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Abstract: Large areas of the seafloor in the Laptev Sea consist of submarine permafrost, which
has experienced intense degradation over the last decades and centuries. Thermal abrasion of the
submarine permafrost results in upward advection of suspended matter, which could reach the
surface layer in shallow areas. This process is visually manifested through increased turbidity of the
sea surface layer, which is regularly detected in optical satellite imagery of the study areas. In this
study, satellite data, wind and wave reanalysis, as well as in situ measurements are analyzed in order
to reveal the main mechanisms of seafloor erosion in shallow areas of the Laptev Sea. We describe the
synoptic variability in erosion at the Vasilyevskaya and Semenovskaya shoals in response to wind
and wave conditions. Finally, using reanalysis data, daily suspended matter flux from this area was
evaluated during ice-free periods in 1979–2021, and its seasonal and inter-annual variabilities were
described. The obtained results contribute to our understanding of subsea permafrost degradation,
the sediment budget, and carbon and nutrient cycles in the Laptev Sea.

Keywords: bottom sediments; coastal upwelling; seafloor erosion; submarine permafrost; thermal
abrasion; suspended matter flux; wind and wave forcing; Laptev Sea; Arctic Ocean

1. Introduction

The Arctic Ocean is extremely vulnerable to the ongoing climate change. In general,
warming of the Arctic is evident through a reduction in ice coverage and increase in air
temperatures [1,2]. In certain areas, it also results in intense coastal retreat [3–6] and
degradation of subsea permafrost [7–9]. The latter processes are especially important in the
Laptev Sea, which is characterized by wide coastal and submarine permafrost areas [10–14].
Coastal and submarine permafrost in the Laptev Sea is a large carbon pool degradation,
which is directly related to greenhouse gas emissions [4,15,16]. Moreover, oxidation of
eroded carbon to carbon dioxide (CO2) plays a primary role in supersaturation of the water
column in the Laptev Sea and the adjacent part of the East Siberian Sea, and causes extreme
acidification there [17–19].

Thawing of the Arctic permafrost could release significant amounts of carbon into
the atmosphere in this century. Ancient ice complex deposits outcrop along the ∼7000 km
coastline of the East Siberian Arctic shelf and the associated shallow subsea permafrost
are two large pools of permafrost carbon, yet their vulnerabilities towards thawing and
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decomposition are largely unknown [15,20]. Recent Arctic warming has been stronger than
was predicted by several degrees, and has been particularly pronounced over the coastal
East Siberian Arctic. Increasing Lena River heat discharge and wind-induced water mixing
causes progressive warming of the surface sediments and high rates of vertical subsea
permafrost degradation [7,21]. There is, thus, a pressing need to improve our understanding
of the links between permafrost carbon and climate change in this low-accessible region.

Coastal erosion and river discharge are the main sources of suspended sediment
in the Laptev Sea, which were explicitly studied in previous works [22–24]. Horizontal
and vertical transport of suspended matter within the sea is governed by the spreading
and mixing of large river plumes, as well as coastal and shelf currents, which have large
seasonal and inter-annual variability [25–33]. Entrainment of suspended matter by sea ice
and its subsequent advection to the deep central part of the Arctic Ocean during the cold
season is an important mechanism of the large-scale export of suspended sediments from
the Laptev Sea [27,34–36].

Seafloor erosion could also contribute to the sediment budget of the Laptev Sea.
Generally, this process occurs in shallow areas where wind and wave turbulence from
the surface layer reaches the seafloor and causes the entrainment of bottom sediments to
the water column [15,37–39]. In the Arctic Ocean, erosion of subsea permafrost areas is
also affected by the sea temperature of the sea bottom layer [40]. In certain shallow areas,
eroded sediments could rise up to the surface layer and significantly increase its turbidity.
In particular, intense seafloor erosion in different parts of the Laptev Sea often manifests in
satellite imagery through the appearance of turbid sea areas [41,42]. However, this process
has received little attention before. In particular, we are not aware of any comprehensive
study that addressed the dynamics of and variability in seafloor erosion in shallow areas in
the Laptev Sea and provided the related assessments of sediment fluxes.

