
Citation: Guan, D.; Nie, J.; Zhou, L.;

Chang, Q.; Cao, J. How to Simulate

Carbon Sequestration Potential of

Forest Vegetation? A Forest Carbon

Sequestration Model across a Typical

Mountain City in China. Remote Sens.

2023, 15, 5096. https://doi.org/

10.3390/rs15215096

Academic Editor: Arturo

Sanchez-Azofeifa

Received: 8 August 2023

Revised: 16 October 2023

Accepted: 18 October 2023

Published: 24 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

How to Simulate Carbon Sequestration Potential of Forest
Vegetation? A Forest Carbon Sequestration Model across a
Typical Mountain City in China
Dongjie Guan 1,2,*, Jialong Nie 1, Lilei Zhou 1,2 , Qiongyao Chang 1 and Jiameng Cao 3

1 School of Smart City, Chongqing Jiaotong University, No. 66 Xuefu Road, Nan’an District,
Chongqing 400074, China; 622220900025@mails.cqjtu.edu.cn (J.N.); zhoullei2021@cqjtu.edu.cn (L.Z.);
622220900002@mails.cqjtu.edu.cn (Q.C.)

2 State Key Laboratory of Mountain Bridge and Tunnel Engineering, Chongqing Jiaotong University,
No. 66 Xuefu Road, Nan’an District, Chongqing 400074, China

3 School of River and Ocean Engineering, Chongqing Jiaotong University, No. 66 Xuefu Road, Nan’an District,
Chongqing 400074, China; 611230090013@mails.cqjtu.edu.cn

* Correspondence: 990201100029@cqjtu.edu.cn

Abstract: Due to a series of human activities like deforestation and land degradation, the concen-
tration of greenhouse gases has risen significantly. Forest vegetation is an important part of forest
ecosystems with high carbon sequestration potential. Estimates of the carbon sequestration rate of
forest vegetation in various provinces and districts are helpful to the regional and global Carbon
cycle. How to build an effective carbon sequestration potential model and reveal the spatiotemporal
evolution trend and driving factors of carbon sequestration potential is an urgent challenge to be
solved in carbon cycle simulation and prediction research. This study characterized the carbon se-
questration status of forest vegetation using the modified CASA (Carnegie-Ames Stanford Approach)
model and estimated the carbon sequestration potential from 2010 to 2060 using the FCS (Forest
Carbon Sequestration) model combined with forest age and biomass under the four future Shared
Socioeconomic Pathways (SSP) scenarios: SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, then proposes
natural, social, and economic perspectives. This study found that the average NPP of the forest
vegetation in Chongqing from 2000 to 2020 was 797.95 g C/m2, and the carbon storage by 2060 was
269.94 Tg C. The carbon sequestration rate varied between <0.01 Tg C/a and 0.20 Tg C/a in various
districts and counties. Over time, forest growth gradually slowed, and carbon sequestration rates
also decreased. Under the four future climate scenarios, the SSP5-8.5 pathway had the highest carbon
sequestration rate. Natural factors had the greatest influence on changes in carbon sequestration rate.
This result provides data support and scientific reference for the planning and control of forests and
the enhancement of carbon sequestration capacity in Chongqing.

Keywords: forest vegetation; carbon sequestration rate; carbon sequestration potential; FCS model;
SSP scenarios; impact factors

1. Introduction

The forest ecosystems, as a crucial carbon pool, are the predominant component of the
terrestrial ecosystem and have made great contributions to the regional and global carbon
cycles [1], storing about 45% of the carbon in the entire terrestrial ecosystem [2]. The carbon
sequestration capacity of forest ecosystems is being directly or indirectly weakened by
global climate change and long-term human interference [3–5]. The global carbon balance
is regulated by forest ecosystems, which slow the increase in greenhouse gas concentrations
like CO2 in the atmosphere, thus slowing global warming and providing an effective
respond to climate change [6,7]. Compared to industrial emission reductions, forest carbon
sequestration is more cost-effective in terms of social and economic aspects [8,9] and is the

Remote Sens. 2023, 15, 5096. https://doi.org/10.3390/rs15215096 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15215096
https://doi.org/10.3390/rs15215096
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-4259-2580
https://doi.org/10.3390/rs15215096
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15215096?type=check_update&version=1


Remote Sens. 2023, 15, 5096 2 of 21

most effective and environmentally friendly method to strengthen carbon storage [10–13].
To better respond to climate change, China proposed for the first time in 2020 that the
country will aim to achieve peak and carbon neutrality. In March 2021, the overall layout of
ecological civilization construction was explicitly proposed to effectively exert the carbon
sequestration effect of forests and other factors and enhance the ecosystem’s carbon sink
capacity. Forest vegetation plays an important role in the carbon cycle and carbon storage.
Studying the current situation of carbon sequestration in forest resources and predicting
future potential can help policy-makers better recognize the current situation, formulate
effective strategies to strengthen forest carbon sequestration, plan more reasonable forest
management and control policies, and effectively unleash the carbon sequestration potential.
This has important reference value for forest management and the further realization of
“carbon neutrality” goals in China.

Forest management is a significant approach to addressing environmental challenges
and climate change issues [14]. By understanding the current status of forest carbon se-
questration, scientific and data support can be provided for forest management and control.
In the early stages of research, scholars used eddy covariance technology to calculate forest
carbon sinks in terms of carbon flux [15,16]. Due to the need for long-term maintenance
and its susceptibility to adverse weather conditions [17], the size of carbon sinks at the
regional scale has been estimated less frequently using this approach. The vegetation net
primary productivity (NPP) value can represent the net carbon sequestration of plants
via photosynthesis. The changing trend of NPP in Romanian forests was investigated by
Remus et al. [18] based on machine learning algorithms and statistical procedures. Abdulla
et al. [19] used the InVEST model to study forest carbon storage in Bangladesh. Some
scholars have used the resource inventory data or literature references from different time
periods to estimate changes in forest carbon storage, and the results indicate that forest
ecosystems have enormous carbon sequestration potential [20,21]. However, many national
or global forest resource survey data are not designed specifically for continuous use, and
due to the long update cycle, they are unable to respond to real-time demand, which creates
uncertainty in research on carbon sequestration status.

