
Citation: Li, G.; Cheng, G.; Liu, G.;

Chen, C.; He, Y. Simulating the Land

Use and Carbon Storage for

Nature-Based Solutions (NbS) under

Multi-Scenarios in the Three Gorges

Reservoir Area: Integration of

Remote Sensing Data and the

RF–Markov–CA–InVEST Model.

Remote Sens. 2023, 15, 5100.

https://doi.org/10.3390/rs15215100

Academic Editor: Richard

Gloaguen

Received: 31 August 2023

Revised: 20 October 2023

Accepted: 23 October 2023

Published: 25 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Simulating the Land Use and Carbon Storage for Nature-Based
Solutions (NbS) under Multi-Scenarios in the Three Gorges
Reservoir Area: Integration of Remote Sensing Data and the
RF–Markov–CA–InVEST Model
Guiyuan Li 1,2,* , Guo Cheng 1,2 , Guohua Liu 3, Chi Chen 4 and Yu He 1,2

1 School of Civil Engineering, Architecture and Environment, Hubei University of Technology,
Wuhan 430068, China; 102100785@hbut.edu.cn (G.C.); 20180071@hbut.edu.cn (Y.H.)

2 Key Laboratory of Health Intelligent Perception and Ecological Restoration of River and Lake,
Ministry of Education, Hubei University of Technology, Wuhan 430068, China

3 Service Office for Retired, China University of Geosciences, Wuhan 430074, China; hezhao@cug.edu.cn
4 Hubei Academy of Agricultural Sciences, Wuhan 430064, China; cchen@ctgu.edu.cn
* Correspondence: lgy@hbut.edu.cn; Tel.: +86-139-7260-5798

Abstract: Rapid industrialisation and urbanisation have moved contemporary civilization ahead
but also deepened clashes with nature. Human society’s long-term evolution faces a number of
serious problems, including the climate issue and frequent natural disasters. This research analyses
the spatiotemporal evolution features of land use remote sensing data from 2005, 2010, 2015, and
2020. Under the Nature-based Solutions (NbS) idea, four scenarios are established: Business as Usual
(BAU), Woodland Conservation (WLC), Arable Land Conservation (ALC), and Urban Transformation
and Development (UTD). The RF–Markov–CA model is used to simulate the spatiotemporal patterns
of land use for the years 2025 and 2030. Furthermore, the InVEST model is utilised to assess and
forecast the spatiotemporal evolution features of carbon storage. The findings show that (1) the
primary land use categories in the Three Gorges Reservoir Area (TGRA) from 2005 to 2020 are arable
land and woodland. Arable land has a declining tendency, whereas woodland has an increasing–
decreasing trend. (2) The WLC scenario exhibits the greatest growth in woodland and the lowest
drop in grassland from 2020 to 2030, indicating a more stable ecosystem. (3) The TGRA demonstrates
substantial geographic variation in carbon storage from 2005 to 2030, with a broad distribution
pattern of “higher in the north, lower in the south, higher in the east, lower in the west, with the
reservoir head > reservoir centre > reservoir tail”. (4) In comparison to the other three scenarios, the
WLC scenario sees a slower development of construction and arable land from 2020 to 2030, whereas
the ecological land area rises the highest and carbon storage increases. As a result, the WLC scenario
is the TGRA’s recommended development choice. The study’s findings have substantial implications
for the TGRA’s ecological preservation and management, as well as for the optimisation of ecosystem
carbon cycling and the promotion of regional sustainable development.

Keywords: Nature-based Solutions; remote sensing data; the RF–Markov–CA model; the InVEST
model; land use changes; simulation; the Three Gorges Reservoir Area

1. Introduction

The evolution of human society’s economy in the twenty-first century has been dual
in character, with simultaneous instances of tremendous progress and large upheavals.
Humanity’s excessive exploitation of the Earth’s resources and complex interference with
the global environment have become increasingly severe, guided by the core principle of
economic building. This has resulted in a slew of undeniably bad consequences. These
implications include more regular occurrences of extreme weather events, the biodiversity
problem, and possible dangers to human health. The Intergovernmental Panel on Climate
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Change (IPCC) report of “Global Warming of 1.5 ◦C” [1], indicates categorically that human
activities have resulted in a 1.0 ◦C increase in the global temperature over the pre-industrial
period. According to predictions, this warming will accelerate to 1.5 ◦C between 2030 and
2052, putting both human civilisation and the natural world in jeopardy.

As the conflict between human progress and ecological safety has grown more intense,
researcher Benyus [2] developed the notion of Nature-based Solutions (NbS) for the first
time in 1997, building on biomimicry principles. Following that, the concept and substance
of NbS were methodically elaborated in a paper issued by the World Bank in 2008 [3,4],
elucidating that this novel approach can mitigate and adapt to the impacts of climate
change, while conserving biodiversity and enhancing sustainable livelihoods. Taking
into account practical social factors, the IUCN produced global guidelines for NbS in
2020, detailing its essential principles and accompanying indicators, therefore supporting
worldwide research and practise [5]. In comparison to traditional engineering techniques,
NbS focuses a greater emphasis on system integrity and complexity, resulting in more
sustainable solutions and better adaptability in the face of uncertainty. NbS has increasingly
found applications in fields like climate change [6], land use management [7,8], urban
planning [9], and ecological restoration [10] in recent years. For example, in studies
focusing on climate change and the connection between land use and carbon cycling, the
implementation of NbS involving protective, restorative, and sustainable land management
practices aids in lowering terrestrial greenhouse gas emissions and improving land carbon
storage. This strategy significantly contributes to combating climate change and enhancing
ecosystem resilience.

