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Abstract: Urban air pollution has become a regional environmental problem. In order to explore
whether island areas were affected by the urban development of surrounding areas, in this paper, we
systematically study the vertical distribution characteristics of atmospheric components, meteorolog-
ical drivers, potential pollution sources, and the population health risks of fine particulate matter
in island cities in China. The vertical profiles of three atmospheric pollutants (aerosols, NO2, and
HCHO) in the lower troposphere of Huaniao Island in the East China Sea (ECS) were obtained using
ground-based multi-axial differential optical absorption spectroscopy (MAX-DOAS). The results
show that the aerosol extinction coefficients, NO2, and HCHO were primarily distributed at altitudes
below 1 km, and the atmospheric pollutants in Zhoushan were obviously affected by high-altitude
transfer. The main meteorological driving factors of aerosols, NO2, and HCHO were different at
different altitudes. The key factor contributing to the high column concentrations of NO2 and HCHO
in the upper air (greater than 400 m) was the transport of pollutants brought about by changes in wind
speed. By exploring the main potential sources of atmospheric pollutants, it was found that the main
sources of aerosols, NO2, and HCHO are coastal cities in the Yangtze River Delta, including southeast
Zhejiang Province, southeast Fujian Province, Shanghai, ECS, and the Yellow Sea. Compared with
aerosols and HCHO, local primary emissions are an important source of NO2, which are mainly
related to industrial activities in Zhoushan Port. In addition, using the expose-response function
model, the number of attributable cases of PM2.5 air pollution in Zhoushan City in 2019 accounted
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for 6.58% of the total population. This study enriches our understanding of the vertical distribution
characteristics of atmospheric composition and health risk assessment on Chinese islands.

Keywords: vertical profile; MAX-DOAS; meteorological effect; regional transport; health risk

1. Introduction

Air pollution is a complex mixture of gases and particulate matter with local and non-
local emission sources, causing spatiotemporal variations in concentration and composition
that carry associated health risks [1,2]. To be specific, aerosols are multiphase systems made
up of solid, liquid, and gas particles suspended in the atmosphere that pose a serious threat
to human health and limit the visibility of the atmospheric environment [3–5]. Nitrogen
oxides (NO2), one of the six conventional pollutants listed in China’s air quality evaluation
standards, can promote the generation of ozone. They can also cause serious photochemical
pollution and are closely related to mental illness [6–8]. Formaldehyde (HCHO), which has
detrimental effects on both human health and the atmosphere, is crucial to the O3 and NO2
cycles [9,10]. Studying the distribution characteristics, sources, and health risks of aerosols
and ozone precursors (NO2 and HCHO) is crucial for protecting the public’s health and
reducing air pollution.

The Yangtze River Delta (YRD) city cluster, which includes Zhejiang, Jiangsu, Shanghai,
and Anhui Provinces, has played an important part in China’s economic development and
faces serious air pollution problems [11]. Scholars have conducted extensive and in-depth
studies on the distribution and propagation process of air pollutants and their impact
on population health [12–14], including the effect of meteorological conditions on the
distribution of air pollutants [15,16] and the spatial correlation between air pollution and
public health [17,18]. However, most studies have focused on large cities such as Shanghai,
Nanjing, Hangzhou, and Hefei [19,20]. Because of its unique geographical environment, in
addition to its inland cities, there are many coastal cities in the YRD region. Island cities are
relatively clean areas, and with the expansion of the scale of urban agglomeration in the
YRD region, high-intensity industrial production and the rapid expansion of cities have
reduced the pollution buffer distance between cities. Environmental problems in various
cities have become regional environmental problems [21,22]. Therefore, it is essential to
monitor the air quality of island cities and determine whether they are affected by transport
in surrounding developed urban areas. Scholars have also studied the distribution and
source characteristics of atmospheric components in the island regions of China. Wang
et al. [23] reported that Hebei Province, Shandong Province, and the YRD are important
sources of aerosols over Huaniao Island due to regional transport. Based on the four seasons
of Huaniao Island, Wang et al. [24] analyzed the impact of land transport from surrounding
cities on the aerosol characteristics of the East China Sea (ECS). Xue et al. [25] discussed
the spatiotemporal variation characteristics of NO2 on Chongming Ecological Island in
the vicinity of the Shanghai area using an ozone monitor. Wu et al. [26] discovered that
the marine fine particulate pollution air mass over the Dongsha and Nansha Islands in the
South China Sea came from the Japanese islands, Chinese mainland, and Korean Peninsula.
Additionally, it mostly traversed the developed and urbanized parts of East Asia. There is a
common understanding that regional transport has a significant impact on the distribution
of air pollution components in island areas.