With the continuous development of machine learning algorithms and to make calcu-
lations more accurate, research has often focused on integrating multiple methods and data
from different perspectives to quantitatively estimate carbon sequestration potential. Chen
et al. [22] described the changes in forest biomass in China by using a machine learning
method that combined several types of remote sensing observations with intensive field
measurements. Sunayana et al. [23] fused remote sensing and field analysis data to estimate
carbon sequestration and potential from indicators like the normalized difference vegeta-
tion index (NDVI). Some scholars have built a multi-scenario path model to simulate future
carbon sequestration potential changes in order to predict it, such as Lü et al. [24] quantified
the carbon sinks of forests in Southwest China under different climate change scenarios in
the next 40 years by using forest ecosystem carbon budget model for China (FORCCHN).
Zhu et al. [25] used the InVEST model to describe the impact of land use change on coastal
ecosystems carbon stocks, and Rasoul et al. [26] used the soil carbon model(Yasso) to predict
changes in forest carbon stocks under different frequencies of storms and climate change
scenarios. These studies mostly covered large-scale areas such as countries and watersheds,
with little mention of provincial-scale regions in interprovincial regions and counties, and
they failed to specifically describe their dynamic spatial changes. The calculation of forest
carbon sequestration potential is affected by the complexity of forest factors (such as age
and species), uncertainty of climate conditions, variability of human activities and man-
agement policies, and differences in model methods, data sources, and scales, resulting in
certain deviations in the final calculation results.

The exploration of influencing factors not only provides a new perspective on the
precise prediction of carbon sequestration potential but also provides new ideas for policy-
makers to issue articles to effectively leverage the benefits of carbon sequestration in
forests. From the forest perspective, Huang et al. [27] used biomass regression equations to
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calculate carbon stocks and revealed the influence of forest vegetation types on ecosystem
carbon stocks and their distribution patterns. Francis et al. [28] found that cutting down
vines in forest trees can improve the carbon sequestration rate and wood yield. Under the
external factors affecting climate conditions, Swanston et al. [29] synthesized The Climate
Change Response Framework (CCRF) to assess the impacts of forests in the Midwestern
and Northern United States by the effects of climate conditions. Baker et al. [30] used
an empirical forest composition model to clarify the effects of climatic factors and other
environmental parameters on the carbon sequestration of 94 forest species across the
United States. In terms of human management, Sha et al. [31] found that optimization
of land management could significantly increase the carbon sink of terrestrial vegetation
using simulating land management. These studies focused mostly on one aspect of the
driving factors of forest carbon sequestration, neglecting the integrated analysis of various
influencing factors such as terrain, government policy documents, and human activities.
Forest growth is a dynamic and synergistic process, and in studying the influencing factors
of forest carbon sequestration potential, it is essential to cross multiple disciplines and
comprehensively consider the actual situation.

Research on carbon sequestration in forest vegetation is mostly based on field mea-
surements, national inventory data, and satellite remote sensing data. Various models and
methods are used to study the current status, potential, and drivers of carbon sequestration
in forest vegetation. At the data level, large-scale national or global perspectives are carried
out using national inventory or remote sensing data, while measured data are mainly
provincial scale, but they are difficult to sustain due to limitations in human, material, and
financial resources. The consideration of models and methods has not been comprehensive
enough, focusing on the inherent properties of forest vegetation carbon and often without
regard to the impact of external factors such as climate. The difficulty in obtaining relevant
parameters is also a challenge, and few scholars have evaluated the carbon sequestration
potential from the perspective of the carbon sequestration rate. Overall, there are three
issues need to be addressed: (1) how to estimate the status of carbon sequestration in
forest vegetation at the provincial scale; (2) how to clarify the spatiotemporal differentia-
tion characteristics and evolutionary trends of carbon sequestration potential; (3) how to
clarify the evolution and driving mechanism of carbon sequestration potential under the
multi-scenario paths.

This study was designed to construct a provincial scale assessment model for the
current state of carbon sequestration in forest vegetation and to estimate the carbon se-
questration potential of forest vegetation on the basis of understanding the current state of
carbon sequestration by combining factors such as forest vegetation growth and climate
conditions, and simulate the pattern of change in the rate of carbon sequestration of forest
vegetation in the future under multi-scenario pathways, the spatial dynamic trend and the
driving mechanism. This study chose Chongqing to research, and first, the NPP of forest
vegetation was calculated based on the CASA model to quantitatively assess the current
status of carbon sequestration in Chongqing. Then, we assessed the carbon sequestration
potential of forest vegetation based on the FCS model by calculating the carbon storage
to analyze the spatial and temporal difference of forest carbon sequestration potential in
Chongqing and analyzed the regional imbalance of forest carbon sequestration potential.
Finally, we simulated the evolution trend of carbon sequestration potential in the future
using multiple scenarios, revealed the feedback relationships between the carbon sequestra-
tion rate and multiple factors, fully utilized the carbon sequestration capacity, and provided
a scientific basis for promoting the improvement in the carbon sequestration efficiency of
forest vegetation in Chongqing and achieving the carbon neutrality goals.

2. Materials and Methods
2.1. Study Area

The area of this study is located in Southwest China, in the upper Yangtze River. It is an
important fulcrum of Western Development, a link between the “Belt and Road” and a core
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city of the Chengdu Chongqing dual city economic circle. Chongqing lies between 105◦17′–
110◦11′E and 28◦10′–32◦13′N in the eastern of the Sichuan Basin, and it is surrounded
by the Daba Mountains, Wushan Mountain, Wuling Mountain, and Dalou Mountains
to the north, east and south, respectively. The terrain is mainly hilly and mountainous,
with a large slope area, and it is known as the “mountain city”. Chongqing has a mild
climate and belongs to a humid subtropical monsoon type of climate. The average annual
temperature ranges from approximately 16 ◦C to 18 ◦C, the average annual precipitation is
approximately 1200 mm, and the total sunshine is approximately 1000–1400 h.

