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Abstract: Object detection in unmanned aerial vehicle (UAV) aerial images has received extensive
attention in recent years. The current mainstream oriented object detection methods for aerial images
often suffer from complex network structures, slow inference speeds, and difficulties in deployment.
In this paper, we propose a fast and easy-to-deploy oriented detector for UAV aerial images. First,
we design a re-parameterization channel expansion network (RE-Net), which enhances the feature
representation capabilities of the network based on the channel expansion structure and efficient layer
aggregation network structure. During inference, RE-Net can be equivalently converted to a more
streamlined structure, reducing parameters and computational costs. Next, we propose DynamicOTA
to adjust the sampling area and the number of positive samples dynamically, which solves the
problem of insufficient positive samples in the early stages of training. DynamicOTA improves
detector performance and facilitates training convergence. Finally, we introduce a sample selection
module (SSM) to achieve NMS-free object detection, simplifying the deployment of our detector on
embedded devices. Extensive experiments on the DOTA and HRSC2016 datasets demonstrate the
superiority of the proposed approach.

Keywords: UAV aerial image; oriented object detection; label assignment; embedded device

1. Introduction

Object detection is an important task in computer vision. With the rapid development
of deep learning, several models based on convolutional neural networks (CNN) have been
proposed to achieve high-performance detection, including YOLO series [1–4], R-CNN
series [5–8], RetinaNet [9], FCOS [10] and CenterNet [11]. Object detection in unmanned
aerial vehicle (UAVs) images has promising applications and attracts much attention.

Different from objects in natural scenes, objects in UAV aerial imagery are often
distributed with large scale variations, leading to great challenges in accurate detection. In
addition, small objects often lack sufficient information about their appearance, making
them more challenging to identify. Therefore, current object detection methods in aerial
images tend to employ complex network structures and a larger number of parameters to
achieve higher detection accuracy. As shown in Figure 1, the AlignConv in S2ANet [12]
and the RoI Transformer [13] improve the accuracy of aerial image detection, but impose
computational costs. In particular, implementing these specialized structures on embedded
devices is difficult. Due to the limited size of UAVs, detectors need to be deployed on an
embedded device, which requires a streamlined detector.
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Figure 1. Structures of current oriented object detection methods, including (a) AlignConv in S2ANet
and (b) RoI transformer.

In addition, objects with arbitrary orientation make it difficult to represent the bound-
aries with a horizontal bounding box (HBB). The aerial object detection task converts the
HBB into an oriented bounding box (OBB) by adding a rotation angle [12,14–22]. This
makes it necessary to calculate the rotated intersection over union (IoU) in training and
inference. However, the calculation of rotated IoU is complex, making the rotated non-
maximum suppression (NMS) algorithm difficult to implement on embedded devices and
increasing inference-time costs.

In this paper, we propose a fast and easy-to-deploy oriented detector for UAV aerial
images. Our work focuses on the balance between speed and accuracy. First, to increase
the feature extraction capacity of our network, we design a re-parameterization channel
expansion network (RE-Net), which expands the features to channels of different dimen-
sions. During inference, RE-Net can be equivalently converted to a more streamlined
structure, reducing parameters and computation. In addition, we introduce the efficient
layer aggregation network (ELAN) structure to improve detection accuracy.

We propose an advanced dynamic label assignment strategy called DynamicOTA,
which adjusts the sampling area and the number of positive samples based on training
progress. DynamicOTA enables a transition from dense to sparse label assignment, acceler-
ating training convergence and increasing detection accuracy with no extra inference-time
cost. This is in line with our goal of developing a fast, easy-to-deploy oriented detector.

Furthermore, we suggest that the calculation process of rotated IoU increases the
difficulty of network deployment and the inference-time cost. Accordingly, we introduce a
sample selection module (SSM) to fully enable end-to-end object detection, eliminating the
need for NMS. The SSM consists of convolutional layers and has a simple structure.

To summarize, the main contributions of this paper are as follows:

(1) We propose a fast and easy-to-deploy single-stage oriented detector for aerial images.
Our method is both anchor-free and NMS-free and achieves competitive performance
in both speed and accuracy. Moreover, we deploy our detector on the NVIDIA Xavier
Jetson NX, achieving real-time inference speeds.

(2) We design an RE-Net which expands the features to channels of different dimensions
to enhance the feature representation capacity and allows significant reduction in the
computation in inference. In addition, we implement a fully end-to-end OBB object
detection based on the SSM, which reduces the difficulty of network deployment on
embedded devices.

(3) DynamicOTA is proposed to adjust the number of positive samples adaptively based
on the training progress, solving the problem of insufficient positive samples at the
early stage of SimOTA training, and improving the convergence speed of network
and the detection accuracy with no extra inference-time cost.

The rest of this paper is organized as follows. Section 2 reviews the related work of
generic object detection and oriented object detection in aerial images. Section 3 introduces
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our method in detail. Section 4 shows the ablation experiments of the proposed methods
and the performance on different datasets. Section 5 concludes the paper.

2. Related Work
2.1. Generic Object Detection

Object detection has achieved significant advancements in recent years due to the
introduction of CNN methods. Object detection methods are generally classified into two
categories: two-stage detectors and single-stage detectors. The two-stage detectors, such
as R-CNN [5], Fast R-CNN [6], Faster R-CNN [7], and R-FCN [23], generate candidate
regions and subsequently perform classification and regression to obtain the final detections.
Although these detectors offer higher accuracy, the division of the object detection task into
two phases adversely impacts the network’s real-time performance.

