decreased
exponentially by 0.99 per epoch. The weight of the network was initialized to He weight
initialization [55]. The number of epochs in all experiments was 50. Augmentation was
1:1, and 1053 images were added to the training data. We considered the network with the
highest score on the validation set to be the optimal model, and used this model for the
test set.

The baseline was the result when using only an existing unaugmented dataset. As
comparison methods, we used traditional augmentation, CutOut [23], CutMix [24], Objec-
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tAug [39], and Sim2Real [50], which are widely used methods. In traditional augmentation,
rotation was within ±15°, scaling was 0.8 to 1.2, shifting was 3%, and flipping was horizon-
tal. CutOut dropped out 25% of the image with 150 16 × 16 patches, while in CutMix 25%
of the images were mixed with other images with one patch. ObjectAug was augmented
in the same way as in traditional augmentation except that it was augmented in units of
objects. In the Sim2Real method, we created a depth camera with the same field of view
as sonar in the simulator, then CAD models were created to obtain depth images. For
Sim2Real, we used contrastive learning for unpaired image-to-image translation (CUT) [56].
Pix2pix [33] could not be used because the two images of real sonar data and simulation
data were not pairs. To preserve the structure of the simulation data while extracting
the context of the sonar data, sim2real synthetic data were generated using patch-based
contrastive learning.

4.3. Statistical Analysis

We performed statistical analysis based on our generated synthetic dataset consisting
of statistical information on the location of the object and the brightness distribution of
the shadow. Statistical information obtained from overlapping objects on this dataset is
shown in Figures 8 and 9. This information was used to obtain the shadow area; when
the gradient obtains the maximum point, the local peak is obtained, as the area outside
a certain range is an area unrelated to the shadow. The shadow information extracted
from this dataset is shown in Table 1. Different classes have different lengths and different
intensities of darkness.

Table 1. Shadow information; the shadow length is in pixels, the shadow intensity is the ratio at
which it becomes darker compared to the surrounding background, and the standard deviation is
from 0 to 255.

Object Shadow Length Shadow Intensity Standard Deviation

bottle 76 0.88 21.19
can 112 0.94 25.28

drink-carton 122 0.81 21.04
hook 143 0.73 20.27

propeller 132 0.84 25.30
tire 90 0.75 27.51
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Figure 8. Average brightness of images obtained by overlapping objects. The blue line is the average
point at which the object ends, while the red line is the point estimated by the shadow.
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Figure 9. Gradient of average brightness of an image obtained by overlapping objects. The average
point at which the object ends is indicated by the blue line, while the shadow’s estimated point is
indicated by the red line.

Additionally, we analyzed the dataset and found that it was imbalanced. In particular,
examples of certain classes, such as standing-bottle and shampoo-bottle, were very insuffi-
cient. Furthermore, smaller object classes such as standing-bottle, shampoo-bottle, hook,
drink-carton, and valve had relatively insufficient numbers of pixels. On the other hand,
the wall class had a very large number of objects and pixels. The number of objects for each
class was randomly divided, and the number of pixels for each class is shown in Table 2.

Table 2. The number of objects and pixels in each class.

The Number of Objects The Number of Pixels

Object Train Test Val Train Test Val

bottle 273 91 100 396,846 137,895 149,593
can 177 39 55 214,502 49,086 79,850
chain 185 71 62 728,342 277,067 326,391
drink-carton 185 74 75 129,130 55,511 57,594
hook 112 30 25 136,062 36,249 32,692
propeller 126 39 29 339,402 110,211 89,275
shampoo-bottle 42 27 27 81,300 60,334 53,563
standing-bottle 40 8 14 79,161 15,851 26,567
tire 371 127 113 1,020,156 331,350 300,764
valve 149 43 42 88,608 29,417 24,629
wall 554 179 186 2,207,620 673,196 626,694

4.4. Results of Comparison Experiment with Existing Methods

We used the Intersection over Union (IoU) for performance evaluation. IoU is ex-
pressed as follows:

IoU =
area o f overlap
area o f union

=
|Prediction ∩ GT|
|Prediction ∪ GT| × 100 %, (10)

where GT is the ground truth. Because the experiment involved multiclass semantic
segmentation, the mean IoU (mIoU), which is the average IoU of all classes, was used as
the metric. The mIoU is expressed as a percentage.
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As shown in Table 3, the mIoU of the baseline was 75.14% and the mIoU of our
approach was 76.24%, showing a performance improvement of 1.10%. The baseline had a
higher mIoU than our approach in the case of the tire class; however, in all other classes
our approach had a higher mIoU. Because the proportion of tire class objects in the dataset
is high, as shown in Table 2, examples are more concentrated in the baseline that is not
augmented, leading to bias. Augmentation increases the overall amount of data for each
class, reducing the concentration on a specific class.