Under the influence of various factors such as landform type and climate conditions,
different types of forest vegetation are formed, resulting in abundant forest resources and
large forest carbon storage in Chongqing, as shown in Figure 1. According to the data of
the Chongqing Forestry Bureau, by the end of 2022, the forest cover in the city reached
55.04%, an increase of approximately 18% over 2010, and the forest storage increased to
250 million m3, ranking first among the top ten sites in China. With the rapid increase in
forest area, fresh vitality is injected into natural forests. Therefore, forests in Chongqing
have strong carbon sequestration potential, and research on the current situation and the
future potential of carbon sequestration is becoming increasingly important.
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Figure 1. Land use types in Chongqing.

2.2. Data Sources

Land use, digital elevation model (DEM), NDVI, climate, initial vegetation biomass,
forest age, and social statistics data were used in this study.

The Land use, DEM, and NDVI were obtained from the Resource and Environmental
Science and Data Center of the Chinese Academy of Sciences (https://www.resdc.cn/
(accessed on 15 September 2022)). The Land Use and NDVI were included in 2000, 2010,
and 2020. Resolutions were 30 m and 1000 m, respectively. The 30 m spatial resolution

https://www.resdc.cn/
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DEM was mainly used to calculate slope data by ArcGIS10.5. To ensure data consistency
of resolution in subsequent impact factor analysis, the data were uniformly resampled to
1000 m.

The precipitation, temperature, and sunshine duration data for 2000, 2010, and 2020
were from the National Meteorological Science Data Center of China (http://data.cma.cn/
(accessed on 20 October 2022)). After removing outliers, the daily value was integrated
and converted into annual data. The solar radiation was calculated using the Penman–
Monteith empirical formula in Irrigation and Drainage Paper No. 56, published by the
FAO. In this study, to ensure the interpolation results, data from 30 meteorological stations
within and around Chongqing city were used, and kriging interpolation was used to obtain
meteorological grid data with a spatial resolution of 1000 m. Future precipitation and
temperature data were sourced from The Earth System Grid Federation (https://esgf-node.
llnl.gov/projects/cmip6/ (accessed on 27 November 2022)). The four Share Socioeconomic
Pathways (SSP) scenario modes used were SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5.

The initial vegetation volume data were sourced from the National Ecological Data
Center Resource Sharing Service Platform (http://www.nesdc.org.cn/ (accessed on 5 De-
cember 2022)); forest age data came from the Data Publisher for Earth and Environmental
Science (http://pangaea.de (accessed on 13 December 2022)); and socioeconomic data came
from the Chongqing Statistical Yearbook (https://tjj.cq.gov.cn/ (accessed on 28 Decem-
ber 2022)).

2.3. Methods
2.3.1. Construction of a Carbon Sequestration Status Model for Forest Vegetation

The vegetation NPP refers to the residual organic matter of green vegetation after
assimilating CO2 via photosynthesis and deducting its own respiratory consumption per
unit of time and per unit area [32]. It is a crucial part of the surface carbon cycle, which, on
the one hand, directly reflects the production capacity and the quality status of vegetation
and, on the other hand, determines ecosystem carbon sources and sinks as well as regulates
ecological processes [33]; thus, the NPP has a significant impact on global climate change
and carbon balance. The CASA model has been widely used for calculating NPP at different
scales due to its advantages, such as high computational accuracy and easy access to data
and parameters [34,35].

The improved CASA model [35] was used to simulate NPP. This model considered
the influence of vegetation cover accuracy on NPP estimation, and we also optimized the
key parameters according to the relevant studies of other scholars; the results were highly
reliable, and its estimation equations are as follows:

NPP(x, t) = APAR(x, t)× ε(x, t) (1)

where APAR(x, t) represents the photosynthetically effective radiation absorbed in month
t [MJ/(m2·month)], which depends on the overall amount of solar radiation and the plant
attributes; the formula is shown in Equation (2); ε(x, t) represents the actual light use
efficiency in month t (g C/MJ), which is influenced by the maximum light use efficiency
under ideal conditions and the plant growth environment, the specific calculation formula
is shown in Equation (4).

APAR(x, t) = SOL(x, t)× FPAR(x, t)× 0.5 (2)

where SOL(x, t) represents the total solar radiation in month t [MJ/(m2·month)]; FPAR(x, t)
represents the proportion of photosynthetically active radiation absorbed by plants. FPAR
and NDVI have a linear relationship [36], and its calculation formula is shown in Equa-
tion (3); 0.5 represents the proportion of photosynthetic effective radiation to the total solar.

FPAR(x, t) =
NDVI(x, t)− NDVIi,min

NDVIi.max − NDVIi,min
(3)

http://data.cma.cn/
https://esgf-node.llnl.gov/projects/cmip6/
https://esgf-node.llnl.gov/projects/cmip6/
http://www.nesdc.org.cn/
http://pangaea.de
https://tjj.cq.gov.cn/
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where NDVIi,max and NDVIi,min represent the maximum and minimum NDVI values for
plantation type i, respectively.

ε(x, t) = Tε1 × Tε2 ×Wε × εmax (4)

where Tε1 and Tε2 are temperature stress factors; Wε is a water stress factor; and εmax
represents the maximum light use efficiency of a plant (g C/MJ).

2.3.2. Construction of a Multi-Scenario Model for the Carbon Sequestration Potential in
Forest Vegetation

Forest biomass gradually reaches a balance as a forest grows. Logistic equations can
be used to describe the relationship between biomass and forest age [37]. The vegetation
biomass calculation formula is as follows:

Bt =
Bmax

1 + ( Bmax
Bt0
− 1)× e−V0(t−t0)

(5)

where Bt is the vegetation biomass at time t of forest age (Mg/ha); V0 is the intrinsic growth
rate of vegetation (%); Bmax is the maximum biomass of vegetation (Mg/ha); t is forest age
(a); and Bt0 is the initial biomass parameter, when t = t0, B = Bt0 .