In contrast, single-stage detectors conduct a more efficient detection that processes the
entire image without generating candidate regions, leading to improved inference speed.
The single-stage detectors include the YOLO series [1–4], SSD [24], RetinaNet [9] and
FCOS [10], which demonstrated remarkable performance in various object detection tasks,
providing a balance between accuracy and speed. As a result, single-stage detectors gained
popularity in applications requiring real-time object detection and low-latency processing.
YOLOX [1] is a state-of-the-art, anchor-free object detection network with significant speed
and accuracy advantages over other object detection networks. Therefore, in this paper, we
used YOLOX as a benchmark framework for detecting UAV aerial image objects.

2.2. Oriented Object Detection in Aerial Images

Object detection in aerial images has received extensive attention due to its wide range
of application scenarios. With the significant breakthrough by CNN methods, object detec-
tion in aerial images has also made considerable progress. The current oriented detector is
generally modified from the anchor-base HBB detector. Typically, these detectors generate
oriented anchor boxes to learn orientation information and regress the offset between the
object and anchor boxes. Early methods used anchors with multiple angles and aspect ratios
to detect oriented objects [25,26]. However, preset overloading of anchor boxes generates
too many detections and increases the time consumed. To avoid presetting a large number
of anchors, the RoI transformer [13] proposes an RRoI learning module and RRoI warping
to realize the transformation of HRoIs into RRoIs and then extract rotation invariant fea-
tures. R3Det [27] and S2ANet [12] align the features between the horizontal receptive field
and the OBB, addressing the inconsistency problem between classification and regression.
ReDet [16] introduces rotation invariant convolution into the model and uses RiRoI Align to
extract rotation invariant features. Oriented R-CNN [17] achieves oriented object detection
based on an oriented region proposal network. CFC-Net [15] improves performance by
building features suitable for classification and regression tasks, respectively.

Anchor-base methods usually require manual preset boxes, which not only introduces
additional hyperparameters and computations, but also directly affects the performance of
the model. Compared with anchor-based methods, anchor-free methods remove preset
boxes and prior information, making them more adaptable than anchor-based methods.
For example, O2-DNet [28] predicts the center point and a pair of intermediate lines to
represent objects, eliminating the need for NMS and greatly simplifying the oriented
detector. BBAVectors [29] and PolarDet [30] define the OBB with BBAVectors and polar
coordinates, respectively. FCOSR [14] implements oriented object detection in a simple
structure. Oriented RepPoints [31] and PIoU [32] use more efficient optimization strategies
and different forms to represent OBB. The YOLOX object detection network used in this
paper is an anchor-free method, which has a typical advantage.

3. The Proposed Method

The overall framework of our method is illustrated in Figure 2. The network directly
predicts the objects’ center points (including x and y coordinates), width, height, IoU,
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and rotation angle. We propose several techniques to improve YOLOX for fast and accurate
oriented object detection, including the RE-Net and the DynamicOTA. Additionally, we
add the SSM that enables full end-to-end object detection, eliminating the need for NMS.
The following sections provide detailed descriptions of these modules.

Backbone

RE-Net

Neck RE Block

DynamicOTAAnchor Point

Dynamic Sampling Area

Dynamic Positive
 Sample Number

Assigned Result

Head

Sample Selection
Module

Non Maximum
Suppression

Detection Result

BCE Loss

R-IoU Loss

NMS-free

×

Figure 2. The overall framework of our model. The black line represents the inference process,
and the blue line represents the training process. We introduce RE-Net to enhance feature extrac-
tion capabilities and incorporate SSM for NMS-free object detection. Additionally, we present the
DynamicOTA label assignment strategy to improve network performance in training.

3.1. Re-Parameterization Channel Expansion Network

Objects in aerial images are densely arranged, with large-scale variations and arbitrary
orientations, making it difficult to detect objects accurately. The detector needs to extract
high-level semantic information and features of the objects in the images for accurate object
localization and classification. At the same time, UAVs are restricted to carrying embed-
ded devices, limiting the parameters and computational load of the network. Therefore,
improving the network’s feature extraction capability while meeting the requirements of
implementing on embedded devices requires us to develop a high-accuracy, real-time UAV
aerial object detection algorithm.

RepVGG [33] improves the accuracy of the model without increasing the inference time
by equivalently converting parallel 1 × 1 and 3 × 3 convolutions and identity connections
into 3 × 3 convolutions. This method, called structural re-parameterization, streamlines
the model structure and reduces the computational load. Linear over-parameterization [34]
converts the cascaded 1 × 1 and 3 × 3 convolutions into equivalent 3 × 3 convolutions and
shows excellent performance.

Inspired by these works, we design a novel re-parameterization expand block (RepEx-
pand Block), with its structure illustrated in Figure 3. Given the input feature map from
Neck Fin ∈ RC×H×W , we first reduce the input features to half their channel size in two
different branches with 1 × 1 and 3 × 3 convolutions, respectively:

F1×1 = Conv1×1 BNAct(Fin ), F3×3 = Conv3×3 BNAct(Fin ), (1)

in which F1×1, F3×3 ∈ R0.5∗C×H×W , ConvBNAct denote the performing of convolution
layer, batch normalization layer and activation function in series.
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Neck RepExpand Block

3×3
3×3

1×1
+ 1×1

Expand Unit

1×1
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E

outF

1 1F 
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Figure 3. The framework of RepExpand Block.

Next, we compute the enhanced features constructed by the Expand Unit based
on F3×3:

FE
out = ExpandUnit(F3×3), (2)

in which FE
out ∈ R0.5∗C×H×W . The output of the RepExpand Block is the concatenation of

FE
out and F1×1:

Fout = cat
(

FE
out, F1×1

)
, (3)

in which Fout ∈ RC×H×W . The key element of the RepExpand block is the Expand Unit,
as shown in Figure 4, which expands the input feature in the channel dimension by a
factor of E with the convolutions of 3× 3 and 1× 1. This structure is designed to project
features from a low-dimensional space into a higher-dimensional space, thus enhancing
the network’s feature representation capability and consequently improving the accuracy
of aerial object detection.

