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Abstract: Existing deep learning-based space target recognition methods rely on abundantly labeled
samples and are not capable of recognizing samples from unseen classes without training. In this
article, based on generalized zero-shot learning (GZSL), we propose a space target recognition frame-
work to simultaneously recognize space targets from both seen and unseen classes. First, we defined
semantic attributes to describe the characteristics of different categories of space targets. Second,
we constructed a dual-branch neural network, termed the global-local visual feature embedding
network (GLVFENet), which jointly learns global and local visual features to obtain discriminative
feature representations, thereby achieving GZSL for space targets with higher accuracy. Specifically,
the global visual feature embedding subnetwork (GVFE-Subnet) calculates the compatibility score by
measuring the cosine similarity between the projection of global visual features in the semantic space
and various semantic vectors, thereby obtaining global visual embeddings. The local visual feature
embedding subnetwork (LVFE-Subnet) introduces soft space attention, and an encoder discovers the
semantic-guided local regions in the image to then generate local visual embeddings. Finally, the
visual embeddings from both branches were combined and matched with semantics. The calibrated
stacking method is introduced to achieve GZSL recognition of space targets. Extensive experiments
were conducted on an electromagnetic simulation dataset of nine categories of space targets, and the
effectiveness of our GLVFENet is confirmed.

Keywords: radar recognition; space targets; high-resolution range profile (HRRP) sequence; micro-
motion; zero-shot learning (ZSL)

1. Introduction

With the increase in human space exploration, the number of micromotion space
targets, such as satellites, warheads, and space debris, is increasing. Radar is the main sensor
used for space target detection, tracking, and recognition. In the radar automatic target
recognition field, extracting target information (such as shape, structure, and micromotion
characteristics) from radar echoes for space target recognition has attracted widespread
attention [1–4].

The existing methods for space target recognition can be categorized as model-driven
methods [2,5,6] and data-driven methods [7–9]. The model-driven methods require hand-
crafted features, leading to high complexity and weak generalizability [10]. The data-driven
methods based on deep learning do not require manually designed features and can extract
discriminative target features from the data automatically. Researchers have begun using
deep learning methods to recognize space targets, achieving higher recognition accuracy
than model-driven methods. Notably, these deep learning methods can recognize only
targets belonging to the seen classes during training. When unseen classes of space targets
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appear during the testing phase, these methods become ineffective, thereby limiting the
practical applications of the algorithms. In the real world, encountering targets during
the testing phase that are not seen during the training phase is likely, especially for non-
cooperative targets whose samples cannot be obtained in advance. Therefore, methods for
recognizing unseen classes that appear during the testing phase must be studied.

Inspired by human learning of new concepts, zero-shot learning (ZSL) techniques have
attracted increasing interest [11]. Deep learning-based supervised classification methods
can recognize only targets belonging to the seen classes during the training phase. ZSL
recognizes unseen classes in the testing set by transferring semantic knowledge from seen
to unseen classes, where there are no available training samples. To our knowledge, no
space target recognition methods based on ZSL currently exist.

In the computer vision field, existing ZSL methods for target recognition can be
categorized into three main types: early embedding-based methods [12–15], generative-
based methods [16–19], and part embedding-based methods [20–23]. Early embedding-
based methods learn mapping spaces between the visual features of seen classes and
their semantic descriptions. They recognize unseen classes by mapping them to these
spaces and conducting nearest-neighbor searches. One major issue with these methods is
the potential bias problem [24]. To alleviate this issue, generative-based methods utilize
generative adversarial networks (GANs) to generate features for unseen classes, thereby
transforming ZSL into fully supervised classification problems. Although these methods
have exhibited certain improvements in unseen class recognition accuracy, they consider
only global visual features and cannot capture the local regions in images that correspond
to semantic descriptions, limiting the transfer of semantic knowledge. Recently, some part
embedding-based methods have achieved higher recognition accuracy by incorporating
attention mechanisms or obtaining discriminative visual features from local regions in
images guided by semantic attributes. However, we believe that both global and local visual
features play important roles in ZSL. Additionally, due to the lack of semantic attributes
specifically defined for space targets, it is difficult to directly apply existing methods to the
ZSL of space targets. Therefore, we attempt to design binary semantic attributes for space
targets and propose a novel ZSL method that simultaneously considers global and local
visual features, thereby improving the ZSL capability for space targets.

In this article, an end-to-end framework for generalized zero-shot space target recogni-
tion, termed the Global-Local Visual Feature Embedding Network (GLVFENet), is proposed.
This framework is used to simultaneously recognize both seen and unseen space targets
during the testing phase. First, we devise prior binary semantic attributes for each space
target category, which is the key to ZSL. Next, we introduce a CNN backbone network
that extracts initial features from raw high-range resolution profile (HRRP) sequences. The
output of this network is then passed to two subsequent subnetworks. Then, we develop a
global visual feature embedding subnetwork (GVFE-Subnet) that can further capture global
visual features from the output of the CNN backbone network and map these features to
the semantic space. By using cosine similarity to calculate the compatibility scores with
the ground-truth semantic attributes, we obtain the global visual embeddings. Because
the discriminative visual properties in the images are the key to transferring knowledge
from seen classes to unseen classes, we designed a local visual feature embedding subnet-
work (LVFE-Subnet). LVFE-Subnet utilizes soft space attention and an encoder to localize
discriminative local regions in the images through semantic knowledge, obtaining local
visual embeddings. Finally, we optimize the full network by using a joint loss function and
consider both global and local visual embeddings to achieve GZSL recognition of space
targets. The following are the contributions of this article:

(1) A framework for GZSL of space targets is proposed for recognizing targets of
both seen and unseen classes. The framework consists primarily of a GVFE-Subnet and
an LVFE-Subnet, and the dual-branch network improves the model’s ability to transfer
knowledge from seen classes to unseen classes.
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(2) To our knowledge, this is the first attempt to utilize ZSL techniques for space
target recognition. To achieve ZSL, we incorporate expert prior knowledge in the space
target field and design binary semantic attributes to describe the characteristics of different
categories of space targets, forming the basis for inferring unseen classes.

(3) The results of comparative and ablation experiments based on electromagnetic
(EM) calculation data demonstrate the effectiveness of the proposed method.

The remainder of the article is organized as follows: Section 2 introduces the related
work on space target recognition and ZSL. Section 3 provides a detailed description of
the proposed GLVFENet. Section 4 describes the dataset generation, evaluation metrics,
and implementation details and presents the experimental results. Section 5 includes
discussions. Finally, Section 6 concludes the article.

2. Related Work
2.1. Space Target Recognition

Space target recognition methods can be divided into model-driven methods and data-
driven methods. Model-driven methods include feature extraction and classifier design.
The extracted features can be further classified into physically meaningful features [2,25–28]
and features without explicit physical meanings [3,4,29–31]. After feature extraction, the
extracted target features are fed into a classifier to achieve recognition. Commonly used
classifiers include KNN classifiers [3,30] and SVM classifiers [29]. Model-driven methods
rely on manual features designed by experts, resulting in high complexity and weak
generalization performance [10]. Data-driven methods can automatically extract target
features from a large amount of data without hand-crafted features, improving recognition
accuracy, and the classifier and feature extractor are integrated within a unified framework.
The methods can be roughly divided into convolutional neural network (CNN)-based
methods [7,8,32–39], recurrent neural network (RNN)-based methods [9,40], and encoder-
decoder-based methods [41,42] based on the network used. However, existing data-driven
methods can recognize only the classes that have already been seen in the test set, and their
recognition performance sharply decreases for unseen classes. To this end, we propose a
ZSL method for space targets that can simultaneously recognize seen and unseen classes in
the test set.

2.2. Zero-Shot Learning

ZSL methods can be categorized into conventional zero-shot learning (CZSL) methods
and generalized zero-shot learning (GZSL) methods based on whether the seen classes are
visible during the testing phase. CZSL methods predict only the unseen classes in the test
set, while GZSL methods predict both unseen and seen classes in the test set. GZSL methods
are more practical and challenging. In this paper, a space target recognition method is
proposed under the GZSL framework. ZSL methods can be further categorized into early
embedding-based, generative-based, and part-based methods. Early embedding-based
methods focus primarily on learning embedding spaces where visual features and semantic
knowledge can interact. In this embedding space, the global visual features extracted
from images and semantic descriptions (such as manually annotated attributes [43], word
vectors learned through language models [44], and textual descriptions [45]) are aligned.
Since unseen and seen classes share the same embedding spaces, semantic knowledge
aligned with visual representations can be transferred to unseen classes for recognition.
Based on this paradigm, [12,13,46] map global visual features to semantic spaces, and [14]
maps semantic knowledge to visual spaces. Refs. [15,47] map visual features and semantic
knowledge to the same spaces. One problem with these methods is their bias toward
classifying seen classes as unseen classes, known as the bias problem. Generative-based
methods have been proposed to address this issue. These methods utilize generative models
to generate features for unseen classes, transforming ZSL into fully supervised classification
problems. Currently, the main generative models used for zero-shot classification tasks
include generative adversarial networks (GANs) [16,17] and variational autoencoders
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(VAEs) [18,19]. However, most of these methods consider only global visual features, which
are prone to interference from background noise. Additionally, global features of similar
classes can also be similar, hindering the transfer of semantic knowledge. Recent part-
based methods have been able to capture discriminative features in images by localizing
specific regions. This has resulted in better alignment between visual features and semantic
knowledge, enhancing the ability of these methods to transfer semantic knowledge from
seen classes to unseen classes. One approach to these methods is utilizing attention
mechanisms to discover local regions in the images [20,21]. Another approach is localizing
the corresponding local regions in images guided by the semantic knowledge [22,23].
Inspired by this, we simultaneously utilize both global visual representations and locally
discriminative visual features localized by semantic descriptions in the images. This
approach aims to better align visual features and semantic knowledge, thereby improving
the transferability of semantic knowledge from seen classes to unseen classes and enhancing
the recognition of both seen and unseen classes.

3. Proposed Method

In this section, a formulaic definition of the task is first provided, then the semantic
information proposed for space target recognition is introduced, and finally a detailed
description of the proposed method is presented.