Due to the lack of real-time vegetation intrinsic growth rate data, this study made
suitability adjustments to the intrinsic growth rate parameters of some scholars [37,38],
improving the regional suitability of the model application. Extract mean annual pre-
cipitation (mm) and mean annual temperature (◦C) data under future climate scenarios
using the “Extract Multi Values to Point” tool in ArcGIS10.5, 0.5 was used as the coefficient
for converting vegetation biomass into carbon storage [39], and the carbon sequestration
capacity of future forest vegetation in Chongqing was predicted using the FCS model. This
model was constructed based on the logistic equation, taking the measured carbon storage
data of more than 3300 sample plots and forest age as input parameters, validated using 78
forest succession series data in China, and combined with vital factors such as temperature,
precipitation, and forest age. Model construction, verification, and some prediction results
have been published previously [38,40,41]. This study calculated the changes in vegetation
carbon sequestration and carbon sequestration rate over 10 years, and the data in the study
were the average values of four climate scenarios. Additionally, the study analyzed data
over two time periods, 2010–2030 and 2030–2060, to realize the phased goals of carbon
peaking and carbon neutrality.

2.3.3. Construction of a Driving Factor Model for the Carbon Sequestration Rate in
Forest Vegetation

This study cited the Optimal Parameter-based Geographical Detector (OPGD) devel-
oped by Song et al. [42] in 2020 based on R language to analyze the factors affecting the
carbon sequestration rate. This method can determine the optimal combination of the spa-
tial discretization method, spatial strata, and spatial scale parameters for each influencing
factor and improve the overall ability of spatially stratified heterogeneity analysis. The
factor detector was used to identify the spatial heterogeneity of factors that affected the
carbon sequestration rate and related driving factors, as well as to determine the extent of
the effect by calculating the value of the q-statistic. The factor detector formula is [43]:

q = 1−

L
∑

h=1
Nhσ2

h

Nσ2 (6)

where h = 1, 2, . . . , L is the quantity of classifying influencing factors; Nh is the sample size
in class h; N is the sample size of the study area; σ2

h is the variance of class h; and σ2 is the
variance of the study area. q is the influence value of the driving factor, with a value range
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of [0, 1]. The higher the q-statistic is, the more significant the impact of this factor on the
carbon sequestration rate, and vice versa.

The interaction detector can identify the effects of interaction between different drivers
on the carbon sequestration rate. This method determines whether the combination of
the two drivers increases or decreases the explanatory power of dependent variable Y
or whether these factors explain Y independently. First, q-statistics were calculated for
the carbon sequestration rate factors X1 and X2 and calculated the q-statistics for their
interaction. Finally, the calculation results were compared. There were five types of interac-
tion: Non-linear reduction, Single-factor nonlinearity reduction, Two-factor enhancement,
Independent, and Non-linear enhancement.

The carbon sequestration rate of forest vegetation is comprehensively affected by
various factors. Based on the existing results, this study selected 16 indicators from three
levels of economy, nature, and society to quantitatively analyze the driving factors of the
carbon sequestration rate, of which the government attention is derived from the frequency
of the words related to forest protection in the annual summary reports of the governments
of the various districts and counties, as shown in Table 1.

Table 1. Index system for the impact of the carbon sequestration rate in forest vegetation.

Dimensions Factors Code Unit

Economy

GDP Per Capita X1 CNY
GDP of the secondary industry X2 Million CNY

GDP of the tertiary industry X3 Million CNY
Government forestry investment X4 Million CNY

Nature

DEM X5 m
Slope X6 degree

Temperature X7 ◦C
Precipitation X8 mm

Sunshine duration X9 h
NDVI X10 -
Area X11 km2

Age X12 year

Society

Density of population X13 per km2

Government forest area
accountability X14 km2

Government deforestation area X15 km2

Government attention X16 %

3. Results
3.1. Analysis of Spatiotemporal Pattern Dynamic of the Carbon Sequestration in Chongqing
Forest Vegetation

From the overall spatial distribution of forest vegetation NPP results calculated using
the CASA model in Figure 2, the forest vegetation NPP in Chongqing was characterized
by a high value in the northeast, followed by a lower value in the southeast, and an even
lower value in the southwest. From 2000 to 2020, the total NPP of the forest vegetation
in Chongqing first decreased and then increased. From 2000 to 2010, the average NPP
decreased from 805.44 g C/m2 to 748.67 g C/m2 and then increased to 839.75 g C/m2 in
2020. The total amount of NPP first decreased from 26.33 Tg C to 25.29 Tg C and then
increased to 28.19 Tg C.

The high-value areas of forest vegetation NPP were mainly concentrated in northeast-
ern Chongqing, with an average vegetation NPP of more than 700 g C/m2 and an average
total NPP of 12.82 Tg C, which accounts for 47.79% of the total amount in Chongqing. The
low-value areas were mainly concentrated in the main urban areas, where the average
vegetation NPP was below 700 g C/m2 and an average total NPP of 8.68 Tg C, accounting
for 19.87% of the total amount in Chongqing. The top three districts and counties with the
largest average total NPP were Youyang, Wuxi, and Chengkou. Their average total NPP is



Remote Sens. 2023, 15, 5096 8 of 21

2.34 Tg C, 2.30 Tg C, and 2.03 Tg C, respectively, accounting for 8.80%, 8.63%, and 7.62% of
the total in Chongqing. The three districts and counties with the lowest average total NPP
were Yuzhong, Dadukou, and Jiangbei. Their average total NPP was less than 0.01 Tg C,
0.01 Tg C, and 0.02 Tg C, respectively, accounting for 0.01%, 0.04%, and 0.06% of the total
in Chongqing.
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3.2. Analysis of Spatiotemporal Pattern Dynamic of the Carbon Storage in Chongqing
Forest Vegetation

Using the FCS model to calculate the carbon storage of the forest vegetation in
Chongqing from 2010 to 2060 while keeping the existing forest area unchanged and av-
eraging the four future climate scenarios (Figure 3). The spatial distribution pattern of
carbon storage in 2010–2020 was consistent with the current NPP status, and there was
no significant change. It showed a characteristic of high carbon storage in the northeast
region, followed by the southeast, while the lowest carbon storage was in the southwest.
Over time, the carbon storage of the forest vegetation increased yearly, gradually reaching
a saturation state. By 2060, the forest carbon density will reach 130 Mg C/ha.