3×3 CB 1×1 CB

1×1 CBA

+

Expand Unit

3×3 CB

1×1 CBA

3×3 CBA

E×C E×C
E×C

C（Numbes of Channels)

C

C

C

C

C

CBA Conv + BN + Activation

(a) Expand Unit during training (b) After Re-parameterization (c) Expand Unit during inference

+ Add

Figure 4. Structures of Expand Unit.

In the training phase, the Expand Unit’s structure is illustrated in Figure 4a. Given the
input feature map of Expand Unit FE

in ∈ RC×H×W(FE
in = F3×3 in Figure 3, and C = 0.5C),

we expand the feature channel to E ∗ C as follows:

FE
1×1 = Conv1×1 BN

(
FE

in

)
, FE

3×3 = Conv3×3 BN
(

FE
in

)
, (4)
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in which FE
1×1, FE

3×3 ∈ RE∗C×H×W . The output feature maps of the parallel 3 × 3 and
1 × 1 convolutions are then added, and the channels are finally narrowed to C by 1 × 1
convolution to obtain the output of the Expand Unit:

FE
out = Conv1×1 BNAct

(
FE

1×1 + FE
3×3

)
, (5)

where FE
out ∈ RC×H×W . This design also resembles an inverted residual structure [35],

which enhances the ability of gradient propagation across the Expand Unit and improves
network performance.

During the inference phase, the Expand Unit can be transformed into a single con-
volutional layer, significantly reducing parameters and computational load. As shown
in Figure 5, the parallel 1 × 1 convolution kernel is zero-padded to a 3 × 3 size and
combined with the 3 × 3 convolution kernel, achieving structural re-parameterization
transformation [33]. The transformed structure is shown in Figure 4b.

1×1 Convolution kernel

3×3 Convolution kernel

1×1 Convolution kernel
(Zero-padded)

+

3×3 Convolution kernel
(After Re-parameterization)

Figure 5. Transformation of structural re-parameterization.

We next employ the linear over-parameterization method to further simplify the struc-
ture and reduce the parameters and computational load. As shown in Figure 6, the con-
volution operation is expressed in the matrix form. Specifically, we let FC×W×H denote
the input feature map, and Conv3×3 denote the convolution operation. The convolution
process can be formulated in the matrix as follows [34]:

Conv3×3(FC×W×H) = reshape(WCW ′H′×CWH × Fv
CHW), (6)

in which WCW ′H′×CWH represents the structured sparse matrix that contains the convo-
lution kernel. Here, C, W, and H denote the feature map’s channels, width, and height,
respectively. Fv

CHW denotes the vectorized representation of the input features.

Vectorization

Matrix
W H 

W

H

W H WHW  



*

v
WHF

W HF 

3 3Conv 

Figure 6. Matrix form of the convolution process (C = 1).
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After representing the convolution process in matrix form, the cascade 1× 1 and
3× 3 convolution kernel matrices in the Expand Unit can be merged into a single 3× 3
convolution layer with the convolution kernel in matrix form, as follows:

Wrep
CWH×CWH = W1×1

CWH×E∗CW ′H′ ×W3×3
E∗CW ′H′×CWH , (7)

in which W3×3
E∗CW ′H′×CWH and W1×1

CWH×E∗CW ′H′ are the structured sparse matrix of the 3× 3
convolution and the 1 × 1 convolution in Figure 4b, respectively. Wrep

CWH×OWH is the
structured sparse matrix for the transformed 3× 3 convolution. Since the receptive fields
remain the same before and after the transformation, we can obtain the merged convolution
kernel from Wrep

CWH×OWH , thus achieving the equivalent transformation from Figure 4b to
Figure 4c.

The RepExpand Block enhances feature representation capabilities through chan-
nel expansion, enabling the model to be more applicable to UAV aerial image detection
and achieve superior performance. During the inference stage, the Expand Unit can be
equivalently transformed into a single 3× 3 convolution layer, significantly reducing both
parameters and computational costs.

Furthermore, inspired by [4], we introduce the ELAN structure to improve perfor-
mance. ELAN’s efficient feature aggregation offers benefits in balancing speed and accuracy.
We introduce the ELAN structure to replace the CSP structure in the YOLOX to improve
network performance. The structure of ELAN is shown in Figure 7. Utilizing the ELAN
structure, the network’s feature aggregation ability can be effectively improved, thereby
achieving more accurate and efficient object detection.

Conv1 × 1Conv1 × 1 Conv3 × 3 Conv3 × 3

Concat

Conv1 × 1

C（Numbes of Channels)

0.5C 0.5C 0.5C 0.5C

2C

C

Figure 7. Structures of ELAN.

3.2. DynamicOTA for Dense to Sparse Label Assignment

Label assignment is a critical issue in object detection, which directly affects the
detector’s performance. Current label assignment strategies typically use preset matching
rules or thresholds to determine positive and negative samples, but these methods do not
consider the impact of the training process. SimOTA [1], the label assignment strategy
used by YOLOX, is faster than OTA [36] and does not require additional hyperparameters.
SimOTA determines the number of positive samples according to detection quality. It
assigns Npos positive samples to each ground truth (GT), where Npos is calculated from the
sum of the top 10 IoU values between predicted bounding boxes and GT.

During the experiment, we identify an issue with SimOTA, namely that it assigns an
insufficient number of positive samples during the early stages of training. To analyze this
issue, we performed a visualization analysis of the number and position of positive samples
assigned to each GT during training in Figure 8. In the early stages of training, SimOTA
assigns only a small number of positive samples to each GT (in Figure 8, it assigns only one
positive sample to each GT). This is because it determines the number of positive samples
based on the detection quality, which is poor in early training. The network convergence is
slow and unstable due to the lack of positive samples, which has a negative impact on the
final detection accuracy.
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Figure 8. Positive sample assignment for SimOTA in early training (the red boxes denote GT boxes,
and the red dots represent positive samples). SimOTA assigns only a small number of positive
samples to each object at the beginning of training, which makes the network convergence slow
and unstable.