Research has demonstrated that regional land use change is the primary driver of
variations in ecosystem carbon storage. Land use change directly alters ecosystem types,
subsequently affecting the net primary productivity (NPP) of ecosystems and the corre-
sponding input of soil organic carbon [11,12]. The analysis and monitoring simulation of
land use change and spatiotemporal variations in carbon storage are of great significance
for the management of ecosystem carbon sinks.

The existing land use prediction models mainly include quantity prediction models
as well as spatial distribution prediction models. Quantity prediction models employ
mathematical models to forecast future changes in various land use types, such as the grey
prediction model [13], multiple regression analysis model [14,15], Markov model [16,17],
and Artificial Neural Networks (ANN) [18–20], among others. Geographical prediction
models can simulate the geographical distribution of various land use categories based
on input transformation rules. Cellular Automata (CA) models are commonly used in
research to simulate complicated spatial patterns [21,22], the CLUE-S model for modelling
short-term land use spatial allocation in small-scale areas [23–25], and the GEOMOD
model for simulating changes in two major land classes [26,27]. Scholars are efficiently
using remote sensing data in research and practise to model and anticipate spatiotemporal
changes in land use in order to improve simulation accuracy. They are constantly refining
and improving related models. The CA–Markov model [28–30] is now recognised as an
excellent spatiotemporal simulation tool for land use change among these models.

With the development of technologies such as RS, GIS, and GPS, an increasing number
of scholars are utilising modelling for carbon storage estimation and simulation. These mod-
els primarily include the Carnegie–Ames–Stanford approach (CASA) [31,32], the CEVSA
model [33,34], the InVEST model [35,36], the Vector Autoregression model (VAR) [37], and
High Accuracy Surface Modelling (HASM) [38]. Among them, the InVEST model is known
for its high simulation accuracy, operational feasibility, and visualised assessment results,
making it widely used in the evaluation of ecosystem carbon storage.

In summary, current research has mostly centred on how past land use changes affect
carbon storage, with relatively limited attention given to the spatiotemporal variations
in future ecosystem carbon storage [39,40]. Considering the time required for policies
to take effect, relying solely on historical data for assessing regional land use changes
might not fully meet the practical demands of ecological conservation and management.
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Therefore, in order to better address these needs, it is crucial to adopt a forward-looking
perspective to simulate the ecological changes. This would provide a more comprehensive
understanding of the dynamic relationship between land use changes in ecosystem carbon
storage. Meanwhile, most of the previous models fail to account for the multifactor impacts
on land use change and has limitations in examining land use transition rules [41]. To
solve this shortcoming, a method that integrates different modelling approaches and uses
relevant driving factors to extract efficient transition rules is proposed. The Logistic–CA–
Markov model [42,43], the ANN–CA–Markov model [44,45], and the MCE–CA–Markov
model [46,47] are examples of such a technique. Therefore, compared to previous mod-
elling approaches, the RF–Markov–CA–InVEST model used in this study integrates the
innovative random forest (RF) algorithm [48,49] into the CA–Markov model, overcoming
the limitations of traditional regression models in correcting driving factors. This integra-
tion facilitates the calculation of land transition probabilities throughout the simulation
process. Furthermore, this integration eliminates the possibility of increased computational
complexity associated with overfitting.

TGRA, as a key ecological functional area in China, is located in the Yangtze River
Basin, the largest freshwater basin in the country, and is a key area for implementing the
dual carbon target. Considering the complexity of climate change in the reservoir area
and the integrity of the ecosystem, this study is based on the remote sensing data and NbS
concept to develop an RF–Markov–CA–InVEST integrated model. The RF algorithm is
used to pick nine driving elements from both natural and social viewpoints, obtaining
land use transition probabilities that are utilised to build land suitability maps. The
Markov–CA model is used to predict spatial land use patterns in the TGRA for the years
2025 and 2030 under four scenarios: Business as Usual (BAU), Woodland Conservation
(WLC), Arable Land Conservation (ALC), and Urban Transformation and Development
(UTD), based on land use data from 2005, 2010, 2015, and 2020. Concurrently, the InVEST
model is being used to analyse and anticipate the influence of land use changes on carbon
storage from 2005 to 2030 under various scenarios. Through the prospective simulation
and predictive research on the ecological changes of TGRA, this study provides robust
scientific evidence and decision-making support for the formulation of more targeted and
sustainable ecological conservation policies. Meanwhile, the findings of this study will
be used to guide the implementation and progress of sustainable land use planning and
dual-carbon targets in the Yangtze River Basin.

2. Study Area and Data
2.1. Overview of the Study Area

With an area of 64,000 km2, the TGRA (28◦52′–31◦75′N, 105◦82′–111◦66′E) is located
in the upper and middle reaches of the Yangtze River and serves as an important ecological
functioning zone within the Yangtze Economic Belt [50]. The TGRA is divided into sections:
the head of the TGRA covers four counties and districts in Hubei Province, namely Yiling
District, Zigui County, Xingshan County, and Badong County. The middle reservoir region
includes twelve counties and districts in Chongqing Municipality, including Wushan
County, Fengjie County, Yunyang County, and Wanzhou District. The tail of the TGRA
includes eleven counties and districts in Chongqing’s main metropolitan zone (Figure 1).

After the Three Gorges Dam was completed in 2006, the new resettlement communities
in the TGRA began to take development. Since 2011, the TGRA has been classified as a
critical ecological functioning zone within the Yangtze River Basin, merging socioeconomic
development with environmental conservation and restoration, establishing it as a key
developmental goal for the region. The United Nations’ Sustainable Development Goals
(SDGs), set in 2015, as well as China’s dual carbon target announced in 2020, have offered
clear advice for optimising land use patterns and improving the carbon cycle of ecosystems
inside the TGRA.
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2.2. Data Sources
2.2.1. Remote Sensing Datasets

Land use change is primarily influenced by natural geographical and socioeconomic
causes. Generally, diverse catalysts drive changes in land use at varying scales. Selecting
appropriate driving factors and establishing a remote sensing dataset are of significant
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importance for simulating and predicting future land use changes and their impacts on
carbon storage.