From 2010 to 2060, the carbon storage of forest vegetation every 10 was 173.00 Tg C,
201.19 Tg C, 225.43 Tg C, 244.85 Tg C, 259.47 Tg C, and 269.94 Tg C. Forests in the north-
eastern and southeastern regions had the highest carbon storage value. The carbon storage
rose from 71.53 Tg C and 61.56 Tg C in 2010 to 108.03 Tg C and 90.75 Tg C in 2060, increases
of 51.03% and 47.41%, respectively. Low carbon storage areas were mainly distributed near
the main urban areas, with carbon storage increasing from 39.91 Tg C in 2010 to 71.16 Tg C
in 2060, an increase of 78.30%. The top three counties with the highest carbon storage were
Wulong, Youyang, and Shizhu, with 13.37 Tg C, 12.09 Tg C, and 11.51 Tg C, respectively,
but their forest area rankings were the sixth, first, and eighth; the top three counties with
the lowest carbon storage were Yuzhong, Dadukou, and Tongnan, which were all less than
0.1 Tg C, and their forest area rankings were the lowest, the second lowest and the fifth
lowest. It showed that carbon storage was not only directly related to forest area but related
to other factors such as climate.
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To further analyze the clustering characteristics of forest vegetation carbon storage
changes, the Getis-Ord G*i index was used in ArcGIS10.5 to study the local characteristics of
cold and hot spots of forest vegetation carbon storage in Chongqing from 2010 to 2060. The
values of the Getis-Ord G*i index of the study unit have been divided into five categories
based on the method of the natural fracture and were represented in ascending order as
cold spot, second cold spot, not significant, second hot spot, and hot spot, according to
Figure 4.

From 2010 to 2060, the cold spot and hot spot areas of forest vegetation carbon storage
in Chongqing were clearly separated, with clear differences and boundaries. Overall,
the hot spot areas were scattered, mainly concentrated in Xiushan, Youyang, Qianjiang,
Pengshui, and Wulong in southeastern Chongqing, as well as Yunyang and Wanzhou in
northeastern Chongqing, while the cold spot areas were focused in the main urban areas.
From 2020 to 2030, compared to the previous stage, Rongchang transformed from a second
cold spot to not significant, while Wanzhou developed from not significant to a second
hot spot, as shown in Figure 4a,b. From 2030 to 2040, there were significant changes in
cold and hot spot areas, with a significant reduction in hot spot areas, primarily due to the
transition from second cold spot areas to not significant areas in Youyang, Qianjiang, and
Pengshui, as shown in Figure 4c. From 2040 to 2050, the classification remained consistent
with the previous stage, and from 2050 to 2060, Banan developed from a second cold spot
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to not significant, as shown in Figure 4d,e. Compared to 2030–2060, the spatial differences
between 2010–2030 were more significant, with cold and hot spots being more concentrated
and the carbon sequestration potential being greater (Figure 4f,g).
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3.3. Analysis of Spatiotemporal Pattern Dynamic of the Carbon Sequestration Rate in Chongqing
Forest Vegetation

The carbon sequestration rates calculated in Figures 5 and 6 were both obtained
from the average of four future climate scenarios while keeping the existing forest area
unchanged. Overall, the forest vegetation in Chongqing from 2010 to 2060 had strong
carbon sequestration benefits. The carbon sequestration rate in each district and county
varies between <0.01 Tg C/a and 0.20 Tg C/a, and the per capita carbon sequestration rate
in each district and county varies between <0.01 Mg C/a per capita and 0.54 Mg C/a per
capita. The overall trend showed that over time, the forest gradually matured, and the
carbon sequestration rate decreased accordingly.

From 2010 to 2060, the carbon sequestration rate of various districts and counties in
Chongqing showed a trend of being highest in southeastern Chongqing, descending in
northeastern Chongqing, and being lowest in the main urban area. The decrease in the
carbon sequestration rate gradually became increased, as shown in Figure 5. The three
districts and counties with the highest average carbon sequestration rate were Wulong,
Youyang, and Fengjie, with values of 0.122 Tg C/a, 0.120 Tg C/a, and 0.115 Tg C/a,
respectively. The three districts and counties with the lowest average carbon sequestration
rates were Yuzhong, Dadukou, and Tongnan, with values of <0.001 Tg C/a, 0.002 Tg C/a,
and 0.003 Tg C/a, respectively. Compared to 2010–2030, the carbon sequestration rate
changed significantly from 2030 to 2060, with a significant decrease in all regions except
the main urban areas. Only southeastern Chongqing and some areas still maintained a
moderate carbon sequestration rate, as shown in Figure 5f,g. Overall, during these two
stages, the carbon sequestration rate decreased from 0.069 Tg C/a to 0.039 Tg C/a, a
decrease of 43.5%.
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In this study, the per capita carbon sequestration rate was the ratio of the carbon
sequestration rate of each district and county to the total population of the district and
county. From 2010 to 2060, the per capita carbon sequestration rate of various districts and
counties in Chongqing showed a tendency to be high in the southeastern and northeastern
regions of Chongqing and low in the main urban areas, as shown in Figure 6. The per
capita carbon sequestration rate also gradually decreased over time and remained basically
consistent with the carbon sequestration rate of districts and counties. The three districts
and counties with the highest average per capita carbon sequestration rates were Wulong,
Xiushan, and Chengkou, with values of 0.3373 Mg C/a per capita, 0.2755 Mg C/a per
capita, and 0.2547 Mg C/a per capita, respectively. The three districts and counties with
the lowest average carbon sequestration rates were Yuzhong, Nan’an, and Jiangbei, with
values of <0.0001 Mg C/a per capita, 0.0031 Mg C/a per capita, and 0.0032 Mg C/a per
capita, respectively. This result was mainly due to the significant differences in population
density among different districts and counties, resulting in significant regional differences.
Compared with 2010–2030, the per capita carbon sequestration rate in each district and
county from 2030 to 2060 showed relatively small changes. Overall, the trend of high carbon
sequestration rate in southeast and northeast Chongqing and low carbon sequestration rate
in the main urban areas persisted, as shown in Figure 6f,g. The district and county with the
largest change in the per capita carbon sequestration rate was Chengkou, which decreased
from 0.3910 Mg C/a per capita to 0.1639 Mg C/a per capita, a decrease of 58.09%.