A straightforward resolution to this issue is increasing the number of positive samples
assigned to each object. This helps the model learn object features and location information
more effectively, discriminate between objects and backgrounds, and improve accuracy
and network convergence. However, an excessive number of positive samples may lead to
redundant detection. Therefore, it is necessary to control the ratio of positive and negative
samples reasonably to avoid oversampling.

To address the above problem, we propose a label assignment strategy called Dynami-
cOTA, as shown in Figure 9, which consists of two parts:

Dynamic Sampling Area

Label 

Assignment

Training

Assigned Positive Samples

Dynamic Positive Sample Number

Corresponding Ground Truth

Figure 9. The framework of DynamicOTA. DynamicOTA dynamically adjusts the sampling area and
the number of positive samples to obtain better label assignment results.

The first part dynamically adjusts the sampling area. The distance threshold of the
sample is calculated as follows:

Dsample(x) = 2.5− x, (8)

where Dsample(x) is the distance threshold for the sample area. A sample is selected as posi-
tive if the distance between the sample center and the GT center is less than the Dsample(x)
grid size. x denotes the training process, taking values within the [0, 1] range. As shown in
Figure 9, the green box represents the region defined by Dsample(x), which gradually shrinks
during training. This strategy enables training to focus on high-quality detection results,
reducing unnecessary memory and computational overhead and ultimately improving the
training efficiency and detection quality.
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The second part dynamically adjusts the number of positive samples assigned to each
GT based on the training process. We adjust the number of positive samples by constructing
a decay function as follows:

Kpos(x) = min(50, 10 ∗ 1
ln(x + 1)

), (9)

where x represents the training progress, with a value range between [0, 1]. The number of
positive samples Npos assigned to each GT is the sum of the top Kpos(x) IoU values (IoU
calculated between the detection boxes and GT boxes). The maximum value of Kpos(x)
is 50. Figure 10a shows the function curve, where Kpos is set to 10 in SimOTA, while our
method dynamically adjusts Kpos.

(a) (b)

Figure 10. Display of decay function and comparison between DynamicOTA and SimOTA. (a) Decay
function curve, (b) comparisons of label assignment strategy on HRSC2016.

Our DynamicOTA algorithm is shown in Algorithm 1. We first calculate the classifi-
cation and regression cost. Subsequently, we calculate the foreground–background cost
based on the sampling area adjusted by Dsample(x). Finally, we assign the Npos samples
with the smallest total cost to the corresponding GT as the positive sample.

Algorithm 1 DynamicOTA

Input:
I is the input images. A is the anchor points. G is the GT labels. X is the training
process X ∈ [0, 1].

Output:
π∗: Label assignment result.

1: m← |G|, n← |A|;
2: Pj,cls, Pj,box, Pj,score ← Forward(I) (j = 1, 2, ..., n);
3: Compute classification Cost: ccls,ij ← BCELoss(Pj,cls ∗ Pj,score, Gi,cls) (i = 1, 2, ..., m);
4: Compute regression Cost: creg,ij ← IoULoss(Pj,box, Gi,box);
5: Dynamically adjust the sampling area Ad

j ← DSample(Aj, X);

6: Compute foreground-background Cost: c f g,ij ← (Ad
j , Gi,box);

7: Cost = ccls,ij + creg,ij + c f g,ij;
8: ∀i ∈ [1, Kpos(X)], pi ←Select the largest Kpos(X) IoU values between Pbox and Gbox;

9: Npos ←
Kpos(X)

∑
i=1

pi;

10: for g = 0→ m do
11: π∗g ←Select the smallest Npos samples from the Costg as the positive samples of Gg;
12: end for
13: return π∗.
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Figure 11 shows a visualization of label assignment during training, where red boxes
denote GT boxes and red dots denote positive samples. In the early stages of training,
SimOTA assigns very few positive samples to each GT, resulting in slow network conver-
gence. Our DynamicOTA has a more reasonable label assignment process that transitions
from dense to sparse. In the early stages of training, DynamicOTA assigns more positive
samples, facilitating stable and comprehensive learning and accelerating network con-
vergence. As training progresses, the number of assigned positive samples is adaptively
decreased to suppress the redundant detection results, which not only helps to accelerate
the convergence process, but also can improve the detection precision by further training
with fewer high-quality samples.

(a)

(b)

Figure 11. Comparison of different label assignment strategies: (a) SimOTA and (b) DynamicOTA.
SimOTA assigns only very few positive samples at the beginning of training, while DynamicOTA can
assign much more positive samples.

Figure 10b provides an experimental validation of DynamicOTA on the HRSC2016
dataset [37] by comparing it with the original SimOTA. It shows that our method can
significantly improve the convergence speed and the final accuracy of the detector.

3.3. Sample Selection Module for End-to-End Oriented Object Detection

The current detector uses one-to-many matching to assign multiple positive samples
to a single GT. This approach leads to multiple detection boxes corresponding to a single
object during inference, requiring NMS to eliminate duplicate bounding boxes. NMS is
a heuristic algorithm in object detection that plays a similar role to that of the anchor.
Analogous to anchor-Free detectors, NMS-free detectors have been introduced. DETR [38]
uses a transformer structure to fix 100 prediction results and achieves end-to-end detection.
DeFCN [39] uses a one-to-one matching strategy and 3D max filtering to achieve NMS-free
detection. PSS [40] implements NMS-free detection using a simple convolutional structure.
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The NMS algorithm needs to calculate the IoU between different detection boxes to
eliminate redundant detections. For HBB detection, the calculation of the IoU is relatively
simple. However, for OBB detection, the calculation of rotated IoU is complex, requiring
consideration of various cases as shown in Figure 12. In addition, post-processing with
NMS adds an extra algorithm module that prevents the network from being fully end-
to-end. In comparison, the NMS-free method enables end-to-end detection and achieves
comparable performance, facilitating network deployment on embedded devices.