The remote sensing dataset in this study is presented in Table 1. Within this, the land
use data utilised consist of remote sensing products including land use and Normalized
Difference Vegetation Index (NDVI). These data are derived from the TGRA for the years
2005, 2010, 2015, and 2020, with a spatial resolution of 30 m. These figures were obtained
from the Resource and Environment Science and Data Centre (RESDC), Chinese Academy
of Sciences (http://www.resdc.cn, accessed on 10 July 2023). The land use data were
classified into six classes following China’s land use status classification standard (GB/T
21010-2017 [51]). This classification took into account the spatial patterns of mountains,
waters, forests, farmlands, lakes, and grasslands, guided by practical remote sensing
monitoring operations. The identified categories are as follows: arable land, woodland,
grassland, water, construction land, and unused land (Table 2).

Table 1. Remote sensing datasets of land use and driving factors.

Categories Factors Resolution Data Sources Time (Year)

Land use data Land use remote sensing
monitoring data 30 m RESDC 2005, 2010, 2015, 2020

Natural geographic data

DEM 30 m SRTM V3 2015
Elevation 30 m Calculated from DEM data —

Slope direction 30 m Calculated from DEM data —
NDVI 30 m RESDC 2020

Annual precipitation 1 km RESDC 2020
Average annual temperature 1 km RESDC 2020

Annual sunshine hours 1 km RESDC 2020

Socioeconomic data

Population density 100 m WorldPop 2020

Nighttime lighting 100 m
National Oceanic and

Atmospheric Administration
(NOAA), USA

2020

Table 2. Classification of land use.

Land Use Types Description Sources and References

Arable land Paddy field, dryland

RESDC [52,53]

Woodland Forested land, shrubbery, sparse woodland
Grassland Grasslands of various types with coverage rates exceeding 5%

Water River, pond, lake, wetland
Construction land Built up areas, rural residential areas, large industrial zones

Unused land Sandy areas, marshes, bare land, rocky areas, etc.

2.2.2. Carbon Density Data

The carbon density data in this article primarily originate from the land ecosystem
carbon density dataset for the 2010s in China, established by Xu et al. [54]. We selected
actual measured carbon density data from sampling points covering various land types
within the latitude and longitude range of TGRA. Simultaneously, we conducted data
adjustments based on existing relevant research, removing outliers and calculating the
mean carbon density for the same land types. In the process of literature selection, priority
is given to locally relevant measured data in the TGRA, followed by research findings from
neighbouring regions, such as the Chengdu-Chongqing city cluster, the middle and lower
reaches of the Yangtze River city cluster. The TGRA’s adjusted carbon density database for
several land types is supplied (Table 3).

http://www.resdc.cn
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Table 3. Carbon density of different land types in the TGRA.

Type of Land Use
Carbon Density of

Above-Ground
Vegetation Biomass

Carbon Density of
Below-Ground

Vegetation Biomass

Carbon Density of
Soil Organic Matter

Carbon Density of
Dead Organic

Matter
References

Arable land 3.39 0.67 50.17 0.12 [55–59]
Woodland 28.47 5.88 92.02 2.73 [57–62]
Grassland 1.41 4.13 52.28 0.15 [57–59,61–63]

Water 0.00 0.00 0.00 0.00 [57–59,61,62]
Construction land 0.00 0.00 25.25 0.00 [57–59,61,62]

Unused land 0.00 0.00 8.25 0.00 [57–59,61,62]

3. Methodology

The construction process of the RF–Markov–CA–InVEST model in this study is illus-
trated in Figure 2.
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3.1. The Design of the Multi-Scenarios

With carbon neutrality as the long-term goal, the role of NbS in addressing climate
change is increasingly prominent, given the growing severity of the climate crisis. To better
estimate land use change patterns and carbon storage in the TGRA, the SDGs, dual-carbon
programmes, and policy guidelines such as the “Outline of the Yangtze River Economic
Belt Development Plan”, were referenced. Based on the concept of NbS and the specific
conditions of the TGRA, four different scenarios were formulated for this study. In the
scenario design, we focus on the restoration capacity of ecosystems to address the potential
impact of land use changes on regional carbon storage.

(1) BAU Scenario. Only the land use change parameters in the TGRA from 2005 to 2020
are utilised in this scenario to anticipate the spatial distribution of land use in 2025
and 2030. There are no policies that have an influence on land use changes.

(2) WLC Scenario. NbS emphasises that ecological spaces should primarily aim to en-
hance ecosystem functionality and promote its stability. Through restoration measures,
NbS is committed to restoring the integrity and resilience of natural ecosystems, thus
facilitating sustainable development. In this scenario, ecological conservation limits
are determined based on ecological functions, ensuring that these functions are sys-
temic and integrative. Simultaneously, the land structure of various land use types
and the carrying capacity of various resources are fully considered. The conversion of
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arable land and unused land to woodland and grassland is increasing, whereas the
conversion of woodland and grassland to other land use categories is decreasing.

(3) ALC Scenario. The Natural Resources Defense Council (NRDC) proposed that en-
suring food security is the bottom line for carrying out emissions reduction and
carbon sequestration. In this scenario, NbS serves as a cost-effective key solution for
agricultural emissions reduction and carbon sequestration. These solutions not only
mitigate climate change but also enhance agricultural resilience to climate change,
thereby ensuring food security and sustainable environmental development. The
redlines for arable land conservation are specified in this scenario. The conversion of
woodland, grassland, and unused land to arable land rises. Simultaneously, arable
land is classified as limited conversion zones, resulting in a decrease in the extent of
arable land converted into these types of land.