3.4. Results of Multi-Scenario Simulation for the Carbon Sequestration Potential in Chongqing
Forest Vegetation

The SSP scenario matrix describes a series of future scenario combinations, each with
different climate factors (precipitation, temperature, etc.) and socioeconomic factors (popu-
lation, GDP, etc.), resulting in different carbon sequestration amounts and rates of forest
vegetation under different scenarios. The multi-scenario prediction of the carbon seques-
tration capacity and the simulation results of the forest vegetation carbon sequestration
rate in Chongqing are shown in Figures 7 and 8. Overall, the spatial pattern distribution of
carbon sequestration was very similar across the four climate scenarios, with little change
from 2030 to 2060. High-value areas of carbon sequestration were primarily located in the
northeast and southeastern regions of Chongqing, while low-value areas were primarily
located near the main urban area.

For the carbon sequestration of forest vegetation from 2030 to 2060, the variations in
carbon sequestration under the four scenarios were not significant, as shown in Figure 7.
Under the SSP1-2.6 scenario, the carbon sequestration increased from 225.89 Tg C to
270.80 Tg C, an increase of 19.88%. The SSP2-4.5 scenario showed an increase from
225.31 Tg C to 269.72 Tg C, an increase of 19.71%. The SSP3-7.0 scenario showed an
increase from 223.34 Tg C to 266.08 Tg C, an increase of 19.14%. The SSP5-8.5 scenario
showed an increase from 227.24 Tg C to 273.33 Tg C, an increase of 20.28%. Under the four
climate scenarios, the SSP5-8.5 had the highest increase in carbon storage and growth rate,
while the SSP3-7.0 had the lowest.

For the carbon sequestration rate of forest vegetation from 2010 to 2060, the overall
carbon sequestration rate showed a decreasing trend each year under the four scenarios,
and the difference gradually decreased, as shown in Figure 8. Before 2040, there was an
obvious difference in carbon sequestration rates between SSP5-8.5 and SSP3-7.0, with a
maximum difference of 0.14 Tg C/a between 2030 and 2040. After 2040, the differences in
the four climate scenarios gradually decreased due to the significant decrease in the overall
carbon sequestration rate. Among the four climate scenarios, the carbon sequestration rate
was highest in the SSP5-8.5 scenario and lowest in the SSP3-7.0 scenario.
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3.5. Results of Driving Factors of the Carbon Sequestration Rate in Chongqing Forest Vegetation

The factor detector measured the impact of all influencing factors on the carbon
sequestration rate of forest vegetation (Figure 9). The q-statistic of the influencing factors
varied significantly between 0.307 and 0.760 (p < 0.01). The first three driving factors that
had the highest impact on the carbon sequestration rate were forest area, DEM, and forest
age. The q-statistics were 0.760, 0.660, and 0.597, respectively, followed by natural factors
such as precipitation and slope. The density of population, GDP per capita, and GDP
of the tertiary industry had the smallest impacts on the carbon sequestration rate. The
q-statistics were 0.307, 0.322, and 0.325, respectively. Overall, the greatest impact on the
carbon sequestration rate was due to natural factors, and there was little difference in the
impact of social and economic factors. As a mountain city, the larger the forest area is, the
more carbon sequestration the forest will provide; additionally, a higher DEM results in
steeper slopes and a corresponding reduction in the impact of human interference. The
vegetation mostly maintained the state of nature, and the forest age structure was evenly
distributed. Natural factors such as meteorology and the NDVI value directly impact the
growth state and photosynthesis of forest vegetation, thus contributing to increased forest
productivity and vegetation carbon sequestration. Slope can also cause soil erosion and
water loss, affecting the absorption of forest nutrients and thereby affecting the carbon
sequestration rate. The effect of forest age on forest carbon sequestration rate is higher than
that of climate conditions, which is consistent with the results of Yao et al. [44]. The impact
of social and economic development had a lateral impact on the carbon sequestration rate
of forest vegetation. The higher the economic value is, the higher the population density
is, which will exacerbate the expansion of cities toward the surrounding area, increase the
consumption of basic resources and energy, change the forest area and vegetation type, and
indirectly affect the carbon sequestration rate.
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X3: GDP of the tertiary industry. X4: Government forestry investment. X5: DEM. X6: Slope. X7:
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Density of population. X14: Government forest area accountability. X15: Government deforestation
area. X16: Government attention).