Table 3. mIoU when comparing each class with existing methods; the best IoU for each class is shown
in bold.

Object Baseline TA CutOut CutMix ObjectAug Sim2Real Ours

background 99.28 99.29 99.26 99.26 99.28 99.28 99.29
bottle 76.03 76.01 75.15 75.72 75.52 79.30 76.64
can 56.44 58.12 55.34 56.43 55.21 57.02 58.99

chain 63.48 63.44 62.00 61.83 62.35 62.96 64.25
drink-carton 73.75 74.65 72.44 74.31 73.31 74.30 75.95

hook 67.73 68.87 68.41 67.62 68.18 68.47 69.41
propeller 73.19 74.37 72.88 73.67 74.85 73.03 74.89

shampoo-bottle 78.07 79.91 78.18 78.51 79.47 78.88 78.61
standing-bottle 79.83 80.00 79.66 78.90 82.67 79.54 81.23

tire 88.00 87.64 87.63 87.49 87.65 87.61 87.92
valve 58.11 58.33 58.27 58.95 58.36 58.47 59.56
wall 87.74 88.75 88.24 88.07 88.38 88.31 88.17

mIoU 75.14 75.78 74.79 75.06 75.44 75.35 76.24

In our experimental results, our proposed method outperformed the other methods.
Traditional augmentation achieved an mIoU of 75.78%, while our approach outperformed
it by 0.46%. While raditional augmentation can improve data diversity, there is a limit to
utilizing a variety of data to improve the actual diversity of data. Our method has a great
advantage in diversity over traditional augmentation by cutting and pasting using various
data from the DataBank. It can be difficult to overcome class imbalances with traditional
augmentation, as it focuses on transforming the data. CutOut achieved an mIoU of 74.79%,
while our approach exhibited superior performance with a 1.45% increase. CutMix achieved
an mIoU of 75.06%, whereas our method was 1.18% higher. CutOut and CutMix improve
the generalization of the model by cutting out parts of the images or replacing them with
other images. However, this does not significantly improve the diversity of the data,
and the model may have limitations in learning objects. ObjectAug achieved an mIoU
of 75.44%, with our method surpassing it by 0.80%. ObjectAug focuses on performing
data augmentation on object units, which increases object-level diversity; however, it has
limitations in terms of the actual diversity of the data compared to our method using
DataBank. Although ObjectAug has the advantage of augmenting on a per-object basis,
our approach achieves improved performance by utilizing DataBank to make even more
use of the data. Similarly, Sim2Real achieved an mIoU of 75.35%, with our approach
outperforming it by 0.89%. Our method significantly improves data diversity using a
variety of data from DataBank, while Sim2Real focuses on reducing domain differences
between virtual and real environments, which can be limited in terms of data diversity due
to relying on the diversity within the simulator. Moreover, Sim2Real requires a complex
process to adapt the domain from the simulator to reality. In summary, our method
performs better than other methods, significantly improving data diversity, reducing
class imbalances, and showing improved adaptability to real-world environments. These
results indicate its ability to achieve more accurate results in the semantic segmentation of
sonar images.

When compared by class, the mIoU of small objects such as the can and drink-carton
classes was the highest in our approach, and the mIoU of uncertain objects such as the chain,
hook, propeller, and valve classes was the highest in our approach as well. These results
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indicate that our method allows segmentation models to better recognize and process
ambiguous regions and fine object features. Figure 10 shows the results, indicating better
segmentation of objects when using the proposed method.

(a) Ground truth (b) Baseline (c) TA (d) CutOut (e) CutMix (f) ObjectAug (g) Sim2Real (h) Ours

Figure 10. Segmentation results for different methods. At the top of the figure, the large clear
bottle and tire objects are well segmented without augmentation. However, the smaller and more
ambiguous objects are more difficult to segment. Notably, our proposed approach is effective at
segmenting these objects.