(4) UTD Scenario. The TGRA, as a key national ecological functional area, requires
the control of Urban Growth Boundaries (UGB) in the development of the national
territory, limiting large-scale industrial and urban development. NbS aims to promote
sustainable land use management, encouraging cities to make rational use of existing
land resources, and avoid excessive development and irrational encroachment on
ecological land. In this scenario, the probability of woodland, arable land, grassland,
and water bodies being converted into construction land is reduced.

3.2. Simulation of Land Use Change
3.2.1. Markov–CA Model

A Markov chain is a model of state transitions based on probabilistic analysis [64,65].
This model is frequently used to forecast patterns and trends in land use changes. Its
distinguishing characteristic is that the land use state at the next instant only depends
on the land use state at the previous instant, which provides advantages in simulating
temporal dynamics [66]. The land uses distribution status for the TGRA for the years 2025
and 2030 is forecasted in this study by computing the land use transition probability matrix.
The following are the key computational formulas:

St+1 = St × Pij (1)

Pij =

P11 · · · P1n
...

. . .
...

Pn1 · · · Pnn

,
(

0 ≤ Pij ≤ 1, ∑n
i,j=1Pij = 1

)
(2)

St and St+1 are the land use statuses at time t and t + 1, respectively; Pij is the probability of
transitioning from land category i to land category j.

The CA is a complex dynamical system model with discrete states that characterises
both time and space [67]. A conventional CA is made up of four components: cells, cell
states, neighbourhoods, and state update rules. The cell is the fundamental unit, and the
cell space depicts the spatial distribution of the cells. The CA works by enforcing rules that
control local interactions between cells, resulting in global changes and maximising the
benefits of spatial simulation [68,69].

The Markov–CA model combines the Markov model’s benefits in forecasting time se-
ries with CA’s capacity to simulate spatial changes in complicated systems [70]. Its purpose
is to forecast the features and patterns of land use changes in the TGRA. The Markov–CA
model was built in this research using the Geospatial Monitoring and Modelling System of
the IDRISI Selva 17.0 software. The software’s Land Change Modeller module was used
for the spatiotemporal simulation of land use changes in complicated settings.

3.2.2. RF–Markov–CA Model

The RF algorithm, developed by Ho and Breiman [71], is a non-linear ensemble
learning approach used for applications such as classification and regression [72,73]. RF is a
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hybrid algorithm comprises a large number of decision trees. It is recognised as an excellent
machine learning technique because it produces distinct training subsets by picking feature
variables inside each sample. The Classification and Regression Tree (CART) method [74] is
the most extensively used in decision trees, and it is recognised for its benefits, such as its
high data accuracy and quick calculation speed. Its building technique entails determining
the best solution using the Gini coefficient [75] with the following computational formula:

GINI(P) = 1−∑M
i=1P2

i (3)

GINI(D) = 1−∑M
i

(
|Ci|
|D|

)2
(4)

GINI(D, A) =
|D1|
|D| GINI(D1) +

|D2|
|D| GINI(D2) (5)

GINI = GINI(D, A)− GINI(D) (6)

Among them, M represents the number of sample categories, Pi represents the proba-
bility of each category, Ci represents the number of samples in each category, D represents
the total number of samples, and GINI (D, A) represents the Gini coefficient after segmenta-
tion.

In this study, the RF–CA–Markov model established optimises the Markov–CA model
by introducing the RF algorithm to determine transition rules in the CA model. Finally, the
land use transition probabilities were calculated and used to create a land suitability map.
Compared to the Logistic–Markov–CA model used in previous studies, the RF algorithm
overcomes the limitations of the conventional logistic regression model in correcting driving
factors. It is suitable for quantitative research involving multiple influencing factors.
Furthermore, the RF algorithm presents fewer computational challenges and is less prone
to overfitting. This approach is used to anticipate the spatial layout of land use changes
and optimise land use structure.

3.3. Valuation of the Carbon Storage

Stanford University, the Nature Conservancy (TNC), and the World Wildlife Fund
(WWF) [35] collaborated to create the Integrated Valuation of Ecosystem Services and Trade-
offs (InVEST) model. Its goal is to help scientists and policymakers make more informed
judgements on environmental sustainability. This approach combines GIS technology
with ecological concepts and may be used to evaluate the numerous ecosystem services
offered by natural capital, such as water supplies [76,77], habitat quality [78], and carbon
storage [79,80], among other things.

The InVEST model’s carbon stock module is primarily used to examine the influence
of land use changes on carbon storage [36,81]. The aboveground vegetation biomass carbon
pool, belowground vegetation biomass carbon pool, soil organic carbon pool, and dead
organic matter carbon pool are the four major carbon pools studied in this work. The
organic matter content buried 20–100 cm below the soil surface is referred to as the soil
organic carbon pool. The following is the formula for determining carbon stock:

Ci = Ci−above + Ci−below + Ci−soil + Ci−dead (7)

Ctotal = ∑n
i=1 Ai × Ci, (i = 1, 2, . . . , n) (8)

In the equations, Ci represents the total carbon density (Mg C/hm2). Ci−above repre-
sents the aboveground vegetation biomass carbon density of land type i. Ci−below is the
belowground vegetation biomass carbon density of land type i. Ci−soil is the soil organic
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carbon density of land type i. Ci−dead is the dead organic carbon density of land type i.
Ctotal represents the total carbon stock, and Ai represents the area of land type i.

4. Results
4.1. Model Accuracy Comparison and Validation

The Crosstab module in the IDRISI software was used in this study to analyse the
consistency between the observed data and simulated findings using the Kappa coefficient.
A Kappa value greater than 0.75 indicates a strong simulation accuracy.