3.1. Problem Formulation

Let S =
{
(Xs

i , ys
i , as

i )
Ns
i=1

∣∣∣Xs
i ∈ X s, ys

i ∈ Y
s, as

i ∈ A
s
}

be the seen class set, where

Xs
i ∈ RH×Q denotes an HRRP sequence with duration H and the number of single HRRP

range cells Q, ys
i denotes the label corresponding to Xs

i , Y s =
{

ls
1, ls

2, . . . , ls
Cs

}
denotes the

set of labels of the seen class, Cs denotes the number of seen classes, ϕ(ys
i ) ∈ {0, 1}K

denotes a semantic vector of seen classes with K dimensions, and Ns denotes the number
of samples of seen classes. Similarly, the dataset of unseen classes can be denoted as
U =

{
(Xu

i , yu
i , au

i )
Nu
i=1

∣∣∣Xu
i ∈ X u, yu

i ∈ Yu, au
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}
, where the HRRP sequence Xu

i ∈ RH×Q

is available only in the testing phase, yu
i denotes the labels corresponding to Xu

i , Yu ={
lu
1 , lu

2 , . . . , lu
Cu

}
denotes the set of labels of the unseen classes, Cu denotes the number of

unseen classes, and ϕ(yu
i ) ∈ {0, 1}K denotes an unseen class semantic vector. X = X s ∪X u

denotes the sample space consisting of all seen and unseen classes, Y = Y s ∪ Yu denotes
the label space, and Y s ∩ Yu = ∅, A = As ∪ Au denotes the semantic space. In the
GZSL task, all the training classes come from S, and the test dataset can be denoted as
T =

{
(Xts

m, yts
m)

Nt
m=1

∣∣∣Xts
m ∈ X , yts

m ∈ Y
}

, where Nt denotes the number of samples in the test
set. The goal is to train a model f : X → Y to recognize Nt samples from T .

3.2. Semantic Representation

The semantic information is crucial for ZSL. Since samples from unseen classes are
unavailable during the training phase, establishing a relationship between seen and unseen
classes through semantic information is necessary. However, to our knowledge, no semantic
information specifically designed for describing space targets currently exists. In this
section, we attempt to design semantic information for the ZSL of space targets based on the
HRRP sequence. The designed semantic information consists of multiple binary semantic
attributes and follows the following design principles: (1) Shareability: Each attribute
can be shared by multiple categories, and the semantic space formed by all attributes
can be shared by both seen and unseen classes. (2) Distinguishability: The semantics of
each category, formed by attributes, must be distinct, providing accurate guidance for the
network. (3) Interpretability: The designed attributes should reflect discriminative visual
features and be interpretable or understandable.

Following the semantic design principles, we define binary semantic attributes for
space targets. As the HRRP sequence contains both geometric and micro-Doppler char-
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acteristics of the targets, we mainly focus on these two aspects when defining the binary
semantic attributes. Specifically, we define six obvious appearance attributes, including
two trajectories, three trajectories, four trajectories, sine curve, amplitude size, and coupling
degree. These attributes can be directly observed from the HRRP sequences. However, they
are not sufficient for distinguishing all nine categories of targets. We thus also add three
derived semantic attributes, including double rotational symmetry, nutation, and wobble.
Although these attributes cannot be directly obtained from the images, they help distin-
guish the targets. Finally, we group these nine binary semantic attributes into geometric
features and micro-Doppler features, as shown in Table 1. The value “1” indicates that the
class of targets has this attribute, while “0” indicates that the class of targets does not have
this attribute.

Table 1. Binary attributes based on the HRRP sequence of the space target.

Target Type
Geometric Features Micromotion Features

1 2 3 4 5 6 7 8 9

T1 1 0 0 0 1 0 0 0 0
T2 1 0 0 0 0 0 0 1 0
T3 1 0 0 0 0 0 0 0 1
T4 1 1 0 0 1 1 1 0 0
T5 1 1 0 1 0 1 1 0 0
T6 0 1 0 0 1 0 0 0 0
T7 0 1 0 0 0 0 0 1 0
T8 0 1 0 0 0 0 0 0 1
T9 0 1 1 0 1 1 1 0 0

The numbers 1–9 represent 9 different attributes, which are two trajectories, three trajectories, four trajectories,
double rotational symmetry, sine curve, amplitude size, coupling degree, nutation, and wobble, respectively.

3.3. GLVFENet

As shown in Figure 1, GLVFENet consists of three parts: a shared feature extraction
module, GVFE-Subnet, and LVFE-Subnet. The shared feature extraction module is used
to extract initial features from the raw HRRP sequences, and its outputs are then fed into
the two subsequent subnetworks. The GVFE-Subnet uses cosine similarity to calculate
the compatibility scores between the projection of global visual features in the semantic
space and the semantic vectors of each class. Under the supervision of the loss function, the
GVFE-Subnet learns the global visual embeddings in the image. Since the visual features
learned by the GVFE-Subnet are coarse-grained, distinguishing between seen and unseen
classes with subtle differences in global feature spaces is difficult. Therefore, we design
an LVFE-Subnet. This subnetwork utilizes soft space attention and an encoder to obtain
semantically guided local visual embeddings. Finally, we summarize the end-to-end overall
loss function and provide a prediction method for sample labels.