This paper is focused on seafloor erosion in several of the largest shoals in the Laptev
Sea, where this process is detected by satellite observations. The general scheme of the
suggested methodology is the following. First, we calculate the area (in km2) of turbid
zones (formed as a result of seafloor erosion at the shoals) visible in optical satellite imagery.
As a result, we obtain information about the intensity of seafloor erosion, albeit only during
~100 cloud-free and ice-free days during 2000–2021 due to satellite data temporal coverage.
We compare the calculated areas of turbid zones with synchronous wind-wave conditions,
reconstructed for the considered days using the numerical model. After we obtain the
dependence of the intensity of seafloor erosion on wind-wave conditions, we reconstruct
this intensity for every ice-free day during 1979–2021 due to numerical model temporal
coverage. Finally, we use these data and in situ measurements of sediment concentrations
to assess the eroded sediment matter flux from this shoal during the ice-free seasons
in 1979–2021.

The following paper is structured in the following way. Section 2 describes the study
area, as well as the satellite, wind and wave reanalysis, and the in situ data used in this
work. The results from the processing of the satellite data and a description of the spatial
and temporal variability in turbid erosion-induced areas pertain to Section 3. In Section 4,
the numerical dependences between the intensity of seafloor erosion and wind-wave
forcing is described. Based on this result, the flux of eroded sediments and its seasonal
and inter-annual variability scales are evaluated and discussed. The conclusions are then
presented in Section 5.

2. Data and Methods
2.1. Study Area

The Laptev Sea is a marginal sea of the Arctic Ocean located off the northeastern coast
of Siberia (Figure 1). This sea is bounded by the Taimyr Peninsula and the Severnaya
Zemlya archipelago in the west and the New Siberian Islands in the east. Compared to
the western and eastern regions of the Eurasian Arctic influenced by cyclonic activity of
the Atlantic and Pacific oceans, respectively, the Laptev Sea has severe climate conditions
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including extremely low winter temperatures and a short ice-free season [43]. Intense ice
melting starts in late June–early July, and by August–September the whole sea is free of
ice. Ice formation starts in October, and by late October–early November the Laptev Sea is
completely covered by ice [30]. The Laptev Sea is shallow, and half of the sea area is located
at the continental shelf with depths < 50 m.

According to recent thermodynamic sediment data and electromagnetic surveys,
the submarine permafrost is continuous for the major part of the Laptev Sea shelf from
the shoreline up to isobaths of 80–100 m [44,45]. However, at certain shelf areas, the
submarine permafrost is discontinuous and contains gas and gas hydrate accumulations.
The submarine permafrost layer has a thickness of several hundred meters, which degrades
at a rate of about 14–18 cm per year [7,11,46,47].
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The most intense seafloor erosion occurs in the largest offshore shallow area of the
Laptev Sea westward from the Stolbovoy Island, which consists of the closely located
Vasilyevskaya and Semenovskaya shoals (hereafter referred to as VS) [41] (Figure 1b).
Erosion of the submarine permafrost at this shoal is caused by wind- and wave-induced
thermal abrasion of the submarine permafrost during ice-free periods and is enhanced by
positive bottom layer temperatures [40]. This process manifests in increased turbidity in
satellite images, which is not associated with the river discharge of coastal erosion due to
the offshore location of these areas. Intense seafloor erosion is also registered by satellite
observations at the shoal northeastward from the Anabar and Olenyok gulfs (hereafter
referred to as AO), near the Lena Delta (hereafter referred to as LD) and at other smaller
shallow regions at the Laptev Sea shelf (indicated by red ellipses in Figure 1).

Rapid thawing of the permafrost at all of these shoals due to increased bottom layer
temperatures increases the entraining of suspended matter to seawater, which alters local
sediment transport and depositions patterns [13]. This process significantly affects local
topography and bathymetry, e.g., in the past it caused erosion and the disappearance of
the Vasilyevskiy (in the 1930s) and Semenovskiy (in the 1960s) islands and the subsequent
formation of Yaya Island (in the 2010s) at VS [13].