To contrast and test the accuracy of the Logistic–Markov–CA and RF–Markov–CA
models, 2010 and 2015 were chosen as the base data for land use, and the RF–Markov–
CA model was employed to simulate the land use situation in 2020. Based on this, the
Kappa coefficient was used to compare the simulated 2020 land use map to the actual 2020
land use map (Table 4). The validation results demonstrate that, except for the sparsely
distributed unused land, the error values of each land cover calculated by the RF–Markov–
CA model are all less than 5%, indicating a small model error. According to the Kappa
coefficient, the RF–Markov–CA model is more accurate compared to the Markov–CA and
Logistic–Markov–CA models, achieving a high level of simulation accuracy. As a result, the
RF–Markov–CA model demonstrates better applicability in predicting and simulating the
spatial patterns of land use in the TGRA. This lays the groundwork for the multi-scenario
simulations in 2025 and 2030.

Table 4. The model validation results of the Markov–CA, Logistic–Markov–CA and RF–Markov–CA
models.

Land Use Types Arable Land Woodland Grassland Water Construction Land Unused Land

Actual area (km2) 28,328.13 37,138.58 7959.20 1477.13 2386.16 19.15

Logistic–Markov–CA
Predicted area (km2) 30,282.79 35,286.20 7644.85 1720.32 2344.88 30.67

Error range (%) 6.90 −4.98 −3.95 16.46 −1.73 60.16
Kappa index 0.8836

RF–Markov–CA
Predicted area (km2) 28,607.25 36,556.03 8134.5 1502.42 2462.66 28.05

Error range (%) 0.99 −1.57 2.20 1.71 3.21 46.48
Kappa index 0.9184

4.2. Spatiotemporal Evolution Characteristics of Land Use from 2005 to 2020
4.2.1. Analysis of Spatiotemporal Evolution Characteristics of Land Use

In terms of geographical distribution, arable land is predominantly concentrated in
low-lying locations, such as Chongqing’s core urban area at the tail of the TGRA, the
western region at the middle portion, and the Yiling District at the head of the TGRA.
Woodland is mostly found in middle- to high-altitude places, such as the southern half of
the middle section and the Badong, Zigui, and Xingshan counties at the head of TGRA.
Grassland is sporadically spread along the margins of water bodies, especially in the centre
area of Yunyang and Fengjie County. Water is mostly dispersed along the Yangtze River’s
main channel and tributaries, which traverse the whole TGRA. Construction land is heavily
concentrated in the downstream sector of Chongqing’s core metropolitan region, with a
limited amount spread across towns along the Yangtze River. Unused land is sparse across
the reservoir region, with a tiny concentration near the junction of Kaizhou District and
Yunyang County (Figure 3).
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Figure 3. Land use distribution pattern in the TGRA (2005–2020).

In terms of temporal characteristics, the TGRA’s principal land use categories from
2005 to 2020 were arable land and woodland, accounting for around 38% and 47%, respec-
tively. The fraction of arable land steadily dropped, while the proportion of woodland
increased from 2005 to 2010 and then fell from 2010 to 2020. The proportions of construction
land and water progressively rose, with the former rising from 0.98% in 2005 to 3.09% in
2020 and the latter from 1.49% in 2005 to 1.91% in 2020. The year 2010 saw the highest
rate of increase in construction land, at 69.92%. From 12.67% in 2005 to 10.30% in 2020, the
proportion of grassland has dropped. Notably, the year 2010 saw the greatest decrease in
grassland, at −14.24% (Figure 4).
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Figure 4. Land use proportion (A) and change trend (B) from 2005 to 2020.

4.2.2. Analysis of Land Use Transition Matrix

The land use transition matrix displays the initial area transfer and the final area influx
of various land types. The ArcGIS 10.8 platform was used in this study to calculate the
land use transition matrix findings for three time intervals: 2005–2010, 2010–2015, and
2015–2020. The Origin platform was also used to build a Sankey diagram showing land
use transitions (Figure 5).
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From 2005 to 2010, grassland saw the greatest amount of conversion, reaching
127,357.02 hectares (1273.57 km2), largely shifting into woodland. Concurrently, woodland
received the most incoming conversion area, totalling 113,018.31 hectares (1130.18 km2),
primarily from arable land and grassland. Between 2010 and 2015, the greatest significant
conversion was in arable land, with 45,816.3 hectares (458.16 km2) transferring out, mostly
to construction land. Simultaneously, construction land experienced the largest incoming
conversion area, totalling 25,438.41 hectares (254.38 km2), mostly from arable land and
woodland. Between 2015 and 2020, arable land had the highest outgoing conversion area,
reaching 132,442.92 hectares (1324.43 km2), mostly converting to woodland and construc-
tion land. At the same time, arable land had the highest incoming conversion area, totalling
107,517.06 hectares (1075.17 km2), primarily from woodland and grassland.

In summary, the consequences of the “returning farmland to forests and grasslands”
policy were more prominent between 2005 and 2010. However, beginning in 2010, with the
enactment of policies fostering high-quality development in the Yangtze River Economic
Belt and the construction of new urbanisation, the area of construction land increased
significantly. Furthermore, following the execution of the major functional zone planning,
the proportion of converted land areas in the respective land types remained reasonably
consistent between 2010 and 2015 and 2015 and 2020. This demonstrates a coordinated and
harmonious development between urbanisation and the ecological environment.

4.3. Simulation of Land Use Changes in the TGRA under Various Scenarios

This study simulated land use in the TGRA for the years 2025 and 2030 using the
Markov–CA model. Figures 6 and 7 show the simulated results for the scenarios in 2025
and 2030, respectively. Tables 5 and 6 show the changes in the land use area from 2020 to
2025 and 2030, respectively.
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Table 5. Changes in land use types in the TGRA in 2025 under four scenarios.