(a) (b) (c) (d)

Figure 12. Display of IoU and RIoU calculation. (a) IoU calculation in HBB. (b–d) RIoU calculation in
OBB [25].

We implement full end-to-end object detection using a convolutional structure to
facilitate deployment and engineering applications. We add an SSM to the detection head,
as shown in Figure 13. The SSM outputs a map corresponding to each GT box, where the
map is 1 at the optimal detection position and 0 at other anchor points. We can remove
the redundant detections by multiplying the output map with the detection result, thus
eliminating the need for the NMS algorithm.

Detection results
 (One-to-many matching)

Sample select mask
(One-to-one matching)

NMS

Output

×

Head

Sample 
Selection 
Module

Figure 13. NMS-free object detection based on SSM. The SSM outputs a one-to-one matching map.
By performing element-wise multiplication between this map and the detection results, we can
achieve NMS-free detection.

The SSM consists of two 3× 3 convolution layers and one 1× 1 convolution layer,
as shown in Figure 14. The detection results can be filtered as follows:

Pout = Sigmoid(Pobj) ∗ Sigmoid(Pss), (10)

in which Sigmoid(·) denotes the sigmoid activation function, Pss is the SSM output, Pobj is
the confidence output, and Pout ∈ [0, 1] is the one-to-one confidence score corresponding to
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the GT. The Pout is the confidence output of the final detection result and does not require
NMS processing.

Conv1×1

Conv3×3

Conv3×3

Conv3×3

Conv3×3

H×W×CConv1×1

Conv1×1 H×W×5

H×W×1

Head

Conv3×3

Conv3×3

Conv1×1

Conv1×1

H×W×1

Sample selection module

Conv 1×1

Conv 3×3

Output

Stop Grad

regP

clsP

regP

objP

ssP

Figure 14. Structure of sample selection module.

The SSM is trained with the following cross-entropy (CE) loss function:

Lss =
CE(Sigmoid(Pss), Gss)

Npos
, (11)

in which Pss denotes the SSM output, indicating the samples that should be selected and
those that should be discarded. Gss denotes the map of the GT, with each GT set to 1 at
the position with the best detection result and 0 at other positions. Npos is the number of
positive samples; it is employed to normalize the calculation of the loss function.

The confidence output calculates losses by considering multiple positive samples for
each GT. Conversely, the SSM output calculates losses with only the best positive sample
for each GT, establishing a one-to-one matching, which reduces redundant detection boxes.
However, this can cause negative samples from the SSM branch to be considered positive
by the confidence branch, leading to gradient conflicts during training. To address this
issue, PSS [40] adopts a strategy of stopping gradient backpropagation. As shown in
Figure 14, we introduce this approach to achieve better performance. Furthermore, we
observe that adding the SSM directly to the training results in slower convergence and
decreased accuracy. Therefore, we adopte an alternative approach using the model weights
trained without the SSM as the pre-trained weights to guide the training process.

As shown in Figure 15, our method shows comparable performance to that of the
NMS method on the mAP (IoU threshold is 0.5) metric and a significant improvement on
the mAP50:95 metric, which concerns more the evaluation of higher-precision detection.
This demonstrates the advantage of one-to-one matching between GT and the best pos-
itive sample in training for high-precision detection. In addition, SSM employs a pure
convolutional structure, making it more suitable for network deployment in embedded
devices. However, there is a slight decrease in mAP. Therefore, we set the SSM as an
optional component. Specifically, when deploying networks on high-performance GPU
and preferring to achieve higher detection accuracy in terms of mAP, the network without
SSM can be used; when deploying networks on embedded devices, adding SSM to enable
NMS-free detection offers deployment benefit and can typically obtain higher localizing
precision (in terms of mAP50:95).
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(a) mAP (b) mAP50:95

Figure 15. Comparison of the performance of NMS-free method and base method on the HRSC2016.

4. Experiments
4.1. Datasets and Implementation Details
4.1.1. HRSC2016

HRSC2016 (High-Resolution Remote Sensing Ship Detection Challenge 2016) [37] is
a challenging high-resolution ship detection dataset that includes ships of various sizes
and shapes, with a total of 1061 images. Image sizes range from 300 × 300 to 1500 × 900.
The dataset contains many rotation ships with large aspect ratios. All objects are annotated
with OBBs. The entire dataset is divided into train, validation, and test groups containing
436, 181, and 444 images.

We conducted ablation studies and main experiments on HRSC2016. The input
resolution for training and testing images was set to 800 × 800. The training was conducted
using the SGD optimizer, with a learning rate of 0.05. We trained the model for 200 epochs
on RTX 3090 GPU with the batch size set to 8.

4.1.2. DOTA

DOTA [41] is a large public dataset for object detection in aerial images. The image
sizes in DOTA range from 800 × 800 to 20,000 × 20,000, containing objects with various
scales, orientations, and shapes. It includes 2806 aerial images with a total of 188,282 anno-
tated instances. There are 15 categories in total, including airplanes (PL), baseball diamonds
(BD), bridges (BR), ground track fields (GTF), small vehicles (SV), large vehicles (LV), ships
(SH), tennis courts (TC), basketball courts (BC), storage tanks (ST), soccer fields (SBF),
roundabouts (RA), harbors (HA), swimming pools (SP), and helicopters (HC). The en-
tire dataset is divided into training, validation, and testing sets, with ratios of 1/2, 1/6,
and 1/3, respectively.