2.2. Satellite Data

This study is based on joint analysis of satellite imagery, wind and wave reanalysis,
and in situ measurements. Satellite data consist of the MODIS Terra/Aqua optical imagery
with a spatial resolution of 250 m and daily temporal coverage acquired in 2000–2021. In
order to select relevant satellite data, all images acquired during the warm period (late
June–early October) were visually inspected to avoid aliasing from sea ice and clouds. We
did not use the available satellite products with a higher resolution (e.g., Sentinel-2/3,
Landsat 7/8, MERIS). Despite the fact that they could provide better accuracy for studying
turbid zones in the study area, they have less frequent temporal coverage, which is crucial
for this work.

As was mentioned earlier, coastal erosion and river discharge are important sources
of suspended sediment in the Laptev Sea, which form turbid zones along the coast and
near river deltas and estuaries. Turbid zones formed by seafloor erosion, conversely, are
localized at offshore sea areas that generally provide an opportunity to distinguish them
from turbid zones associated with coastal erosion and river discharge. However, in many
cases, seafloor erosion turbid zones coalesce with either coastal erosion zones or turbid
river plumes. This process hinders accurate determination of the outer borders and areas
of seafloor erosion turbid zones, which is among the main complexities of their study using
satellite data.

The seafloor erosion area at VS, which is one of the largest in the Laptev Sea, is located
far from the shoreline (Figure 1). This turbid area (even when it is fully developed) does
not coalesce with coastal erosion zones or turbid river plumes. As a result, the outer border
and area of seafloor erosion at VS could be clearly detected in satellite imagery. Conversely,
another large seafloor erosion area at AO is located in close proximity to the shoreline
(Figure 1) and is often overlapped with the coastal erosion turbidity zone. Similar to AO,
the seafloor erosion zones at smaller shoals located near LD and in the southeastern part of
the Laptev Sea (Figure 1) are often indistinguishable from turbid zones formed by river
discharge and coastal erosion.

All available cloud-free and ice-free satellite images of VS, which is the main study
region in the Laptev Sea (black rectangle in Figure 1), were numerically processed in order
to distinguish the presence or absence of the erosion process and to reconstruct the area
of the turbid zone in the latter case. For this purpose, the following ranges of RGB values
corresponding to turbid zones in the processed images were determined: 30–50 for red,
30–60 for green, and 20–50 for blue. Once all three conditions were met by a pixel, it
was marked as a part of a turbid zone, otherwise it was related to a nonturbid sea. The
exact values of the area of the turbid zone (in km2) reconstructed by this procedure were
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used to qualitatively study the variability in the erosion intensity at VS in response to
external forcing. In particular, we revealed the dependence of the reconstructed values on
different days in 2000–2021 on synchronous wind-wave forcing conditions obtained from
the numerical model, which is described below.

2.3. Wave Reanalysis Data

The wind-waves’ parameters in the Laptev Sea were modeled by the WAVEWATCH
III (WWIII) distributed by NOAA/NCEP [49]. This model allows the effect of wind forcing,
ocean ice influence, wave energy dissipation, nonlinear interactions and bottom friction
to be considered. The WWIII applies a numerical solution of the equation: dN/dt = S/σ,
where N(k, θ) ≡ F(k, θ)/σ is the wave action density, F is the energy density, k is the
wavenumber, θ is the wave direction, σ is the relative frequency, d/dt is the total derivative
and S is the total impact of sources and sinks [49]. S is the function that reproduces the
wind energy transfer, nonlinear wave interactions, wave energy dissipation through the
white capping and collapse in the shallow water, bottom friction, wave reflection and other
processes. The WWIII output parameters are the following: significant wave height (SWH),
wave propagation direction, mean wave period (WP) and mean wavelength (WL).