Type of Land Use Parameter BAU Scenario WLC Scenario ALC Scenario UTD Scenario

Arable land
Area (km2) 28,533.21 27,013.12 29,387.13 29,124.68

Percentage of total area (%) 36.93 34.67 37.62 37.69
Rate of change (%) 0.72 −4.64 3.74 2.81

Woodland
Area (km2) 36,465.23 37,877.20 36,357.35 36,533.29

Percentage of total area (%) 47.19 48.61 46.54 47.28
Rate of change (%) −1.81 1.99 −2.10 −1.63

Grassland
Area (km2) 7033.15 7844.15 7023.03 7059.26

Percentage of total area (%) 9.10 10.07 8.99 9.14
Rate of change (%) −11.64 −1.45 −14.27 −11.31

Water
Area (km2) 1463.38 1429.33 1547.76 1546.92

Percentage of total area (%) 1.89 1.83 1.98 2.00
Rate of change (%) −0.93 −3.24 4.78 4.72
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Table 5. Cont.

Type of Land Use Parameter BAU Scenario WLC Scenario ALC Scenario UTD Scenario

Construction land
Area (km2) 3742.24 3735.11 3775.55 2992.14

Percentage of total area (%) 4.84 4.79 4.83 3.87
Rate of change (%) 56.83 56.53 58.23 8.63

Unused land
Area (km2) 34.35 22.98 27.47 18.55

Percentage of total area (%) 0.04 0.03 0.04 0.02
Rate of change (%) 79.42 20.00 43.49 −3.13Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 25 
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Table 6. Changes in land use types in the TGRA in 2030 under four scenarios.

Type of Land Use Parameter BAU Scenario WLC Scenario ALC Scenario UTD Scenario

Arable land
Area (km2) 32,223.96 26,023.46 30,236.80 30,800.52

Percentage of total area (%) 41.52 33.58 39.06 39.76
Rate of change (%) 12.93 −3.66 2.89 3.27
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Table 6. Cont.

Type of Land Use Parameter BAU Scenario WLC Scenario ALC Scenario UTD Scenario

Woodland
Area (km2) 34,281.20 38,226.36 35,414.05 35,858.06

Percentage of total area (%) 44.17 49.32 45.74 46.29
Rate of change (%) −5.99 0.92 −2.59 −1.85

Grassland
Area (km2) 5339.61 7584.30 6173.18 6524.28

Percentage of total area (%) 6.88 9.79 7.97 8.42
Rate of change (%) −24.08 −3.31 −12.10 −7.58

Water
Area (km2) 1300.87 1442.90 1542.25 1550.51

Percentage of total area (%) 1.68 1.86 1.99 2.00
Rate of change (%) −11.11 0.95 −0.36 0.23

Construction land
Area (km2) 4434.47 4205.13 4031.46 2707.08

Percentage of total area (%) 5.71 5.43 5.21 3.49
Rate of change (%) 18.50 12.58 6.78 4.43

Unused land
Area (km2) 31.21 20.49 20.60 19.37

Percentage of total area (%) 0.04 0.03 0.03 0.03
Rate of change (%) −9.14 −10.82 −25.02 4.41

According to the projections, a consistent tendency in all four scenarios by 2025 is a
decrease in grassland and an increase in construction land. The BAU scenario predicts that
arable land will expand by 205.08 km2, construction land will increase by 1356.08 km2, and
woodland and grassland will decline by 673.36 km2 and 926.06 km2, respectively.

In comparison to the BAU scenario, the trends in the arable land and woodland
area changes in the WLC scenario are inverse. The arable land area drops by 1315 km2,
whereas the woodland area grows by 738.61 km2. At the same time, the loss of grassland
is lower, totalling just 115.05 km2. Other land types’ areas remain consistent with the
BAU scenario. This suggests that strong encouragement of afforestation and grassland
restoration under the WLC scenario, without constraining urban expansion, considerably
improves ecosystem quality. The arable land, water, and construction land all show a
growing tendency in the ALC and UTD scenarios, whereas the woodland and grassland
show a declining trend. The ALC scenario has the most gain in arable land, totalling
1059 km2, with a growth rate of 3.74%. The highest reductions are shown in woodland and
grassland, which shrink by 781.23 and 936.17 km2, respectively. Furthermore, because of
the control over urban development borders, the UTD scenario has the smallest growth in
construction land, totalling 605.98 km2.

In 2030, construction land continues to increase, while grassland continues to shrink,
similar to the expected situation in 2025. In the BAU scenario, arable land is forecast to
expand from 28,533.21 km2 in 2025 to 32,223.96 km2 in 2030, while construction land is
expected to rise from 3742.24 km2 in 2025 to 4434.47 km2 in 2030, indicating 12.93% and
18.50% growth rates, respectively. With growth rates of −5.99% and −24.08%, respectively,
the woodland is forecast to decline from 36,465.23 km2 in 2025 to 34,281.20 km2 in 2030,
while the grassland is expected to shrink from 7033.15 km2 in 2025 to 5339.61 km2 in 2030.
Combining the simulation results for the BAU scenarios in 2025 and 2030 demonstrates
that human activities result in the rapid development of arable and construction land, en-
croaching on existing ecological lands such as forests and grasslands, eventually disturbing
the ecosystem stability. As a result, appropriate steps must be taken to establish protective
borders and optimise the land use structure of “mountains, rivers, forests, farmlands, lakes,
and grasslands”.