We note that the images in DOTA are too large; therefore, we cropped the original
images into 1024 × 1024 patches with the stride 200 for training and testing. SGD optimizer
was used for training, and the learning rate was set to 0.1. We trained the model on RTX
3090 GPU for 200 epochs with the batch size set to 32.

4.2. Ablation Study
4.2.1. Evaluation of the Proposed Modules

We conducted experiments on the HRSC2016 dataset and DOTA dataset to demon-
strate the effectiveness of our proposed modules. YOLOX-S was used as the baseline in
this paper. All experiments adopted the same data augmentation and training strategies.
The experimental results are shown in Tables 1 and 2.

The proposed RE-Net significantly improves the detection performance, with accu-
racies of mAP and mAP50:95 increased by 1.62% and 7.99%, respectively. This indicates
that the channel expansion structure can enhance the network’s ability to extract features
in different dimensions, thus improving detection performance. When trained with the
DynamicOTA, our model further improved mAP by 0.35%, proving its effectiveness. In ad-
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dition, the NMS-free method achieved an increase of 1.96% in mAP50:95, though there was
a slight decrease in mAP.

Table 1. Effects of the proposed components on HRSC2016 dataset.

Method Different Variants

RE-Net × X X X
DynamicOTA × × X X

SSM × × × X

mAP 1 88.20 89.82 90.17 89.46
mAP50:95 60.07 68.06 68.48 70.44

1 mAP (IoU threshold is 0.5). X represents that the corresponding module is used in the method, while× indicates
that the corresponding module is not used in the method.

We further conducted experiments on the DOTA dataset. The image size was resized
to 1024 × 1024 using single-scale training and testing. The experimental results are shown
in Table 2. With the proposed RE-Net and DynamicOTA, mAP can be increased from
73.85% to 76.27%, and it can also cause a slight decrease in mAP that is ignorable when
using SSM for the deployment of NMS-free detection.

Table 2. Effects of the proposed components on DOTA dataset.

Method Different Variants

RE-Net × X X X
DynamicOTA × × X X

SSM × × × X

mAP 73.85 75.51 76.27 76.15
X represents that the corresponding module is used in the method, while × indicates that the corresponding
module is not used in the method.

4.2.2. Evaluation of Re-Parameterization Channel Expansion Network

To obtain the optimal channel expansion hyperparameters, we conducted experiments
as shown in Table 3. The introduction of the ELAN structure improved mAP and mAP50:95
by 1.28% and 4.78%, respectively. As the channel expansion factor increases, the proposed
RE-Net obtains better detection performance. The highest performance was achieved
when the channel expansion factor E was set to 2.0, with mAP and mAP50:95 reaching
89.82% and 68.06%, respectively. Nevertheless, the performance decreased as the channel
expansion factor E increased to 2.5. This suggests that setting a channel expansion factor
that is too large does not improve network performance but instead has negative effects.
Consequently, we set the channel expansion factor to 2.0.

Table 3. Analysis of RE-Net on HRSC2016 dataset.

Backbone ELAN RepExpand Expand Ratio mAP mAP50:95

CSPDarkNet × - - 88.20 60.07

RE-Net

X × - 89.48 64.85
X X 0.5 89.13 63.81
X X 1.0 89.56 64.48
X X 1.5 89.78 66.43
X X 2.0 89.82 68.06
X X 2.5 89.59 67.04

X represents that the corresponding module is used in the method, while × indicates that the corresponding
module is not used in the method.
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4.2.3. Evaluation of DynamicOTA

The ablation study on DynamicOTA is shown in Table 4. DynamicOTA improves
accuracy over different backbones. With YOLOX’s CSPDarkNet as the backbone, mAP and
mAP50:95 are improved by 1.00% and 7.43%, respectively. With our RE-Net as the backbone,
mAP and mAP50:95 are improved by 0.35% and 0.42%, respectively. Experimental results
confirm the effectiveness and generalization of DynamicOTA.

Table 4. Analysis of DynamicOTA on HRSC2016 dataset.

Backbone DynamicOTA mAP mAP50:95

CSPDarkNet × 88.20 60.07
X 89.20 67.50

RE-Net × 89.82 68.06
X 90.17 68.48

X represents that the corresponding module is used in the method, while × indicates that the corresponding
module is not used in the method.

Figure 16 further offers the visualization of some detection results. Our detector is suf-
ficiently trained due to improved label assignment, helping to achieve better performance.
Compared with SimOTA, our method can obtain better results with fewer false detections
(see the first row in Figure 16) and missed detections (see the second and third rows in
Figure 16).

Figure 16. Detection results of models trained with different label assignment strategies.
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4.2.4. Evaluation of Sample Selection Module

Table 5 shows the results of ablation study for the NMS-free method on the HRSC2016
dataset. From the results based on CSPDarkNet, it can be seen that the strategies of pre-
train and stopping gradient backpropagation are both necessary for the training of SSM.
The proposed SSM finally increases mAP by 0.28% and mAP50:95 by 6.11%, proving the
superiority of this approach. When using RE-Net as the backbone network, the mAP
decreased slightly while the mAP50:95 increased, suggesting that the NMS-free method
may suffer a slight mAP degradation as the mAP approaches state-of-the-art condition.
In comparison, mAP50:95, which indicates the performance of higher-precision detection,
obtained more notable improvement. Since we know that our method with SSM has a
very small decrease in mAP but obtains more profit in mAP50:95, in the following experi-
mental comparison with the other detectors, we only use the metric mAP for quantitative
comparison as generally performed in the current literature.

Table 5. Analysis of sample selection module on HRSC2016 dataset.