In this study, WWIII implementation with the ST6 scheme [50,51] was used. A Discrete
Interaction Approximation (DIA) was used to reproduce nonlinear wave interactions. Sea
ice coverage was considered by using the IC0 scheme, where a grid point is considered as
ice-covered if ice concentration is >0.5. Bottom friction in the shallow water was consid-
ered by the JONSWAP scheme. The model was applied with 36 spectral directions and
36 frequency intervals (0.03–0.843 Hz) with the integration time step equal to 15 min.

As input data, the wind fields and ocean ice concentration data are received from
the NCEP/CFSR reanalysis (1979–2010, spatial resolution ~0.3◦) [52] and NCEP/CFSv2
reanalysis (2011–2021, spatial resolution ~0.2◦) [53]; the time step of each reanalysis is 1 h
(https://rda.ucar.edu accessed on 18 August 2023). The output time step was set as 3 h. The
reanalysis data were linearly interpolated to a special unstructured mesh, which consists
of 36,176 nodes (Figure 2). Linear interpolation of reanalysis data to the unstructured
mesh was performed by using Python code. The interpolated wind fields were used in the
wave model in mode “as is”. The digital model of the bottom relief was obtained from the
ETOPO 1 min database with the addition of digitized navigation maps. Navigation maps
had a spatial resolution of about 500 m in the coastal zone. The mesh covers the Laptev,
East Siberian, Chukchi and Beaufort seas (Figure 2). The mesh spatial resolution is ~800 m
in the coastal zone and ~15 km in the northern parts of these seas. The computational
grid has an open boundary at the north without any input data; however, these areas
are covered by stable sea ice during the whole year. Open boundaries are also located at
narrow straits in the west (Vilkitskiy Strait), east (M’Clure Strait and Amundsen Gulf) and
south (Bering Strait), which significantly limits the wave energy flow (Figure 2). The WWIII
model provides good quality results at low computational cost [54,55]. A comparison of the
modeled and measured significant wave height by the mooring station in the Chukchi Sea
provides the correlation coefficient equal to 0.94 and RMSE equal to 0.31 m [56]. Preliminary
results based on this WWIII implementation, technical details and settings, and model
quality assessments are presented in [56,57].

https://rda.ucar.edu
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3. Results

In this study, spatial and temporal variability in turbid seafloor erosion areas at VS,
AO and smaller shoals near LD was analyzed. Then the isolated turbid zone at VS received
special attention to study its response to the external forcing condition and to quantify
fluxes of suspended sediments from this area. Similar procedures at other shoals were
not performed as they were hindered due to their common coalescence with turbid zones
formed by river discharge and coastal erosion.

3.1. Seafloor Erosion at VS

Seafloor erosion at VS was studied using 106 satellite images of the area. The majority
of these images were acquired in August and September, while only 15 images correspond
to July and October because of the almost constant presence of sea ice till late July and
overcast conditions in October. The turbid zone at VS shows a high variability in shape, size
and spatial position on the synoptic time scale caused by three main processes (Figure 3).
During certain periods (with a duration from several days to several weeks), area of the
turbid zone steadily increases, which indicates the continuous process of seafloor erosion.
Figure 3a demonstrates an example of this process observed in late July and August 2011.
Despite partial cloud coverage of the study area, it is clearly visible that the turbid zone
increased by more than 10 times during 2.5 weeks from 29 July 2011 to 15 August 2011.
Note that the growth intensity of the turbid region is not homogenous. The area of the
turbid zone grows much slower during 29 July–8 August 2011 as compared to 8–15 August
2011. The satellite image of the study area acquired on 15 August 2011 demonstrates fully
developed turbid regions at VS with a maximal area equal to 9300 km2. The outer border
of this area corresponds well with the isobath of 10 m (Figure 1b).
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(b) dissipation and (c) advection of local turbid area formed by seafloor erosion.