Vertical observations should be made to fully understand regional transport [27].
Traditional ground observations have limitations in monitoring atmospheric pollutants’
(such as aerosols, HCHO, and NO2) vertical distribution characteristics, particularly in
island areas where the vertical distribution of atmospheric components used for regional
air pollution research remains insufficient. The model simulation shows great uncertainty
in the vertical profiles of atmospheric pollutants such as aerosols, and it was found that it
is difficult to accurately quantify the intensity of aerosol cloud interaction due to the great
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uncertainty in the parameterization scheme of aerosol and cloud microphysics [28–34]. The
characterization of aerosol effects on clouds was another source of bias, mainly reflected in
the fact that the activation rates of cloud condensation nuclei and ice nuclei were not well
understood and therefore difficult to quantify [35–38]. The measurement of the instrument
was a valuable tool for evaluating the performance of the model and helping to improve
the relevant parameterization scheme [39,40]. In addition, with the atmospheric model,
it is difficult to accurately capture the aerosol concentration of clouds because it does not
reflect the vertical transport of aerosol and water vapor removal (especially in the upper
troposphere) [41–44]. Therefore, the MAX-DOAS observation network covering the YRD
region was established to obtain tropospheric column concentrations and track the regional
transport of trace gases [45,46]. Over the past ten years, the column density and vertical
distribution of trace gases (aerosols, NO2, HCHO, SO2, O3, HONO, BrO, and OClO) in
urban and island environments have been extensively measured using MAX-DOAS [47–49].
Research results regarding the distribution of air pollution in the YRD and island areas of
China based on MAX-DOAS have been obtained [27,50]. Tian et al. [6] analyzed the high-
altitude transmission characteristics of NO2, HCHO, and HCHO gases in urban Nanjing,
Hefei, and Shanghai in the YRD based on the MAX-DAOS system. Xing et al. [51] and
Zheng et al. [52] analyzed the tropospheric distribution and sources of NO2 and HCHO in
the coastal cities of the Bohai Sea using MAX-DOAS. It is thus possible to employ MAX-
DOAS to investigate information on tropospheric aerosol, NO2, and HCHO distribution at
various altitudes in island cities.

In this work, the profile products of aerosols, HCHO, and NO2 obtained with MAX-
DOAS were used to analyze the summer atmospheric components of the troposphere on
Huaniao Island, Zhoushan City, China. The vertical distribution characteristics of aerosols,
NO2, and HCHO, the influence of meteorological factors, the identification of potential
sources, and the health risk assessment of PM2.5 are discussed. The results can provide
novel insights into island areas’ public health risk assessment and air pollution control.

2. Materials and Methods
2.1. Observation Site

The observation instrument (MAX-DOAS) was set up on Huaniao Island (30.86◦N,
122.67◦E), Zhoushan City, Zhejiang Province, China (Figure S1). Although this area has
little traffic and no industrial emission locations, Yangshan Port, one of the world’s major
container ship ports, makes it susceptible to ship emissions [24,53]. Huaniao Island repre-
sents a typical island area in the YRD region, and an observational study of this site is of
considerable scientific significance for understanding the transport contribution and health
risks of air pollutants in the ECS.