3.3.1. Shared Feature Extraction Module

CNN is a commonly used backbone network in visual tasks [48] that is known for
its strong feature representation ability. To this end, a CNN is used as a feature extraction
network at the beginning of the network to capture features from the raw HRRP sequence.
Let the i-th sample of the HRRP sequence fed into the network be denoted as Xi ∈ RH0×Q0 ,
where H0 denotes the duration of the HRRP sequence and Q0 denotes the number of range
cells of a single HRRP. The HRRP sequence representation obtained after CNN operation
is denoted as XCNN

i = Conv(Xi) ∈ RC×H×Q, where C, H and Q denote the number of
channels, height, and width of the feature map, respectively, and Conv(·) denotes the
convolution operation. Next, XCNN

i is fed into GVFE-Subnet and LVFE-Subnet.
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3.3.2. Global Visual Feature Embedding Subnet

The global visual feature embedding subnet (GVFE-Subnet) is employed to further
capture global visual features from HRRP sequence representations and map these features
to semantic spaces. Then, in the cosine metric space, the compatibility scores between
visual feature embedding and semantic vectors are calculated, and coarse-grained global
visual embeddings are obtained under the supervision of the loss function.

First, a global average pooling operation is performed on the input XCNN
i of this

subnetwork. The result XAvg
i ∈ RC×1×1 can be expressed as follows:

XAvg
i = Avgpooling(XCNN

i ) (1)

where Avgpooling(·) represents the average pooling operation.
The compatibility-based approach is widely used in ZSL tasks. In this approach,

a compatibility function that measures the degree of compatibility between the image
representation and the semantic vector of a sample is learned. The sample is labeled as the
class corresponding to the semantic vector with the highest compatibility score with the
image representation. Specifically, a learnable weight V ∈ RC×K is first applied to XAvg

i to
project global visual features into the semantic space.

ΦGVFE(Xi) = (XAvg
i )

T
V (2)

Then, the compatibility score between the visual projection ΦGVFE(Xi) and each se-
mantic vector is computed as follows:

C(XAvg
i , ϕ(ys

j )) = ΦGVFE(Xi)× ϕ(ys
j ), j = 1, · · · , Cs + Cu (3)

where C(·, ·) represents the compatibility function.
Cosine similarity is commonly used to calculate the similarity of text embeddings,

which helps limit and reduce the variance of neurons, resulting in models with better
generalizability [49]. We use cosine similarity to predict which class XAvg

i belongs to. In this
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way, the output of cosine similarity is the cosine value of the compatibility score between
visual embedding XAvg

i ·V and each semantic vector ϕ(ys
j ). Therefore, the probability of

label yj for sample XAvg
i can be expressed as follows:

P(yi = yj|X
Avg
i ) =

exp(σ cos(C(XAvg
i , ϕ(yj))))

∑
l∈Y

exp(σ cos(C(XAvg
i , ϕ(yl))))

(4)

where σ represents the scaling factor.
Finally, a loss function based on cross-entropy is used to encourage the visual pro-

jection of input samples to have the highest compatibility score with their corresponding
semantic vectors. This function is defined as follows:

LGVFE = − 1
Nb

Nb

∑
j=1

yj log
exp(σ cos(C(XAvg

i , ϕ(yj))))

∑
l∈Y

exp(σ cos(C(XAvg
i , ϕ(yl))))

(5)

where Nb represents the number of samples in a mini-batch.

3.3.3. Local Visual Feature Embedding Subnet

The GVFE-Subnet captures the overall global visual features of the targets. However,
when subtle differences in the global feature space exist between seen and unseen classes,
relying solely on the global space may make distinguishing these subtle differences difficult.
The local regions in an image can be abstracted into semantic attributes at high network
levels, and the local regions corresponding to semantic attributes have stronger discrim-
inative ability [50,51]. Therefore, we designed a local visual feature embedding subnet
(LVFE-Subnet) based on a soft spatial attention [20] and a visual-semantic embedding
encoder to obtain fine-grained local visual embeddings in the image guided by semantics.

(1) Soft spatial attention: Soft spatial attention is used to map the output XCNN
i of the

shared feature extraction module into K attention feature maps. A 1 × 1 convolution is first
used to perform a convolution operation with XCNN

i and generate K attention mask maps
M ∈ RK×H×Q via a sigmoid activation function:

M = Sigmoid(Conv 1×1(X
CNN
i )) (6)

where Conv1×1(·) and Sigmoid(·) represent the 1 × 1 convolution and sigmoid activation
function operations, respectively, and Mi ∈ RH×Q can be sliced from M = {Mi}K

i=1.
Then, we extend Mi to the same dimensions as XCNN

i and perform the corresponding
channel-by-element multiplication operation with Mi to obtain the K attention feature maps
T = {Ti}K

i=1 corresponding to the K attention mask maps. Ti ∈ RC×H×Q can be computed
by the following equation:

Ti = R(Mi)� XCNN
i (7)

where R(·) represents the expansion of Mi into the same size as XCNN
i and � represents

element-by-element multiplication.
(2) Visual-semantic embedding encoder: The visual-semantic embedding encoder is used

to encode K attention feature maps into local visual embeddings. This encoder consists
primarily of a convolution-pooling structure and a linear transformation layer. First, the
attention feature maps Ti (i = 1, · · ·K) are concatenated along the channel dimension to
obtain the concatenated attention feature map Γ ∈ RKC×H×Q:

Γ = Concate(Ti) (8)

where Concate(·) represents the concatenation operation.