The impact of one factor is often limited, and in reality, the carbon sequestration rate
is a process of multiple factors interacting with each other. The interactive detection plate
in the OPGD can measure the effect of various factors on the carbon sequestration rate,
according to Figure 10. After the interaction of various influencing factors, there was a
significant increase in the q-statistic, and the effect on the rate of carbon sequestration was
significantly enhanced. The interactions between forest area and NDVI, precipitation and
DEM, precipitation and NDVI had the greatest impacts on carbon sequestration rate, with
q-statistics of 0.979, 0.964, and 0.963, respectively. The interactions between the GDP of the
tertiary industry and density of population, per capita GDP and density of population, and
per capita GDP and GDP of the tertiary industry had the smallest impacts on the carbon
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sequestration rate, and the q-statistics were 0.441, 0.442, and 0.443, respectively. Their im-
pact was higher than that of individual factors. The judgment conditions for the interaction
detector indicated 114 two-factor enhancements and six non-linear enhancements. This
result indicates that the interaction between 120 sets of two drivers had an enhanced effect
on the carbon sequestration rate and no independent influencing factors. Moreover, each
factor had a certain correlation with the carbon sequestration rate.
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4. Discussion
4.1. Comparative Analysis of Carbon Sequestration Models in Forest Vegetation in Chongqing

Due to errors in data conversion and processing, as well as the complexity of the
ecosystem itself, different NPP and carbon storage estimation models inevitably generate
some errors, which are mainly related to input data, model structure, and parameter
settings [45]. Generally, the accuracy of model calculations is examined by verifying the
degree of consistency between simulated and measured values. However, because of the
lack of measured data and the limitations of scale inference from observation points to the
entire region, this study chose to validate the model using model comparison to further
evaluate the calculation results (Table 2).
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Table 2. Comparison with NPP estimation results of different researchers.

Data and
Method NPP (g C/m2) Study Area Study

Period Sources

CASA 797.95 Chongqing 2000–2020 This study
GLOPEM-EVSA 412.29 Chongqing 2001–2011 Zhang [46]

GLO-PEM 673.4 Sichuan and Chongqing 2020 Zhou [47]
MOD17A3HGF 963.86 Southwest China 2001–2018 Hong [48]

BIOME-BGC 866.65 Southwest China 2000–2021 Xu [49]

The average NPP of forest vegetation in Chongqing from 2000 to 2020 calculated
using the CASA model in this study was 797.95 g C/m2, which was higher than the
NPP value calculated by Zhang et al. [46], which was 412.29 g C/m2. This difference
is probably related to the coarser accuracy of the data used for calculation. Compared
to Zhou et al. [47] calculation of the forest vegetation NPP value of 673.4 g C/m2 in the
Sichuan Chongqing region, it was higher. Compared to Hong et al. [48] and Xu et al. [49],
the NPP values of forest vegetation in the southwestern region calculated by Hong et al. [48]
were 963.86 g C/m2 and 866.65 g C/m2, respectively, which were lower. Due to the use of
data standards from the Chinese Academy of Sciences for the forest classification system
in this study, forest types were divided into four categories: forestland, shrub woodland,
sparse woodland, and other woodland. This classification made it impossible to compare
each type of data accordingly. Although there were deviations in the overall calculation
results, they were still within the expected overall range.

This study estimated carbon storage and carbon sequestration rate of forest vegetation
in Chongqing were similar to some recent research results. Currently, many scholars have
based their estimates on a national scale as a whole without providing corresponding
provincial data [37,50,51], making it difficult to compare them accordingly. For the carbon
storage and carbon sequestration rate, Chen et al. [22] published a dataset showing that the
carbon storage of forest vegetation in Chongqing in 2010 and 2020 was 230.34 Tg C and
264.85 Tg C, respectively, with a corresponding carbon sequestration rate of 3.45 Tg C/a.
The results calculated in this study were relatively low compared to those of Cai et al. [52],
who also based on the FCS model to calculate the carbon sequestration rate of forest
vegetation in Chongqing from 2010 to 2060, decreasing from 2.82 Tg C/a to 1.05 Tg C/a,
but the overall trend still indicated a decrease each year. Compared to remote sensing
methods for forest biomass calculation, the FCS model fully considers the relationship
between forest age and biomass and can use measured data for parameterization and
validation. It can better model changes in the natural successional processes of forest
vegetation [38,52] and can be used for more systematic modeling of different forest types,
forest ages, and climate regions. To a certain extent, the model utilized the classical logistic
equation as the basis to establish the relationship between forest age and biomass and
combined the data of different climate scenarios in the future to take into account the
impact of future climate change on forest vegetation. The calculated results were highly
representative. Due to the lack of field measurements, publicly available biomass data and
forest age datasets were used in this study to modify empirical parameters according to
the southwestern region. The results obtained are inevitably biased from the former using
field measurement data, and due to differences in tree species, forest type, and climate, it is
difficult to unify the definition of the mature forest age, resulting in some uncertainty.

Under the future climate change scenarios, Chou et al. [53] simulated land use change
based on SSP1-2.6, SSP2-4.5, and SSP5-8.5, fitted different tree species growth equations,
and estimated the carbon sequestration storage of forest vegetation at the national scale.
The results showed that the carbon sequestration potential of Southwest China was higher
than other regions, with SSP1-2.6 > SSP2-4.5 > SSP5-8.5, which was different from this
study. The main reason was that it simulated the change in forest area under climate change
conditions. Under the SSP5-8.5 scenario, the minimum forest area leads to the minimum
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carbon storage. This study simulates carbon storage under the assumption that the forest
area remained unchanged, and we would also include it in our future research.

4.2. Path to Enhance Carbon Sequestration Potential in Chongqing Forest Vegetation

Forest carbon density increases slowly with forest age and gradually reaches satura-
tion, which means that forests have strong carbon sequestration potential regardless of
development stage and forest type (natural forest or man-made forest) [51]. The results of
this study show that Chongqing has enormous carbon sequestration potential, whether
in the present or future, especially in the northeastern and southeastern regions. To en-
hance the forests carbon sequestration potential in various districts and counties, long-term
effective forest management and control technologies and reasonable policy guarantees
are needed.