2.2. Instrument and Vertical Profile Retrieval Method

A commercial MAX-DOAS instrument (Airyx, Skyspec series) was used in this study.
This instrument has two main parts, the spectrometer unit and the telescope unit, with
additional sensors for USB communication and control electronics to record temperature,
pressure, and tilt. A Peltier element was mounted on the spectrometer housing unit to
cool and heat the spectrometer in order to stabilize its temperature at 20 ± 0.05 ◦C. A
stepper motor was used to operate an outdoor mounted telescope (field of view 0.2◦ × 0.8◦)
serving to collect scattered sunlight at different elevation angles and then transmit it to the
spectrometer through optical fibers. The rotating prism consisted of a quartz glass tube,
and light was reflected through the lens to the fiber at the end of the adjustable tube above.
This device was composed of a stepper motor that transfers scattered sunlight captured at
various elevation angles through a glass fiber bundle to the spectrometer unit. The entire
scan sequence consisted of elevation angles (1◦, 2◦, 3◦, 4◦, 5◦, 6◦, 8◦, 10◦, 15◦, 30◦, and
90◦) and azimuth angles (fixed at 0◦). With varying light intensity, the entire time series
was approximately 15 min. To ensure that the observations collected at all altitudes had
comparable intensity, the exposure time for each observation was automatically modified
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according to the intensity of the scattered sunlight obtained. At night, the instrument was
set to collect the dark current and offset spectrum and subtract them from the spectrum
measured during the day [46,51].

In this study, the solar scattering spectra and DOAS fitting outcomes for the differential
slant column densities (DSCDs) of O4, NO2, and HCHO were processed using the QDOAS
software (http://uv-vis.aeronomie.be/software/QDOAS/, accessed on 22 December 2022),
created by the Royal Belgian Institute for Space and Aviation Research (BIRA-IASB). Only
solar zenith angle (SZA) filter spectra greater than 75◦ were gathered to avoid the severe
stratospheric absorption effect. The reference spectra from the two zenith spectra that
were acquired before and after each elevation sequence were chosen for DOAS fitting.
Table 1 presents the specific configuration. O4 (NO2) and HCHO had fitting intervals of
338–370 nm and 322.5–358 nm, respectively. During the retrieval process, the absorption
cross-sections of trace gases were applied, referring to the recommended settings of the
CINDI-2 intercomparison campaign [51]. Figure 1 displays an illustration of the DOAS
fitting outcomes noted on 20 July 2017. For the DOAS fitting findings, an RMS > 5.0 × 10−4

was ruled out. Following processing, the O4, NO2, and HCHO DSCDs were retained in
amounts of 90.32%, 90.21%, and 90.66%, respectively.

Table 1. Setting up the DOAS retrieval for a spectrum analysis of NO2, O4, and HCHO.

Parameter Data Source
Fitting Interval (nm)

O4/NO2 HCHO

Wavelength range 338–370 322.5–358
NO2 298 K, I0 correction (SCD of 1017 molecules cm−2) [54]

√ √

NO2 220 K, I0 correction (SCD of 1017 molecules cm−2) [54]
√ √

O3 223 K, I0 correction (SCD of 1020 molecules cm−2) [55]
√ √

O3 243 K, I0 correction (SCD of 1020 molecules cm−2) [55]
√ √

O4 293 K [56]
√ √

BrO 223 K [57]
√ √

H2O 296 K, HITEMP [58]
√

×
HCHO 297 K [59]

√ √

Ring calculated with QDOAS [60]
√ √

Wavelength calibration A high-resolution solar reference spectrum (SAO2010
solar spectra) [61]

√ √

Polynomial degree Order 3 Order 5
Intensity offset Constant Constant
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Figure 1. Examples of O4, NO2, and HCHO DOAS fitting findings at the Zhoushan site. Figure 1. Examples of O4, NO2, and HCHO DOAS fitting findings at the Zhoushan site.

The Heidelberg profile algorithm and optimal estimating approach were used to
recover the vertical distributions of aerosols, NO2, and HCHO, and SCIATRAN was chosen
as the forward transfer model [62,63]. This algorithm has been described previously [51,64].
The troposphere was separated into 28 layers within a height range of 3 km, with a vertical
resolution of 100 m beneath 2 km and 200 m above 2 km. The aerosol optical property

http://uv-vis.aeronomie.be/software/QDOAS/
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value, single scattering albedo, and aerosol asymmetry factor were considered to be 0.08,
0.92, and 0.68, respectively, in the Heidelberg profiles. Retrieved contours that had relative
errors more than 50% and degrees of freedom lower than 1.0 were also eliminated.