Remote Sens. 2023, 15, 5156 8 of 22

Then, the C 1 × 1 convolutions are used to perform convolution operations with Γ,
and global average pooling is performed to obtain:

P = Avgpooling(Conv1×1(Γ)) (9)

Finally, P is multiplied by a learnable linear transform factor W ∈ RC×K to obtain the
local visual embeddings, which can be expressed as follows:

ΦLVFE(Xi) = P×W (10)

Similarly, local visual embeddings are obtained using a loss function based on cross-
entropy and guided by semantic knowledge. This function is defined as follows:

LLVFE = − 1
Nb

Nb

∑
j=1

yj log
exp(ΦLVFE(Xi)× ϕ(yj))

∑
l∈Y

exp(ΦLVFE(Xi)× ϕ(yl))
(11)

3.3.4. Joint Optimization of the GLVFENet and Prediction

The full model is jointly trained in an end-to-end manner. Therefore, the shared feature
extraction module, GVFE-Subnet, and LVFE-Subnet are simultaneously optimized using
the following objective function:

L = LGVFE + λ · LLVFE (12)

where λ is a hyperparameter. The optimal parameters of the network can be obtained by
minimizing the loss function.

After the model is trained, we fuse global and local embeddings and use the fusion
results to predict the test samples. First, we obtain the embeddings of the test samples
in the semantic spaces of GVFE-Subnet and LVFE-Subnet, denoted as ΦGVFE(Xi) and
ΦLVFE(Xi), respectively. Then, we use a pair of fusion coefficients (α1 and α2) to combine
these embeddings. Finally, the label of the input sample is predicted by matching it with
the semantic vectors of each class and applying a calibrated stacking method, as shown in
the following equation:

ŷ = argmax
ỹ∈Y

(α1ΦGVFE(Xi) + α2ΦLVFE(Xi))ϕ(ỹ)− γI[ỹ ∈ Y s]) (13)

where I[ỹ ∈ Y s] is the indicator function (i.e., I = 1 if ỹ is a known class and 0 otherwise),
and γ is a calibration factor adjusted on the validation set.

4. Results
4.1. Data Generation

Due to the difficulty of obtaining measured data on real space targets [2,5,52], most of
the relevant research in this field use simulation data. The generation method of dynamic
radar echoes based on EM calculation data is as follows: Static EM calculation data are first
generated for space targets at all attitude angles via the FEKO EM calculation software.
Then, based on the target’s micromotion model, we obtain the attitude angle sequence
of the target in real-time, which is relative to the radar line-of-sight (RLOS). Finally, the
dynamic radar echo of the target can be obtained by querying static EM calculation data
with real-time attitude angle sequences. To obtain the HRRP sequence, we adopted the Fast
Fourier transform (FFT) in MATLAB 2017a to process the dynamic echoes.

We selected three typical space targets. Figure 2 depicts their three-dimensional CAD
models and sectional drawings. The surfaces of the targets are coated with the same
material. The micromotion forms of these targets include precession, nutation, wobble,
and tumble. Usually, only tumble is thought to be possible with cylinder-shaped targets.
Therefore, we generate nine categories of targets by combining the three geometric shapes



Remote Sens. 2023, 15, 5156 9 of 22

and four micromotion forms while considering that the cylinder-shaped target just tumbles.
Table 2 provides a detailed description of these categories, and Table 3 lists the four types
of micromotion parameters.
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Figure 2. CAD models and sectional drawings of cone-shaped target, cylinder-shaped target, and
cone-cylinder-shaped target. (a–c) are their CAD models. (d–f) are their sectional drawings.

Table 2. Training validation and test set details.

Target Type Target Shape Micromotion
Type

Training Set
Size

Validation
Set Size

Testing Set
Size

T1 Cone Precession 800 100 100
T2 Cone Nutation 800 100 100
T3 Cone Wobble 800 100 100
T4 Cone Tumble 800 100 100
T5 Cylinder Tumble 800 100 100

T6 Cone-
cylinder Precession 800 100 100

T7 Cone-
cylinder Nutation 800 100 100

T8 Cone-
cylinder Wobble 800 100 100

T9 Cone-
cylinder Tumble 800 100 100

Sum / / 7200 900 900
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Table 3. Micromotion parameter settings.

m-D Parameter Precession Nutation Wobble Tumble

fs (Hz) 5 3 / /
fc (Hz) 2:0.1:3.9 2:0.5:3.5 / /
fw (Hz) / 1:0.25:2 1:0.25:2 0.5:0.025:0.975
Aw (◦) / 5 3:2:9 1

The radar center frequency is set to 10 GHz, with a working bandwidth of 1 GHz
and a frequency step of 10 MHz, using a polarization mode of horizontal transmission
and horizontal reception. The physical optics method is adopted to calculate the static
EM calculation data of the space targets. Since the three geometries used in this article are
rotational symmetric targets, we set the angle between the plane wave’s incident direction
and the target’s longitudinal symmetry axis to change from 0◦ to 360◦ at 0.01◦ intervals. In
this way, static EM calculation data of space targets at all attitude angles can be obtained
in FEKO. To obtain the dynamic HRRP sequence of space targets, the pulse repetition
frequency (PRF) is set to 1000 Hz, the pulse dwell time is 2 s, the elevation angle of the
RLOS is set to change from 25◦ to 75◦ at 1◦ intervals, the direction of the target rotation axis
is (0, 0, 1), and the initial Euler angle is (20, 3, 45). These parameters are summarized in
Table 4.