4.5. Ablation Study

We additionally conducted an ablation study to assess the impact of our various data
augmentation methods on the performance of the semantic segmentation model. As shown
in Table 4, with the cut-and-paste method, mIoU performance was improved by 0.65%.
This method simply cuts and pastes images, allowing the model to learn various object
placement and background combinations. This diversity can improve the generalization
capabilities of the model and improve performance. This suggests that a simple data
augmentation method can improve the performance of the semantic segmentation model.
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When the cut-and-paste method and adjust brightness method were applied at the same
time, mIoU performance was improved by 0.71%. This shows that adjusting objects
to the brightness of the background can contribute to performance improvement when
pasting them in various combinations. When the cut-and-paste method and shadow
generation method were applied at the same time, mIoU performance was improved by
0.76%. This shows that augmenting data while maintaining the sonar’s characteristics
through the shadow generation method contributes to the performance improvement of
the model. When all of the above methods were applied, the model showed the greatest
improvement of 1.10%. In summary, our ablation study highlights that cut-and-paste data
augmentation strategies that make the most of our data by creating a DataBank with fewer
data and methods that maintain sonar characteristics both play a major role in improving
model performance. The segmentation results in the ablation study are shown in Figure 11.

Table 4. mIoU results in the ablation study; the best mIoU for the model is shown in bold.

Model Cut & Paste Adjust
Brightness

Shadow
Generation mIoU

Baseline 75.14
Cut & Paste X 75.79

Cut & Paste + Adjust brightness X X 75.85
Cut & Paste + Shadow generation X X 75.90

Ours X X X 76.24

(a) Ground truth (b) Baseline (c) Cut & Paste (d) Cut & Paste 
+ Adjust brightness

(e) Cut & Paste 
+ Shadow generation

(f) Ours

Figure 11. Segmentation results in the ablation study.

4.6. Effects of Augmented Ratio

In this section, we examine the impact of varying the augmentation ratio on model
performance. Experiments were conducted with different augmentation levels: 0%, 50%,
100%, 200%, and 300% relative to the size of the training dataset. As shown in Figure 12, we
observed a relationship between the augmentation ratio and mIoU improvement. Without
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augmentation (+0%), the mIoU remained at 75.14%. With 50% augmentation (+50%), we
observed an increase to 75.79%. The most significant improvement was achieved with
100% augmentation (+100%), resulting in an mIoU of 76.24%. However, it is noteworthy
that increasing the augmentation ratio beyond 100% did not consistently lead to further
improvements. At a 200% augmentation ratio (+200%), the mIoU decreased slightly to
75.75%. Even with a 300% augmentation ratio (+300%), the mIoU only reached 75.83%,
which was marginally lower than the +100% augmentation. These results suggest an
optimal balance in the augmentation ratio, with a 1:1 augmentation-to-training dataset size
being the most effective. These results show that data augmentation in excess of this ratio
can adversely affect performance, as the model is trained to fit only augmented data and is
inconsistent on real data. In summary, our findings underscore the importance of carefully
calibrating the augmentation ratio, emphasizing that a 1:1 ratio of augmentation to training
dataset size is optimal for enhancing model performance in this specific context.

+0% +50% +100% +200% +300%

Augmented Ratio (%)

75.0

75.2

75.4

75.6

75.8

76.0

76.2

76.4

m
Io

U
(%

)

75.14

75.79

76.24

75.75
75.83

Figure 12. Effects of augmented ratio, showing the highest performance at +100%.