2.3. Potential Source Analysis of Atmospheric Pollutants

Backward trajectories were computed using data from the National Center for Envi-
ronmental Prediction (NCEP) Global Data Assimilation database (ftp://arlftp.arlhq.noaa.
gov/pub/archives/gdas1/, accessed on 15 October 2023) [65]. Using the HYSPLIT model,
the 24 h and 72 h inverse trajectories of the air mass at the Zhoushan site were analyzed,
and cluster analysis was performed. The potential sources of daytime gaseous pollutants
at multiple heights in the Huaniao Island area were studied from 19 July to 23 August
2019. The study area was divided into several 0.5◦ × 0.5◦ grids. After the research area was
gridded, a single grid coordinate was (i, j), and the total number of route endpoints falling
within the lattice point ij was defined as nij. The total number of endpoints with pollutant
levels over the established threshold was defined as mij. Potential sources of gaseous
pollutants (aerosols, NO2, and HCHO) were analyzed in this study, and the average values
(Avg) of gaseous pollutants were set as the threshold. A trajectory is regarded as polluted
when the concentration associated with a given backward trajectory exceeds the threshold
value. The potential source contribution function (PSCF) values are defined as:

PSCFij =
mij

nij
(1)

The weight Wij is expressed as:

Wij =


1.00 nij > 3Avg
0.70 Avg < nij ≤ 3Avg

0.42 0.5Avg < nij ≤ Avg
0.17 nij ≤ 0.5Avg

 (2)

where Avg is the average number of endpoints in each cell.
Further weighted calculations of the potential source contribution function (WPSCF)

and the values are shown in Equation (3):

WPSCF = Wij × PSCFij (3)

2.4. Health Risk Assessment

Using the expose-response function of PM2.5 at each of the health endpoints found
in prior epidemiological studies, the health risk posed by particulate matter pollution in
Zhoushan City was assessed [66,67]. Equations (4) and (5) can be used to calculate the
number of cases that can be directly linked to PM2.5 pollution (∆E):

Ei = E0exp[βi(C− C0)] (4)

∆E = P(Ei − E0) (5)

where C is the actual PM2.5 concentration (µg·m−3). In this study, C refers to the average
value of the data from three sites at the China National Environmental Monitoring Center
(CNEMC, http://www.cnemc.cn/, accessed on 1 September 2023) in Zhoushan City in
2019. C0 is the baseline PM2.5 concentration (the WHO standard of 25 µg·m−3 was used in
this work); βi, the exposure-response coefficient; E0, population health insurance under C0;
Ei, the population health risk under C; and P, the total population of the study area. The
total population of Zhoushan City in 2019 was 1.176 million.

ftp://arlftp.arlhq.noaa.gov/pub/archives/gdas1/
ftp://arlftp.arlhq.noaa.gov/pub/archives/gdas1/
http://www.cnemc.cn/
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2.5. Ancillary Data

The PM2.5 and NO2 concentrations for the research period were obtained from the
monitoring station of the CNEMC. For quality control, the z-score approach was used to
eliminate extreme outliers from the CNEMC data [68,69]. The Global Analytical Dataset
of NCEP and the atmospheric meteorological model Weather Research and Forecasting
(WRF) (0.1◦ × 0.1◦ spatial resolution) were used to acquire data on wind speed (WS), wind
direction (WD), relative humidity (RH), and temperature (T) at various altitude levels of
0–3 km. Previous studies have provided detailed descriptions of the WRF model and its
parameter settings [64].