Table 4. RLOS direction and parameter settings.

Parameter Value Step

Carrier frequency (GHz) 10 /
Bandwidth (GHz) 1 0.01

Pulse repletion frequency (Hz) 1000 /
Observation time (s) 2 /
RLOS elevation (◦) [25,75] 1◦

Conning axis (0, 0, 1) /
Initial Euler angle (20, 3, 45) /

To simulate radar data in real scenes, we added noise with an SNR = 5 dB to the radar
echoes. Based on the above target structure, motion, and radar parameters, we generate
dynamic HRRP sequences for nine categories of targets. Figures 3–5 depict one sample
from each target category. The dimension of a single HRRP sequence is 512 × 2000 (FFT
of 512 sampling points is adopted), and the sample size for each category is 1000. In the
experiment, we randomly divided the samples into the training set, validation set, and
testing set, and their ratio is 8:1:1. More specifically, for seen classes, the sample sizes of
the training set, validation set, and testing set account for 80%, 10%, and 10% of the total
number of samples in each category, respectively. For unseen classes, the sample sizes
of the validation and testing sets accounted for 10% and 10% of the sample size of each
category, respectively.

To validate the performance of the proposed GLVFENet, we design two division
methods for seen and unseen classes. Detailed information about these methods listed in
Table 5. The division method is based mainly on the following two principles: (1) To ensure
that semantics can be transferred from seen classes to unseen classes, the seen class samples
include the attributes of unseen class samples. (2) In the same division, the number of
unseen classes shows an increasing trend, and the categories of these unseen class samples
exhibit a hierarchical relationship. In different divisions, the unseen class samples exhibit
two different shapes.
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represents the HRRP of the cone-shaped target with different micro-motion forms. The second row
represents the HRRP sequences of the cone-shaped target with different micro-motion forms.
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(a) is the HRRP of cylinder-shaped target. (b) is the HRRP sequence of the cylinder-shaped target.

Table 5. Division of seen and unseen classes.

Ns/Nu Target Type Division I Division II

8/1

T1 Seen Seen
T2 Seen Seen
T3 Unseen Seen
T4 Seen Seen
T5 Seen Seen
T6 Seen Seen
T7 Seen Seen
T8 Seen Unseen
T9 Seen Seen

7/2

T1 Seen Seen
T2 Seen Seen
T3 Unseen Seen
T4 Unseen Seen
T5 Seen Seen
T6 Seen Seen
T7 Seen Seen
T8 Seen Unseen
T9 Seen Unseen
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Table 5. Cont.

Ns/Nu Target Type Division I Division II

6/3

T1 Seen Seen
T2 Seen Unseen
T3 Unseen Seen
T4 Unseen Seen
T5 Seen Seen
T6 Seen Seen
T7 Unseen Seen
T8 Seen Unseen
T9 Seen Unseen

Ns and Nu represent the number of seen and unseen classes, respectively.
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Figure 5. HRRP and HRRP sequence of a cone−cylinder-shaped target with different micromotion
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different micro-motion forms.

4.2. Evaluation Metrics

Following the commonly used evaluation metrics in GZSL, we adopt the average top-1
accuracy of each class as the evaluation criterion, represented by the following formula:

Acc =
1
‖Y‖

‖Y‖

∑
T=1

P
Q

(14)

where P represents the number of correctly recognized samples for a certain class, Q
represents the total number of samples for that class, Y represents the class labels, and ‖Y‖
represents the number of classes. We denote top-1 accuracies of the seen and unseen classes
as Accs and Accu, respectively. To comprehensively reflect the recognition performance of
the network for seen and unseen classes, we use the harmonic mean as an indicator. The
harmonic mean is represented by the following formula:

H =
2×Accs ×Accu

Accs + Accu
(15)



Remote Sens. 2023, 15, 5156 13 of 22

To further measure the performance of the model, we also introduce three metrics that
are model parameters (Params), model running time (Time, in seconds), and floating-point
operations per second (FLOPs).

4.3. Implementation Details

In the shared feature extraction module, the CNN backbone network adopts ResNet101,
which improves HRRP sequence representation through fine-tuning in an end-to-end way.
The initial learning rate is set to 1 × 10−4, and after every 10 epochs, the learning rate
decays by 0.8 times its original value. A total of 100 epochs were conducted, with a batch
size of 8 for each epoch. The AdamW optimizer is used to minimize the loss function. All
the experiments are performed on the Ubuntu 18.06 operating system, utilizing an Intel
Xeon CPU E5-2698v4 equipped with an NVIDIA Tesla V100 32-GB GPU. The development
environment is Python 3.9 with PyTorch 1.7.0.