The results of the influencing factors in this study indicated that forest area, DEM,
forest age, and natural factors had the greatest impacts on the carbon sequestration rate, fol-
lowed by social factors, and economic development had the smallest impact. Based on this,
this study proposes corresponding protection measures from the natural, economic, and
social levels based on three types of impact factors and previous research by scholars [54]
(Figure 11).
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(1) At the natural level, the results of the OPGD indicated that the driving force of
natural factors was the highest. In the absence of external interference, the growth of forests
is dominated by their own conditions, such as forest age and forest species, as well as by
external conditions, such as temperature, precipitation, and sunshine duration. Human
activity contributes indirectly to these conditions. The result of carbon storage showed
that there was a certain relationship between forest area and carbon storage, but it did
not play a dominant role. In the case of a certain forest area, factors such as the internal
conditions of forest age and the external natural environment interact and constrain each
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other. The focus should be on nature and increasing the proportion of natural forests.
Although forest area has the highest impact factor and should be prioritized for upgrading,
due to the interference of various human factors, the improvement in forest area has been
limited. When working with a limited area, the focus should be on the regeneration of
natural forestland rather than on economic forest. The existing forest carbon pool should be
maintained by setting forest reserves to reduce the damage to natural forestland by people.
It is necessary to promote improvement and fertilization, introduce various types of tree
species suitable for growth in Chongqing without destroying the local species structure,
increase forest species diversity, improve forest self-healing and self-resistance by changing
the forest structure, further expand the forest carbon pool, and provide timely protection
and rescue to reduce large-scale losses due to droughts, floods, insect pests, mountain fires,
and other natural disasters. It is necessary to promulgate regulations and rules to limit the
area of deforestation and restore land vegetation to its previous high carbon state within a
limited forest area.

(2) At the economic level, the GDP value and government forestry investment had an
indirect impact on the carbon sequestration rate, reflecting the local economic development
status. The higher the value, the faster the economic development, the more the demand
for resources and the environment, and the damage to forests will be intensified. However,
the corresponding government forestry investment will also be more; the two are in a
contradictory state. Therefore, provincial-level and municipal-level unit governments
should appropriately increase investment in forestry funds. Due to the varying forest area
and economic development status of each district and county, district and county govern-
ments should develop fund allocation models tailored to their own regional characteristics
and strengthen real-time monitoring. The allocated forestry funds should be reasonably
determined according to the needs of each city and county, and their use purposes should
be determined. The improvement in the forest carbon sequestration rate should be mainly
guided by nature. It would be good to increase financial investment and manual interven-
tion in areas with poor natural conditions that are prone to damage to extend the duration
of high carbon sequestration rates and achieve the forest carbon sink enhancement goal.

(3) At the social level, although the results of the optimal geographic detector showed
that social factors had less influence on the rate of carbon sequestration. The influence of
the social level should not be underestimated because it is a dynamic level. The population
density of each district and county directly reflects the level of economic development and
the ecological environment. The government forest area accountability reflects the diligence
in forest protection. The government’s deforestation area directly affects the amount of
forest area and the growth of forests. Additionally, the government’s attention to the forest
reflects the importance that the district and county attach to the forest in the current and
future. Via comparison, it could be found that the higher the level of government forest area
accountability and attention, the higher the rate of carbon sequestration. However, affected
by the forest area and development pattern of the district, the density of population and the
deforestation area had an inverse effect on the rate of carbon sequestration. Thus, forests
and other land use areas are converted due to population density expansion, and green
and environmentally friendly intelligent cities are built. The government should increase
its focus on forest protection, strengthen the promotion and education of basic forest
knowledge using a variety of media such as the internet and TV, carry out afforestation
activities and corresponding reward measures, enhance awareness of forest conservation,
and reduce deforestation and destruction of forests from a cognitive level. Moreover, we
should strengthen the transparency of government information, unite the broad masses
of basic people, take responsibility and hold one another accountable, and encourage one
another. Illegal logging activities should be monitored and stopped. Specific government
departments that implement forest protection policy documents should be supervised, and
people should be encouraged to plant trees for low-carbon life and improve residents’ trust
in the government.
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5. Conclusions

There were significant spatiotemporal differences in the carbon sequestration status of
forest vegetation in Chongqing. The overall carbon sequestration status showed a trend of
being high in northeastern and southeastern Chongqing and low in the main urban area.
Over time, the carbon storage gradually increased and reached saturation. By 2060, the
forest carbon density will reach 130 Mg C/ha. Compared with 2030 to 2060, the hot spots
in 2010 to 2030 were mainly focused in the southeastern region of Chongqing, while the
cold spots were focused in the main urban area, with more significant spatial differences
and more concentrated cold spots.

The forest vegetation in Chongqing shows strong carbon sequestration potential. From
2010 to 2060, the carbon sequestration rate gradually decreased, and the three districts
and counties with the highest average carbon sequestration rates were Wulong, Youyang,
and Fengjie. Compared to 2010 to 2030, the carbon sequestration potential was low, and
the carbon sequestration rate changed significantly. The trend of the per capita carbon
sequestration rate of Chongqing districts and counties was basically consistent with the rate
of carbon sequestration in the districts and counties. The three districts and counties with
the highest per capita carbon sequestration rates were Wulong, Xiushan, and Chengkou.
The calculated results agreed well with other scholars, which showed that it was feasible to
calculate the carbon sequestration potential of forest vegetation in Chongqing using the
FCS model. Among the different climate scenario simulations, the SSP5-8.5 had the highest
carbon sequestration rate and increased carbon storage by 20.28%, while the SSP3-7.0 had
the lowest and increased carbon storage by 19.14%.

The driving factor that had the greatest impact on the carbon sequestration rate was
forest area, followed by DEM and forest age. Natural factors had a more significant
influence on the carbon sequestration rate in forest vegetation than did economic and
social factors. In general, from 2010 to 2030, the carbon sequestration rate of all districts
and counties in Chongqing maintained a better growth trend than that from 2030 to 2006.
This decline was primarily due to the increase in forest age when the forest area remained
unchanged. This paper proposes corresponding measures at the natural, economic, and
social aspects, and the concepts of focusing on nature and combining people with nature
should be adhered to improve the carbon sequestration rate of forest vegetation, promote
the overall protection, systematic restoration, and comprehensive management of forest;
and effectively utilize their carbon sequestration potential.
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