3. Results
3.1. Data Verification

The accuracy of the MAX-DAOS inversion results was confirmed by referring to the
method of Ou et al. [20]. To be specific, the aerosol extinction coefficient (AE) and NO2 at
10 m above ground level obtained using MAX-DOAS were compared with the CNEMC
data (Figures 2 and S2). This method has been validated in many studies [51,70]. The
results from the two instruments were normalized to hourly averages before the correlation
analysis [51]. Linear analysis was performed on the AE and NO2 concentrations at 10 m
above the ground and on the PM2.5 and NO2 concentrations at the corresponding state
control station, and the correlation coefficients (R) were 0.81 and 0.76, respectively. The
formaldehyde obtained through MAX-DOAS inversion and the formaldehyde obtained
through USTC TROPOMI showed a good correlation, and the correlation coefficient R was
0.78. This shows that the data obtained based on MAX-DOAS inversion are reliable. On this
basis, the vertical distribution characteristics of AE, NO2, and HCHO are analyzed below.
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3.2. Vertical Distribution Characteristics of Pollutants

As is shown in Figure 3, 75.72% of the aerosols were dispersed primarily below 1 km.
From near the ground to 500 m, the aerosol content exhibited an increasing trend with
a Gaussian distribution. The peak value of the average AE appeared at 400 m, with a
maximum value of 0.38 km−1. NO2 showed an exponentially decreasing trend from 0 to
3 km, and the proportion of NO2 below 0.5 km reached 49.43%; however, the proportion of
NO2 above 1 km was 38.33%. NO2 mainly derives from traffic sources, and the reason for
this phenomenon may be the effect of NO2 produced by ship transportation on NO2 near
the ground of Huaniao Island [71]. The vertical distribution of HCHO showed a Gaussian
distribution, and the proportion of HCHO below 1 km was 59.10%. Figure 3c shows
that the HCHO value suddenly increases at 0.3 km and 1.5 km. In order to explore the
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reason for this, the daily profile diagram was analyzed, and it was found that HCHO has an
obvious high-altitude transmission phenomenon (Figure S3). This finding is consistent with
the conclusions of other studies. Dasgupta et al. [72] found in their report that the mixed
proportion of HCHO in coastal areas increased with the increase in altitude. In addition, the
observation site is located in the East China Sea, and regional transmission may also be an
important reason for the increase in the pollutant content [73,74]. Xing et al. [51] analyzed
the vertical distribution characteristics and potential source characteristics of aerosol, NO2,
and HCHO in the Bohai Sea region of China and found that the high concentration values
of aerosols, NO2, and HCHO were distributed near the ground, at 100–200 and 200–300 m,
respectively, which were mainly influenced by local emissions. Tian et al. [6] selected three
cities in the Yangtze River Delta (Hefei, Nanjing and Shanghai) for long-term observations
of NO2, SO2, and HCHO and found that meteorological conditions had an important
impact on the regional transport of pollutants. These studies were based on the island area
or the Yangtze River Delta area, and the conclusions were basically consistent with the
vertical distribution of gases and meteorological drivers analyzed in this study.
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3.3. Vertical Distribution of Meteorological Factors

In order to explore the meteorological factors driving the vertical variation in atmo-
spheric composition, a correlation analysis between the meteorological vertical profile and
the atmospheric composition at the corresponding height was carried out. The weather
profile obtained using the WRF model simulation showed a RH variation range of 60–90%
in vertical height (Figure S4). The T decreased from near the ground to 3 km. The WD
was mainly southeast below 1 km and mainly southwest above 1 km. The winds above
1 km were relatively strong (WS > 7.5 m/s), and the average WS at a level above 1 km was
concentrated in 6–7 m/s.
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3.4. Effects of Air Pollution on Human Health

The health risks posed by PM2.5 are closely related to public health and are receiving
increasing attention. Because Huaniao Island has a relatively small population, in this study,
we selected Zhoushan City as the research area for health risk assessment and conducted
a health risk assessment based on the average PM2.5 of CNEMC in Zhoushan. Table S1
lists the incidence rates and PM2.5 exposure-response coefficients (mean and 95% CI) for
the selected health outcomes. There are currently three state control stations in Zhoushan,
and the monitoring data from these stations represent the city’s typical air pollution levels.
Zhoushan City has good atmospheric conditions and is a relatively clean island area.