4.4. Experimental Results

Due to the lack of ZSL methods for space target recognition in this field, we compare
several popular methods in the computer vision field. We conducted extensive comparative
experiments on the two division methods mentioned in Table 5. The comparison results are
shown in Tables 6 and 7. These results exhibit the following: (1) As the number of unseen
classes increases in the testing set, the H for all methods decreases. This is reasonable
because as the number of unseen classes increases, recognition becomes more challenging.
(2) When the number of unseen classes is the same, the proposed method, GLVFENet,
consistently outperforms the other methods in terms of H, regardless of the division method.
Table 6 demonstrates that our proposed GLVFENet outperforms the best-compared method
APN in terms of H, improving by 8.8%, 12.4%, and 18.1% when the number of unseen
classes is 1, 2, and 3, respectively. Table 7 reveals that our proposed GLVFENet outperforms
the best-compared method APN in terms of H, improving by 15.6%, 13.1%, and 10.1% when
the number of unseen classes is 1, 2, and 3, respectively. (3) Further analysis reveals that
when the number of unseen classes is the same, our method performs better in Division I
(Table 6) and achieves a higher H value than Division II (Table 7), with improvements of
1.0%, 1.3%, and 5.8%, respectively. This is understandable because the unseen classes of
Division II have more complex geometric shapes and EM scattering characteristics than
those of Division I, increasing the difficulty of target recognition. In conclusion, our method
achieves the best results in generalized zero-shot space target recognition, demonstrating
that our approach effectively aligns visual features with semantic knowledge by utilizing
cooperative global and local visual features simultaneously. Our approach enhances
the transferability of semantic knowledge from seen classes to unseen classes, thereby
improving zero-shot recognition performance.

We have made statistics on Params, FLOPs, and Time. The statistical results are
shown in Table 8. From Table 8, although the proposed GLVFENet has the best recognition
accuracy, its parameters and FLOPs are relatively high. This might be because the LVFE-
Subnet utilizes convolutional operations to encode the K attention feature into local visual
embeddings, which involves a larger number of input and output channels. As a result,
the overall network has higher parameters. However, since convolutional operations are
performed in parallel for each channel, the inference time has not significantly increased. In
the future, our focus will be on researching lightweight network structures that can achieve
a high recognition accuracy while using fewer network parameters.
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Table 6. Recognition accuracy comparison among different networks (Division I).

Method
8/1 7/2 6/3

Accs Accu H Accs Accu H Accs Accu H

HSVA [18] 71.90 95.40 82.00 44.70 95.90 61.00 33.1 98.60 49.50
APN [22] 98.20 83.90 90.50 81.20 80.00 80.60 60.20 58.30 59.20

DPPN [23] 62.19 61.66 61.93 50.67 49.80 50.23 36.27 33.70 34.94
GLVFENet 99.70 98.90 99.30 96.40 89.70 93.00 93.50 75.90 77.30

Table 7. Recognition accuracy comparison among different networks (Division II).

Method
8/1 7/2 6/3

Accs Accu H Accs Accu H Accs Accu H

HSVA [18] 61.80 97.50 75.70 61.10 50.00 55.00 39.30 65.40 49.10
APN [22] 94.60 73.40 82.70 81.50 76.00 78.60 81.20 49.30 61.40

DPPN [23] 52.80 49.76 51.23 69.92 33.75 45.53 39.71 37.40 38.52
GLVFENet 99.60 97.10 98.30 98.10 86.10 91.70 80.80 64.10 71.50

Table 8. Performance display of different method.

Method Params FLOPs Time (s)

HSVA [18] 4,458,624 8,916,992 0.004059
APN [22] 42,500,160 159,948,603,392 0.016310

DPPN [23] 45,176,699 8,851,663,192 0.021384
GLVFENet 101,252,617 219,169,602,770 0.017393

5. Discussion

In this section, we take 7/2 in Table 5 (Division I) as an example for further discussion,
including visualization, an ablation study, and hyperparameter analysis.

5.1. Visualization
5.1.1. Confusion Matrix

To intuitively illustrate the classification performance of different methods, we present
their confusion matrices as shown in Figure 6. In the confusion matrix, each row represents
the true class label of the target, and each column represents the class label predicted by
the model. The squares on the main diagonal represent correctly classified samples. A
darker color indicates that more samples are correctly classified into this category than
that represented by a lighter color. Figure 6 shows that GLVFENet has the best overall
recognition performance and performs well in recognizing various categories of targets.

5.1.2. Feature Cluster Analysis

To provide more evidence of the efficacy of our GLVFENet, we employ the t-SNE
distribution [53] to analyze the feature clustering of nine categories of space targets. This
analysis is visually shown in Figure 7. In Figure 7, each point represents a sample, and each
color represents a class. Our method exhibits better intraclass compactness and interclass
separability than the other methods. The GLVFENet, through learning both global and local
features, enables the model to capture more comprehensive and discriminative features,
thereby improving the model’s recognition capability.
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5.1.3. ROC Curves

Recognition accuracy can reflect the relationship between the number of correctly
classified test samples and the total number of test samples. However, it does not reflect
the relationship between misclassification rate (the probability of classifying a false sample
as true) and sensitivity (the probability of classifying a true sample as true). Therefore, we
evaluate the recognition effect by using ROC curves and AUC. The closer the ROC curve is
to the upper left corner of the graph, the better the classification performance of one model,
and the corresponding AUC value of one model is close to 1. Figure 8 shows the ROC
curves and corresponding AUC values of the comparison methods under the 7/2 condition
in Table 5. The ROC curve of GLVFENet is closer to the upper left corner than the ROC
curves of the other models. The corresponding AUC value is also larger, indicating that
GLVFENet performs well in zero-shot classification tasks.
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5.2. Ablation Study