In the WLC scenario, woodland rises from 37,877.20 km2 in 2025 to 38,226.36 km2

in 2030, compared to the BAU scenario, due to woodland conservation and a complete
assessment of the resource carrying capacity. This expansion prevents further conversion of
productive farmland and construction land to woodland. As a result of defining protected
arable land borders in the ALC scenario, arable land rises by 2.89% from 29,387.13 km2 in
2025 to 30,236.80 km2 in 2030. However, woodland and grassland are declining. Under the
UTD scenario, the development of UGB results in a moderate increase in construction land
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of 114.94 km2, with a growth rate of 4.41%. Despite this, due to the fast increase in arable
land, woodland and grassland are still being encroached upon, resulting in decreases of
675.24 km2 and 534.98 km2 respectively.

4.4. Simulation of Carbon Storage in the TGRA under Various Scenarios

The carbon stock module of the InVEST model was used in this study to calculate
the total carbon stock for the years 2005–2020 and to simulate scenarios for 2025 and 2030.
Table 7 shows that the TGRA’s carbon stock increased from 687.81 Tg in 2005 to 689.78 Tg
in 2010, and subsequently declined to 685.60 Tg in 2020. The carbon density increased from
88.94 Mg/ha in 2005 to 89.20 Mg/ha in 2010, then declined to 88.66 Mg/ha in 2020.

Table 7. Changes in comprehensive carbon density and carbon storage in the TGRA from 2000
to 2020.

Year Carbon Density (Mg C/hm2) Total (Tg C)

2005 88.94 687.81
2010 89.20 689.78
2015 89.02 688.38
2020 88.66 685.60

According to the forecasts, all four scenarios show a downward trend in carbon storage
from 2020 to 2030 due to the fast changes in land use driven by human activities and rising
urbanisation (Table 8). Under many scenarios, there is substantial spatial heterogeneity in
carbon storage within the TGRA. Overall, the distribution pattern shows that the eastern
and northern areas have more carbon storage, whereas the western and southern areas
have lesser carbon storage. Furthermore, carbon storage in the head of the TGRA is greater
than that in the middle section, and carbon storage in the middle section is greater than
that in the tail of the TGRA.

Table 8. Simulation of comprehensive carbon density and carbon storage in the TGRA in 2025
and 2030.

Scenario Carbon Density
(Mg C/hm2) Total (Tg C) Scenario Carbon Density

(Mg C/hm2) Total (Tg C)

2025 BAU 87.43 676.09 2030 BAU 85.33 659.88
2025 WLC 89.32 690.73 2030 WLC 88.67 685.67
2025 ALC 87.85 679.36 2030 ALC 87.34 675.41
2025 UTD 88.09 681.22 2030 UTD 87.97 680.25

The carbon stock declines the most in the BAU scenario, with a decrease of 25.72 Tg.
When the simulated land use changes indicated above are considered, it is discovered
that the primary reason of the loss in carbon stock is the constant drop in woodland and
grassland. The ALC and UTD scenarios result in carbon stock reductions of 10.19 Tg and
5.35 Tg respectively, as compared to the BAU scenario, demonstrating that restraining the
rapid development of arable and construction land may effectively mitigate carbon losses.
According to the WLC scenario, the carbon stock rises from 685.60 Tg in 2020 to 690.73 Tg
in 2025 before falling to 685.67 Tg in 2030. The WLC scenario differs from the other three
in that the ecological protection border imposed assures that woodland and grassland do
not suffer significant decreases. As a result, a significant portion of the carbon stock is
concentrated within ecological land, with a particular emphasis on the head of the TGRA,
the northern section of the middle reaches, and the southern section of the tail of the TGRA
(Figures 8 and 9).
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In comparison to the BAU, ALC, and UTD scenarios, the simulation results show that
the WLC scenario strives to protect ecological lands such as woodlands and grasslands
from being encroached upon by extensive urban construction and arable land. This scenario
effectively encourages an increase in the carbon stock within the TGRA, contributing to the
ecosystem balance and playing a role in achieving carbon neutrality goals.
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5. Discussion
5.1. The Uniqueness of the Study Area

With the release of the “National Main Functional Area Planning” in 2010, TGRA was
designated as an ecological functional area for soil and water conservation. This implies
that large-scale, high-intensity industrial and urban development needs to be restricted in
national land use planning to maintain the integrity and stability of the ecosystem. Within
its boundaries, there exists both the economically and socially developed main urban area
of Chongqing, as well as the economically and socially underdeveloped and ecologically
vulnerable hinterland of the reservoir area. Faced with the challenges posed by uncertain
climate change, the region as a whole presents the complexity of its ecosystem.

Addressing the climate crisis is a comprehensive, systematic, and complex endeavour.
In response, China launched the Dual Carbon Plan in 2020, aiming to control carbon
emissions and enhance carbon storage. NbS seek to mitigate climate change by bolstering
the carbon sequestration capacity of ecosystems, thereby enhancing ecosystem resilience
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and human society’s adaptability. Therefore, based on the NbS concept, simulating the
land use and carbon storage variations in the TGRA under multiple scenarios will lay the
foundation for the future comprehensive implementation of the Dual Carbon Plan in the
Yangtze River Basin, contributing to the achievement of sustainable development goals.

5.2. Comparative Analysis of Multi-Scenario Simulation Results

Based on the ecosystem’s sustainable development requirements of NbS, this study
simulated the spatiotemporal patterns of land use and the evolution characteristics of
carbon storage under four scenarios: BAU, WLC, ALC, and UTD, for the year 2030.