The number of cases in Zhoushan that could be linked to particle air pollution was
calculated using the exposure-response function, outcome frequency, exposure concen-
tration, and threshold level (Table 2). In 2019, fine particle air pollution was responsi-
ble for 117 deaths. There were 151 new cases of chronic bronchitis, 39 hospitalizations
for respiratory illnesses, and 27 hospitalizations for cardiovascular illnesses. There were
2684 medical visits and 283 pediatric visits, respectively. In addition, there were 67,659 days
of restricted activity, 1263 asthma attacks, and 5167 attacks of acute bronchitis. Moreover,
the number of people in Zhoushan who were exposed to PM2.5 in 2019 was 77.74 × 104,
accounting for 6.58% of the city’s total population. Compared to thriving urban centers
in the YRD region like Shanghai [66] and Hefei [20], the health risks of Zhoushan from
particulate matter are relatively low; however, particulate matter emissions still need to
be controlled.

Table 2. Cases attributable to particle air pollution in Zhoushan’s urban area in 2019 (mean and
95% CI).

Health Endpoints Attributable Number of Cases

Long-term mortality (adult > 30 years) 112 (68, 158)
Chronic bronchitis 151 (43, 258)

Short-term mortality 5 (2, 8)
Respiratory hospital admission 39 (3, 75)

Cardiovascular hospital admission 27 (14, 39)
Outpatient visits—internal medicine 2684 (1500, 3868)

Outpatient visits—pediatrics 283 (102, 465)
Acute bronchitis 5167 (1782, 8527)

Asthma attack (children < 15 years) 735 (452, 1034)
Asthma attack (adults > 15 years) 528 (258, 797)

RADs (adults > 20 years) 67,659 (56,950, 78,335)
Sum 77,390 (61,173, 93,564)

RADs: Days of restricted activity are defined as any days where a respondent was forced to alter his or her
normal activity.

4. Discussion
4.1. Vertical Distribution of Meteorological Factors

The relationship between meteorological factors and various gases at a range of vertical
heights was investigated using a correlation analysis. Figure 4 shows that, in the range of
500–1000 m, aerosols are negatively and positively correlated with T and RH, respectively.
This suggests that a high AE may be related to a high water vapor concentration and that
increasing RH promotes secondary particle formation [64,75]. At heights below 1 km,
NO2 presents a significant negative correlation with RH and WS and a significant positive
correlation with WD, which indicates that the southeast and southwest directions are also
the primary sources of NO2 transport near the surface. At altitudes greater than 1 km,
NO2 exhibited a negative correlation with T and a positive correlation with RH. Unlike
aerosols and NO2, HCHO was significantly correlated with the meteorological factors. At
heights below 1 km, HCHO was strongly negatively linked with RH and WS and positively
correlated with T. High temperatures contribute to an increase in formaldehyde content [76].
At altitudes greater than 1 km, HCHO had a negative correlation with WS and a positive
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correlation with WD, indicating that the drop in HCHO concentration is largely caused by
an increase in WS [77].
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Moreover, the dominant meteorological factors affecting the atmospheric composition
(aerosols, NO2, and HCHO) at different altitudes (10 m, 400 m, and 1000 m) were identified
using a random forest model [78]. Near the surface (10 m), WS was the main influencing
factor for aerosols and HCHO, while WD was the main influencing factor for NO2 (Figure 5).
At 400 m, WD was the main controlling factor for aerosols, and WS was the main influencing
factor for NO2 and HCHO. At a height of 1 km, T was the main controlling factor for
aerosols, and WS was the main influencing factor for NO2 and HCHO. This result verifies
the change characteristics of the atmospheric pollution components at vertical heights, as
shown in Figure 3. RH, T, and WS had significant effects on formaldehyde at different
heights, a finding which is consistent with the conclusions shown in Figure 4. In general,
pollutant transport caused by changes in WS was the main reason for the high NO2 and
HCHO concentrations at high altitudes (>400 m).
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4.2. Potential Sources of Aerosol, NO2, and HCHO