To validate the impact of each component on the model, we conduct ablation experi-
ments. Table 9 displays the results of these experiments. “GLVFENet w/o LVFE-Subnet”
indicates that only GVFE-Subnet is used. “GLVFENet w/o GVFE-Subnet” indicates that
only the LVFE-Subnet is used. “GLVFENet w/o cosine similarity” indicates the cosine
similarity is removed from the GVFE-Subnet loss function and only the cross-entropy loss
is utilized. “GLVFENet w/o LCS” indicates the calibrated stacking method is not used
during prediction. Table 8 illustrates that (1) GLVFENet outperforms GVFE-Subnet and
LVFE-Subnet by 79.6% and 27.3% in terms of H, respectively. This demonstrates the impor-
tance of both global and local features in GZSL recognition. In particular, the semantically
enhanced local features have a greater influence on recognition accuracy. (2) Using the co-
sine similarity in the classification loss function to calculate the compatibility score between
the global visual projection and semantic vectors results in an 18.1% improvement. This
is because cosine similarity can constrain and reduce the variance of neurons, improving
the generalizability of the model. (3) The calibrated stacking constraint helps alleviate the
tendency of unseen classes being recognized as seen classes during GZSL, thus improving
the recognition accuracy of unseen classes and overall recognition accuracy. Therefore,
each component in the model improves the overall performance of the model.

Table 9. Ablation Studies for Different Components of GLVFENet (Division I).

Methods Accs Accu H

GLVFENet w/o LVFE-Subnet 12.0 15.0 13.4
GLVFENet w/o GVFE-Subnet 99.7 48.6 65.7

GLVFENet w/o cosine similarity 63.0 92.3 74.9
GLVFENet w/o LCS 99.2 54.1 70.0

GLVFENet (full) 96.4 89.7 93.0

5.3. Hyperparameter Analysis
5.3.1. Effect of Scaling Factor σ

σ denotes the scaling factor in the loss of GVFE-Subnet, and Figure 9 illustrates the
effect of varying σ over the range {2, 5, 10, 15, 20, 25} on the model performance. As σ
gradually increases, Accs, Accu, and H increase until σ = 10, where Accs, Accu, and H
reach their highest values of 96.4%, 89.7%, and 93.0%, respectively. As σ further increases,
Accs, Accu, and H show a downward trend. For this reason, we choose σ = 10, when the
model performs best.
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Figure 9. Effect of scaling factor σ in LGVFE.

5.3.2. Effect of Number of K in LVFE-Subnet

K denotes the number of mask attention maps generated by LVFE-Subnet, which is
an important hyperparameter. We take values for K within the range {4, 6, 8, 10, 12, 14}.
The experimental results are shown in Figure 10. When K = 8, GLVFENet performs best,
achieving the highest accuracy for seen and unseen classes. Therefore, we set K = 8.

Figure 10. Effect of the number of attention mask maps.

5.3.3. Effect of Weight λ in Loss Function

We vary λ in (12) within the range of {0.5, 0.6, 0.7, 0.8, 0.9}, as shown in Figure 11. As
λ increases, H gradually increases until λ = 0.8, when our method performs best. However,
as A continues to increase, H decreases. Therefore, we choose λ = 0.8.

Figure 11. Effect of the weight (λ) in the loss function.

5.3.4. Effect of Calibration Factor γ

To alleviate the tendency of unseen classes to be classified as seen classes, we introduce
the calibrated stacking method into GLVFENet during inference. We control the calibrated
stacking constraint in (13) via γ. As shown in Figure 12, as γ increases, the accuracy of seen
classes starts to decrease, while the accuracy of unseen classes continues to increase. This
indicates that the calibrated stacking constraint is effective in our model. When γ = 0.999,
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H achieves the best result of 93.0%. As γ continues increasing, H decreases. Therefore, we
choose γ = 0.999.
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5.3.5. Effect of Combination Coefficients (α1,α2)

To determine the effect of combining factors (α1, α2) on the model, we varied (α1, α2)
from {(0 .1, 0 .9), (0 .2, 0 .8), (0 .3, 0 .7), (0 .4, 0 .6), (0 .5, 0 .5), (0 .6, 0 .4), (0 .7, 0 .3), (0 .8, 0 .2),
(0 .9, 0 .1)}. As shown in Figure 13, when the values of α1/α2 are overly large or small,
GLVFENet performs poorly. When (α1, α2)= (0 .6, 0 .4), GLVFENet achieves the best per-
formance, indicating that the model fully leverages the important roles of both global and
local features.
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6. Conclusions

In this paper, we propose a space target recognition network based on GZSL, named
GLVFENet. GLVFENet consists primarily of GVFE-Subnet and LVFE-Subnet. The GVFE-
Subnet based on cosine metric learning is mainly used to obtain coarse-grained global
embedding; the LVFE-Subnet based on soft space attention is mainly used to capture local
embedding in images. This dual-branch network jointly learns global and local visual
features to obtain discriminative target features. During the testing phase, the calibrated
stacking method is introduced to alleviate the tendency toward misclassifying unseen
classes as seen classes. In addition, we incorporate domain-prior knowledge to design
binary semantic attributes of space targets. Extensive experiments validate the effectiveness
of our proposed method.

Future work will focus on further improving the accuracy of recognizing unseen
classes of space targets, while optimizing the network to reduce parameters and complexity.
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