According to the BAU scenario, the growth of construction and arable land leads to
the invasion and compression of ecological land, resulting in a steep fall in the area of
ecological land, which in turn causes a considerable loss in carbon storage. In the ALC
scenario, the installation of protective borders for arable land leads to a steady expansion
in the extent of productive land. This is the result of the scenario. On the other hand, the
region contains a considerable amount of sloping farmland as well as land that is farmed
with an eye towards economic development. In comparison to grassland and woodland,
the potential of certain types of arable land to store carbon is significantly lower. As a result,
the amount of carbon that can be stored would gradually decrease if this scenario plays
out. According to the UTD scenario, the constraints on UGD slow down the speed of urban
expansion, which provides a balanced development space for both ecological land and area
that may be productively utilised. As a consequence of this, the pattern of dwindling carbon
storage is halted and brought under control. According to the WLC scenario, the pace of
expansion for both arable land and construction land is slowed down as a result of the
tight enforcement of ecological protection borders. This results in a consistent expansion in
biological land such as woodland and grassland, which leads to a small increase in carbon
storage while preserving stability.

In general, the findings of this study emphasise the positive effects of the WLC scenario
in balancing land use and carbon storage under the development concept of NbS, providing
important policy references for adopting sustainable natural solutions.

5.3. Impact of Land Use on Carbon Stock

Under different development scenarios, diverse land use changes have yielded signifi-
cant impacts on ecosystem carbon storage. For instance, urban expansion has led to carbon
storage losses in ecosystems, while the “Grain for Green” project contributes to increased
carbon storage.

In this study, regarding the changes in land use and carbon storage in TGRA, the area
of water and construction land saw a significant increase from 2005 to 2020. This expansion
led to the encroachment on the existing woodland and grassland, resulting in a loss of
carbon storage in the ecosystem. This finding aligns with the research by Fan et al. [57],
which estimated the carbon storage changes in different land use types in the TGRA from
1990 to 2015.

Building on the existing research, there is evidence to suggest that the adoption of
various measures through NbS can effectively enhance the carbon sequestration capacity
and increase carbon storage. Taking the example of restoring forest ecosystems and enhanc-
ing their carbon uptake capacity, previous studies have confirmed the effectiveness of this
approach [59,82]. Similarly, strengthening grassland and wetland conservation to enhance
carbon sequestration capability is also an effective strategy [83,84]. These measures not
only alleviate the impacts of climate change but also promote the sustainable development
of ecosystems, providing strong support for achieving the dual carbon goals. In the WLC
scenario set in this study, the minimum amount of ecosystem carbon loss is observed.
From the perspective of ensuring the stability of the ecosystem and the carrying capacity
of natural resources, the government needs to strictly demarcate ecological conservation
boundaries. It is necessary to strengthen ecological environment monitoring and gover-
nance, and enhance the resilience and recovery capacity of the ecosystem. Meanwhile,
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it is crucial to avoid excessive urban development, protect and reasonably utilise land
types with high carbon storage, thereby enhancing the carbon sequestration capacity of the
regional ecosystem.

5.4. Limitations and Improvements

In comparison to frequently used single models such as CLUE-S and PLUS [85,86], this
study combines the benefits of quantitative and spatial prediction to build the RF–Markov–
CA coupled model. The Markov–CA model in this model combines the RF algorithm’s high-
precision screening mechanism, considerably minimising the effect of subjective elements
and more correctly simulating complicated land transformation situations, hence enhancing
the simulation accuracy. Meanwhile, the InVEST model can estimate the influence of
various types of land use changes on carbon storage intuitively.

This study does, however, have drawbacks. On the one hand, the RF–Markov–CA
model predicts future land use using historical land use data, but it does not account for
changes in future population and economic structure, which may result in discrepancies be-
tween simulation findings and real evolutions. As a result, in future studies, socioeconomic
elements must be introduced to improve the model’s forecast accuracy. The carbon density
values in this work, on the other hand, are based on modified results from prior research
and lack complete support from field measurements. This might lead to inaccuracies in
analysing the spatiotemporal patterns of carbon storage changes. As a result, future studies
should use a mix of field sampling surveys to completely analyse the effect of plant growth
and internal land use structure on carbon storage, therefore improving the accuracy of
carbon density measurements.

6. Conclusions

Taking the Three Gorges Reservoir Area (TGRA) as an example, to explore the potential
impact of land use on carbon storage, this study innovatively proposes a comprehensive
approach combining the random forest algorithm, Markov–CA model, and InVEST model.
Based on the concept of Nature-Based Solutions (NbS), we set up four different scenarios:
Business as Usual (BAU), Woodland Conservation (WLC), Arable Land Conservation
(ALC), and Urban Transformation and Development (UTD). Using the RF–Markov–CA
model, we simulated the spatial patterns of land use for 2025 and 2030. Simultaneously,
the InVEST model was employed to evaluate carbon storage from 2005 to 2025. Finally, the
optimal scenario for sustainable land use development was determined.

The rapid expansion of urban and arable land has led to a loss of ecosystem carbon
storage in the TGRA. Between 2005 and 2020, the area of construction land in the TGRA
increased by 1748.88 km2, resulting in a carbon storage loss of 2.21 Tg. From 2020 to
2030, under the BAU scenario, both arable land and construction land saw the largest
increases, with increments of 3895.83 km2 and 2048.30 km2, respectively. In this scenario,
the projected carbon loss is estimated to reach 19.21 Tg. Therefore, to enhance the carbon
absorption capacity in the TGRA and effectively mitigate carbon storage loss, the gov-
ernment needs to implement corresponding ecological restoration policies, such as forest
protection, grassland restoration, and wetland rehabilitation.

In a comprehensive comparison of four scenarios, the carbon stock increases the most
in the WLC scenario from 2020 to 2030, with a gain of 0.07 Tg, while the carbon stocks in
the other scenarios all experience losses. Meanwhile, the area of ecological land, such as
woodland and grassland, increases the most, showing a progressive decrease in the human
exploitation of natural space. This scenario consistently improves the capacity for ecological
carbon sequestration, successfully fostering an increase in the TGRA’s carbon storage and
playing a significant role in mitigating catastrophic climate change and achieving carbon
neutrality goals.
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