The air mass back trajectories arriving in Zhoushan in July and August 2019 at altitudes
of 10 m, 400 m, and 1000 m were computed in order to evaluate the effects of regional
transport on atmospheric pollutants (Figure 6). The impact of movement on trace gases
(such as NO2 and HCHO) and aerosols, respectively, was assessed using 24 h and 72 h air
mass back trajectories, which took into account their various lifetimes. For the associated
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hourly trajectory arrival timings, the hourly averaged aerosol extinction coefficients, NO2
VMR, and HCHO VMR were employed. Tables 3–5 and Figure 6 provide an overview
of the key clusters that arrive in Zhoushan at 10 m, 400 m, and 1000 m. For aerosols,
cluster 3 is associated with a maximum AE of 10 m (0.27 ± 0.11 km−1), mainly from
the South China Sea. Cluster 2 is associated with a maximum extinction coefficient of
400 m (0.53 ± 0.58 km−1), mainly from Zhejiang Province, Fujian Province, and the South
China Sea. Cluster 2 is also associated with a maximum extinction coefficient of 1000 m
(0.35 ± 0.30 km−1), mainly from the ECS. For NO2, cluster 2 is related to the highest
concentrations at 10 m (5.10 ± 3.87 ppb) and 1000 m (0.43 ± 0.39 ppb). This demonstrates
that NO2 pollution in Zhoushan at 10 m and 1000 m was significantly affected by short-
distance trajectories coming from northern Zhejiang Province and Shanghai. Cluster 4 had
the highest concentrations at 400 m (0.84 ± 0.50 ppb), indicating that the short-distance
trajectories from the ECS had a considerable impact on NO2 pollution in Zhoushan at
400 m. For HCHO, clusters 3 and 4 were related to the highest concentrations at 10 m
(2.19 ± 1.65 ppb), 400 m (2.21 ± 2.69 ppb), and 1000 m (1.94 ± 1.40 ppb). These clusters
suggest that HCHO pollution in Zhoushan was significantly impacted by short-distance
trajectories coming from the ECS, Hangzhou City.
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Table 3. Trajectory ratios and averaged AE for all trajectory clusters arriving at Zhoushan at 10 m,
400 m, and 1000 m from July to August 2019.

Cluster Ratio (%) AE (km−1)

Mean ± SD

10 m

1 28.28 0.27 ± 0.21
2 37.12 0.24 ± 0.10
3 34.60 0.28 ± 0.13

all 100.00 0.25 ± 0.14

400 m

1 40.40 0.33 ± 0.52
2 26.01 0.53 ± 0.58
3 33.59 0.37 ± 0.82

all 100.00 0.39 ± 0.63

1000 m

1 16.67 0.28 ± 0.21
2 30.56 0.35 ± 0.30
3 32.32 0.27 ± 0.20
4 20.45 0.32 ± 0.31

all 100.00 0.31 ± 0.26

Table 4. Trajectory ratios and averaged NO2 for all trajectory clusters arriving at Zhoushan at 10 m,
400 m, and 1000 m from July to August 2019.

Cluster Ratio (%) NO2 (ppb)

Mean ± SD

10 m

1 48.99 1.42 ± 1.24
2 14.39 5.10 ± 3.87
3 36.62 2.77 ± 2.08

all 100.00 2.34 ± 2.19

400 m

1 32.83 0.28 ± 0.26
2 12.63 0.35 ± 0.18
3 37.37 0.45 ± 0.40
4 17.17 0.84 ± 0.50

all 100.00 0.43 ± 0.39

1000 m

1 38.89 0.37 ± 0.31
2 21.21 0.43 ± 0.39
3 25.00 0.32 ± 0.28
4 14.90 0.43 ± 0.36

all 100.00 0.38 ± 0.33

Table 5. Trajectory ratios and averaged HCHO for all trajectory clusters arriving at Zhoushan at 10 m,
400 m, and 1000 m from July to August 2019.