Backbone Method Pretrain Stop Grad mAP mAP50:95

CSPDarkNet NMS - - 88.20 60.07
CSPDarkNet SSM × × 80.60 52.45

X × 81.93 55.87
X X 88.48 66.18

RE-Net NMS - - 89.82 68.68
RE-Net SSM X X 89.41 69.29

X represents that the corresponding module is used in the method, while × indicates that the corresponding
module is not used in the method.

4.3. Main Results
4.3.1. Results on HRSC2016

Table 6 shows the performance comparison of different methods on the HRSC2016
dataset. The results with red and blue colors indicate the best and second best results,
respectively. Our method without SSM outperforms other compared single-stage methods,
with the mAP achieving 90.17%. Our NMS-free method of adding SSM also achieves
comparable performance, with mAP achieving 89.50%.

Table 6. Comparisons with other methods on HRSC2016 dataset.

Method Backbone Size mAP

Two-Stage:

RoI Trans. [13] ResNet101 512 × 800 86.20
GlidingVertex [42] ResNet101 512 × 800 88.20

DCL [43] ResNet101 800 × 800 89.46
Oriented R-CNN[17] ResNet50 800 × 800 90.40

Single-Stage:

RSDet [44] ResNet152 800 × 800 86.50
BBAVectors [29] ResNet101 608 × 608 88.60

PIoU [32] DLA-34 512 × 512 89.20
R3Det [27] MobileNetV2 800 × 800 88.71
SLA [45] ResNet101 768 × 768 89.51
DAL [46] ResNet101 800 × 800 89.77

FCOSR-S [14] MobileNetV2 800 × 800 90.08
S2ANet [12] ResNet101 800 × 800 90.17

Ours (NMS) RE-Net 800 × 800 90.17
Ours (SSM) RE-Net 800 × 800 89.50
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The visualization of some detection results is provided in Figure 17. Our method can
accurately detect the ship in complex scenes in aerial images. Even for densely arranged
long narrow ships that are difficult to detect, our method still performs well and outputs
high-quality detection results (see the first row in Figure 17). Our method still detects
objects accurately when the weather and lighting change (see the third row in Figure 17).

Figure 17. Visualization of some detection results on HRSC2016 dataset.

4.3.2. Results on DOTA

We conducted performance comparisons with some advanced detectors on the DOTA
dataset, and the results are shown in Table 7. The results with red colors indicate the best
results for the corresponding detector category. The image size was resized to 1024 × 1024,
using single-scale training and testing. Our NMS and NMS-free methods achieved the
mAP of 76.27% and 76.15%, respectively, which are the highest and second highest values
among the compared anchor-free detectors.

Table 7. Comparisons with other state-of-the-art methods on DOTA dataset.

Method Backbone PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

Anchor-Based (Two-Stage)

RoI Trans. [13] R101 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67 69.56
CSL [47] R152 90.25 85.53 54.64 75.31 70.44 73.51 77.62 90.84 86.15 86.69 69.60 68.04 73.83 71.10 68.93 76.17

ReDet [16] ReR50 88.79 82.64 53.97 74.00 78.13 84.06 88.04 90.89 87.78 85.75 61.76 60.39 75.96 68.07 63.59 76.25
Oriented R-CNN [17] R101 88.86 83.48 55.27 76.92 74.27 82.10 87.52 90.90 85.56 85.33 65.51 66.82 74.36 70.15 57.28 76.28

Anchor-Based (Single-Stage)

DAL [46] R101 88.61 79.69 46.27 70.37 65.89 76.10 78.53 90.84 79.98 78.41 58.71 62.02 69.23 71.32 60.65 71.78
SLA [45] R101 85.23 83.78 48.89 71.65 76.43 76.80 86.83 90.62 88.17 86.88 49.67 66.13 75.34 72.11 64.88 74.89

S2ANet [12] R50 89.11 82.84 48.37 71.11 78.11 78.39 87.25 90.83 84.90 85.64 60.36 62.60 65.26 69.13 57.94 74.12
R3Det [27] R101 89.80 83.77 48.11 66.77 78.76 83.27 87.84 90.82 85.38 85.51 65.67 62.68 67.53 78.56 72.62 76.47

Anchor-Free (Single-Stage)

PIoU [32] DLA34 80.90 69.70 24.10 60.20 38.30 64.40 64.80 90.90 77.20 70.40 46.50 37.10 57.10 61.90 64.00 60.50
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Table 7. Cont.

Method Backbone PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

BBAVectors [29] R101 88.63 84.06 52.13 69.56 78.26 80.4 88.06 90.87 87.23 86.39 56.11 65.62 67.10 72.08 63.96 75.36
PolarDet [30] R50 89.73 87.05 45.30 63.32 78.44 76.65 87.13 90.79 80.58 85.89 60.97 67.94 68.20 74.63 68.67 75.02
FCOSR [14] MobileNetv2 89.09 80.58 44.04 73.33 79.07 76.54 87.28 90.88 84.89 85.37 55.95 64.56 66.92 76.96 55.32 74.05

Oriented RepPoints [31] R50 87.02 83.17 54.13 71.16 80.18 78.40 87.28 90.90 85.97 86.25 59.90 70.49 73.53 72.27 58.97 75.97

Ours (NMS) RE-Net 88.88 83.99 51.20 71.77 81.33 78.15 88.58 90.88 87.60 86.51 61.34 62.35 76.36 73.51 61.69 76.28
Ours (SSM) RE-Net 87.67 83.40 53.37 69.29 81.22 84.00 88.73 90.86 87.30 87.00 57.14 66.45 76.44 71.28 58.13 76.15

Figure 18 shows visualizations of the detection results obtained by our detector in
comparison with state-of-the-art detectors. Our detector performs better in detecting
different categories, such as vehicles, helicopters, harbours, and ships. Moreover, our
anchor-free single-stage detector has a more streamlined architecture and fewer parameters
compared with anchor-based two-stage detectors like Oriented R-CNN [17] and single-
stage detectors like S2ANet [12].