4.7. Application to Various Architectures

We assessed the effectiveness of our approach across different neural network architec-
tures, specifically U-Net and DeepLabV3+ with the ResNet-18 and EfficientNet-B0 encoders.
U-Net and DeepLabV3+ are widely used architectures in semantic segmentation tasks. U-
Net already has an established reputation in semantic segmentation for its concise structure
and outstanding performance, while DeepLabV3+ is a powerful architecture that provides
a wide range of enhancements to segmentation tasks. ResNet-18 is a network that has
already been validated for its reliability and performance, while EfficientNet-B0 combines
good computational efficiency and performance. These encoders serve as the foundational
structure of the model, which is essential for semantic segmentation tasks. As summarized
in Table 5, we compared the mIoU performance of each architecture with and without
our approach. In the case of U-Net with the ResNet-18 model, we observed a remarkable
increase of 1.10% in mIoU. Similarly, the mIoU of the U-Net with EfficientNet-B0 model
showed a significant improvement of 0.69%. The DeepLabV3+ with ResNet-18 model
exhibited an enhancement of 0.47% in mIoU. Finally, the mIoU of the DeepLabV3+ with
EfficientNet-B0 model increases by 0.92%. These findings underscore the robustness and
adaptability of our approach, as it enhances the mIoU scores across various architectures.
Our method improves semantic segmentation performance regardless of the specific neural
network configuration used.
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Table 5. Performance comparison of architectures; the best mIoU for each model is shown in bold.

Architecture Encoder Baseline Ours

U-Net
ResNet-18 75.14 76.24

EfficientNet-B0 75.71 76.40

DeepLabV3+
ResNet-18 75.98 76.45

EfficientNet-B0 75.27 76.19

4.8. Results of Experiment on USI Datasets

We additionally experimented with USI datasets to verify the generalization ability
and robustness of the proposed method. The Sim2Real experiment replaced synthetic USI
datasets, as synthetic USI datasets generated with pix2pix were provided for augmentation
in the USI datasets. The settings of the experiments were the same as before.

As shown in Table 6, the mIoU of the baseline was 79.59% and the mIoU of our
approach was 84.19%, showing a performance improvement of 4.60%. The mIoU results
for the other methods were as follows: traditional augmentation, 81.02%; CutOut, 81.88%;
CutMix, 82.68%; ObjectAug, 79.98%; and the synthetic dataset, 78.24%. Thus, our approach
achieved the highest mIoU. This experiment verifies that our method works well on
datasets collected from different environments using different forward-looking sonars.
Figure 13 shows the segmentation results on real USI datasets. Even in images with difficult
segmentation, our method is better at finding objects.

(a) Ground truth (b) Baseline (c) TA (d) CutOut

(e) CutMix (f) ObjectAug (g) Synthetic (h) Ours

Figure 13. Segmentation results on real USI datasets; our method is better at finding objects in images
that are difficult to segment.
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Table 6. mIoU when comparing each class on real USI datasets; the best IoU for each class is shown
in bold.

Object Baseline TA CutOut CutMix ObjectAug Synthetic Ours

background 99.69 99.72 99.74 99.75 99.70 99.67 99.78
object 59.48 62.32 64.03 65.60 60.25 56.81 68.60

mIoU 79.59 81.02 81.88 82.68 79.98 78.24 84.19

5. Conclusions

In this paper, we have introduced a novel data augmentation pipeline designed specifi-
cally for sonar imagery. Previous studies have attempted to enhance semantic segmentation
performance by applying transformations such as rotation and scaling to entire images
or object units. However, these methods fall short of effectively leveraging the unique
characteristics of shadowy and noisy sonar images. To address this limitation, we propose
SACuP, a pipeline that utilizes a DataBank-based approach for augmenting sonar images
while preserving their distinctive shadows and noise. Our approach focuses on augmenting
images at the object unit level, thereby tailoring the augmentation process for segmenta-
tion tasks. No additional manual effort is needed, as the proposed approach leverages
existing images and masks. This augmentation method significantly enhances semantic
segmentation performance while faithfully retaining the sonar image’s inherent features.

Extensive comparisons with existing augmentation methods show superior perfor-
mance, with the mIoU of baseline being 75.14% and the mIoU of our approach 76.24%. Our
ablation study highlighted the significant impact of various data augmentation methods
on our semantic segmentation model. Notably, the cut-and-paste method improved mIoU
by 0.65%, combining with brightness adjustment for a 0.71% improvement, and combining
with shadow generation for a 0.76% increase. The most substantial boost, a total improve-
ment of 1.10%, was achieved when all methods were applied together. A 1.10% increase
can result in improved performance on small datasets, enabling more accurate detection
of objects underwater, significantly reducing costs, and further improving performance in
combination with other methods.

We anticipate that our approach will prove invaluable in augmenting insufficient
sonar data across a range of tasks, particularly in the context of semantic segmentation.
Its potential applications extend to enhancing the performance of underwater exploration,
where high-quality sonar data are essential.
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