Cluster Ratio (%) HCHO (ppb)

Mean ± SD

10 m

1 48.99 2.10 ± 1.33
2 14.39 1.76 ± 0.77
3 36.62 2.19 ± 1.65

all 100.00 2.12 ± 1.47

400 m

1 32.83 1.54 ± 1.05
2 12.63 1.30 ± 0.95
3 37.37 2.21 ± 2.69
4 17.17 1.91 ± 1.12

all 100.00 1.90 ± 2.10

1000 m

1 38.89 1.29 ± 0.83
2 21.21 1.32 ± 0.82
3 25.00 1.61 ± 1.75
4 14.90 1.94 ± 1.40

all 100.00 1.55 ± 1.34

Additionally, the possible aerosol, NO2, and HCHO source regions in Zhoushan
were based on the WPSCF analysis (Figure 7). Local emissions in southeast Zhejiang
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Province, southeast Fujian Province, Shanghai, the ECS, and the Yellow Sea were the
primary possible source locations of aerosols, NO2, and HCHO at all altitudes, which is
consistent with the findings of various other studies [50,64,79]. Aerosol sources are widely
distributed near the surface; they are mainly distributed in the Yellow Sea, the coastal areas
of Zhejiang and Fujian Provinces, and the ECS. Noteworthy was the identification of Korea
as a significant potential source of aerosols at 10 m. The main sources of NO2 near the
surface are distributed in the coastal urban agglomerations of Zhejiang Province, Fujian
Province, and Shanghai. The potential sources of NO2 at 400 and 1000 m were mainly
distributed in the ECS around Zhoushan. Local primary emissions are a significant source
of NO2 compared to aerosols and HCHO, and we found that industrial primary emissions
and ship-related aerosol emissions account for 17.6% of the total NO2 emissions. Local
primary emissions are mostly associated with industrial activity in ports. Compared with
aerosols and HCHO, local primary emissions are a significant source of NO2, which are
mostly associated with industrial activity in ports, and we found that aerosol emissions
from ships and industrial primary emissions account for 17.6% [23,51].
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5. Conclusions

This investigation demonstrated the features of the vertical and temporal distribution
of aerosols, NO2, and HCHO, their meteorological controlling factors, potential pollution
sources, and the health risks of fine particles in an island region based on MAX-DOAS
vertical observation data. Aerosols, NO2, and HCHO were mostly distributed below
1 km, accounting for 75.72%, 64.79%, and 59.10%, respectively. The vertical distribution of
HCHO was Gaussian, and the peak value of HCHO at 1.5 km may be influenced by the
high-altitude transport of pollutants caused by typhoon events. Based on the wind profile
data, the main meteorological factors controlling aerosols, NO2, and HCHO at different
elevations were quantified using correlation analysis and a random forest model. RH
and T decreased from near the ground to 3 km. The WDs were mainly southeastern and
southwestern. The overall WS was high and may be affected by typhoons. At 500–1000 m,
aerosols were negatively correlated with temperature, indicating that aerosols in the upper
air mainly originated from secondary particles. The transport of pollutants caused by
changes in WS was the main reason for the high aerosol, NO2, and HCHO concentrations
in the upper air (more than 400 m). The potential sources of air pollution components
at various elevations were qualitatively assessed based on the PSCF model. The main
potential source areas of aerosols, NO2, and HCHO were southeastern Zhejiang Province,
southeastern Fujian Province, Shanghai, the ECS, and the Yellow Sea. South Korea is a
potential source of aerosols near the ground. Compared with aerosols and HCHO, local
primary emissions are an important source of NO2, which are mainly related to industrial
activities in Zhoushan Port. Finally, the health risk assessment results of PM2.5 pollution in
the Zhoushan region showed that 77,390 people were affected by PM2.5 in 2019, accounting
for 6.58% of the total population. This study found that port ship transport activities in
island areas were important local pollution sources, and the industrialization degree of
developed cities had obvious adverse effects on air quality in island areas through regional
transmission. The health risks of urban residents in island areas exposed to air pollutants
such as NO2 and HCHO deserve further specific research.
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