Figure 18. Visualization of some results of different detectors on DOTA dataset. The red circles
indicate the differences among the results of the three detectors.
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Figure 19 shows some visualization of the detection results. It can be observed that the
objects in the DOTA dataset vary greatly in scale, and many objects are densely arranged.
Detecting densely arranged small objects, such as small vehicles and ships, is challenging
in aerial images. Our detector achieves excellent performance in dense object detection
without missed detection (see the first row of Figure 19). In addition, our detector does
not have repeated detection for large objects and achieves accurate detection (see the
second row of Figure 19). From the UAV aerial perspective, objects usually have complex
backgrounds, while our detector accurately detects the objects in the image (see the third
row of Figure 19).

Figure 19. Visualization of some detection results on DOTA dataset.

4.3.3. Results of Deployment

We conducted a re-parameterization experiment on the DOTA dataset using a
1 × NVIDIA GTX 1080Ti and 1024 × 1024 input image size. Comparison of the results
before and after re-parameterization are shown in Table 8. After the re-parameterization,
the model parameters, computation load, and inference time are reduced. Meanwhile,
the detection accuracy remains the same as that before the transformation.
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Table 8. Inference time, parameters and GFLOPs before and after re-parameterization.

Re-Parameterization Parameters GFLOPs Inference Time mAP

× 18.07 M 193.67 G 24.9 ms 76.15
X 16.95 M 188.40 G 22.3 ms 76.15

X represents that the corresponding module is used in the method, while × indicates that the corresponding
module is not used in the method.

We tested the inference speed of several compared algorithms as shown in Table 9. We
used DOTA as the test dataset with the image size of 1024 × 1024 and the batch size set to
one. Our detector achieved a competitive mAP, while the inference speed was much faster
than that of the other detectors.

In addition, a statistical analysis with the Friedman test and post hoc Nemenyi test [48]
was performed on the detection accuracy scores of these representative detection algorithms
on different datasets. The assumption that two algorithms perform the same in accuracy
can be rejected when the p-value obtained by the test is smaller than 0.05. Through the
Friedman test, we obtained p = 0.025, indicating that there is a significant difference in
performance among the methods of S2ANet, ReDet, R3Det, Oriented RepPoints and Ours.
The post hoc Nemenyi test further provided the p-values for the pairwise comparisons.
More specifically, we obtained p = 0.021 for the comparing pair Ours-S2ANet, indicating
statistically significant difference in performance between our algorithm and S2ANet
(which can also be seen from the mAP in Table 9). As for the methods of ReDet, R3Det,
Oriented RepPoints that have relatively high accuracy, the Nemenyi test shows that there
is no significant statistical difference between them and Ours (p = 0.900, 0.739, 0.900 for
Ours-ReDet, Ours-R3Det and Ours-Oriented RepPoints, respectively). However, as shown
in Table 9, our method consumes significantly lower inference time compared with them,
revealing its good overall performance in detection accuracy and speed.

Table 9. Inference time and mAP on DOTA dataset for different detection models.

Method S2ANet [12] ReDet [16] R3Det [27]
Oriented

RepPoints [31] Ours

Inference Time 81.5 ms 106.6 ms 102.6 ms 75.3 ms 22.3 ms

mAP 74.12 76.25 76.47 75.97 76.15

Next, we deployed our detector on the NVIDIA Jetson Xavier NX embedded device.
The inference batch size was set to one, the experimental dataset was HRSC2016, and the
input images were resized to 800 × 800. We performed L1 weight channel pruning to
accelerate the network inference speed further, as shown in Table 10. Our detector achieved
an inference speed of 28.40 FPS. After channel pruning, the inference speed was improved
to 56.46 FPS. Moreover, our detector was easy to deploy on various embedded devices,
such as FPGAs and ARMs, as it does not require NMS post-processing.

Table 10. Deployment results on NVIDIA Jetson Xavier NX.

Method Parameters GFLOPs Inference Speed mAP

Baseline 16.95 M 114.84 G 28.40 FPS 89.50
30% Pruning 9.40 M 65.86 G 35.07 FPS 89.39
40% Pruning 7.33 M 52.28 G 37.93 FPS 89.33
50% Pruning 5.58 M 40.50 G 56.46 FPS 88.89

5. Conclusions

In this study, we analyzed the limitations of current oriented object detection meth-
ods, which frequently employ complex network structures, exhibit slow inference speeds,
and present deployment challenges. We proposed a fast and easy-to-deploy oriented
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detector for UAV aerial images. First, we designed a RE-Net that enhances the feature
representation capabilities of the network and can better address the challenges of UAV
aerial object detection. During inference, RE-Net can be equivalently converted to a more
streamlined structure, reducing the parameters and computational load. To further improve
the detection performance in aerial images, we propose DynamicOTA, which facilitates
high-accuracy detection in UAV aerial images. Dynamic label assignment effectively ad-
dresses the imbalance between positive and negative samples and solves the problem of
insufficient positive samples in the early stages of training, thereby improving the training
speed, stability, and detection accuracy. In addition, we explored NMS-free techniques
and introduced an SSM to facilitate the deployment of our detector on embedding devices.
Extensive experiments on aerial image datasets demonstrate the superiority of our method.
We achieved the mAP of 76.27% and 76.15% on the DOTA dataset and 90.17% and 89.50%
on the HRSC2016 dataset using the NMS and NMS-free methods, respectively, outperform-
ing many advanced oriented detectors. We deployed our NMS-free detector on NVIDIA
Jetson Xavier NX and achieved 28.40 FPS at an 800 × 800 image size. In the future, we
will further study ways to combine label assignment strategies to guide the training of the
NMS-free detector to achieve better end-to-end object detection.
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