Dissipation of the turbid zone associated with the secession of seafloor erosion is also
commonly observed in satellite images. This process is indicated by the steady decrease in
the area of the turbid zone. Figure 3b demonstrates an example of dissipation registered in
August 2018. The area of the turbid zone could significantly decrease during one day as was
observed on 11–12 August 2018. On 28 August 2018, i.e., 16 days later, the area of the turbid
zone at VS was <772 km2, indicating its almost complete dissipation. Similar to formation
periods, dissipation velocity was not homogenous for different observed periods. The third
important process observed at VS is advection of the turbid zone, i.e., changes in its shape
and position without significant changes in its area (Figure 3c). This process is associated
with the horizontal motion of the turbid plume caused by intense shelf circulation without
additional influx of eroded seafloor sediments. Based on the analyzed satellite images, the
duration of the advection process is relatively short and does not exceed several days. The
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typical time scale of the formation and dissipation of the turbid zone is much longer and is
equal to 2–3 weeks. As a result, the advection process could be regarded as the early stage
of the dissipation process.

3.2. Seafloor Erosion at AO and Small Shoals

Analysis of the spatial and temporal variability in the turbid zone associated with
seafloor erosion at AO was hindered by its regular coalescence with the turbid zone
associated with coastal erosion and river discharge (Figure 4). In the latter case, changes
in the area, shape and size of the seafloor erosion zone were blurred by this coalescence
(Figure 4b); therefore, only noncoalescence cases were considered (Figure 4a). As a result,
only 38 satellite images of AO were analyzed.
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As was previously carried out with VS, the formation, dissipation and advection
processes of the turbid zone at AO were identified (Figure 5). Due to the smaller area of
the shoal (~2 km2) at AO as compared to that at VS (~6 km2), which corresponds to the
area of the well-developed seafloor erosion zone, the typical time scale of the formation
and dissipation of the turbid zone at AO was equal to 6–10 days. Figure 5a demonstrates
an example of the formation of the turbid zone at AO observed during 8–12 August 2011.
Much as at VS, advection of the turbid zone at AO lasted for only 2–3 days (Figure 5b),
which was further followed by its dissipation.
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Apart from the two large shallow regions, VS and AO, seafloor erosion and the
formation of the offshore turbid zones is also observed at a dozen small shoals in the Laptev
Sea (Figure 6). Several shoals are located in the Olenyok Gulf (Figure 6a) and between the
Olenyok Gulf and the Lena Delta close to Leykina Island (Figure 6b). Several more shoals
are located northeastward (Figure 6b) and northwestward (Figure 6c) from the Lena Delta.
Intense seafloor erosion at these areas is governed by wind-driven upwelling processes,
which was described in [42]. The third group of shoals is located in the southeastern part
of the Laptev Sea close to Zatoplyaemyy Island [13] (Figure 6d). The total area of all small
offshore shoals in the Laptev Sea (except AO and VS) bounded by the isobaths of 10 m is
estimated at ~2 km2.
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4. Discussion

Wind-induced waves have a direct effect on the area of the suspended sediment region.
In shallow areas where wind-induced wave turbulence in the surface layer of the ocean is
able to reach the seafloor, bottom sediment, eroded by the process of thermal abrasion, is
entrained in the water column and rises to the surface layer appearing as a turbid region
in the satellite images. Due to its distant location from coastal areas and relatively large
size, we focused on the turbid zone at the VS study area to reveal its dependence on
external forcing conditions, namely, wind and waves. For this purpose, the wind speed
data obtained from NCEP/CFSR/CFSv2 reanalysis and wave length data were analyzed
provided by the wave model described in Section 2.

The area of the turbid zone at VS for the 106 trial cases showed moderately strong
linear dependence (R > 0.6) when associated with wave length values averaged for periods
between 2 and 16 days. On the other hand, no relation was observed between the area
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of the turbid zone at VS and both wind stress and wind speed. This reveals that wave
length plays a predominant role in the formation of bottom resuspension at VS. The largest
Pearson correlation coefficient R (0.74) between wave length (L in m) and an area of a
turbid zone at VS (S in km2) corresponds to the integration period of 9 days (Figure 7).
The resulting regression equation that describes numerical dependence between the two
variables is the following: S = 354·L − 7148.
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The mean absolute error of 38% quantifies the ability of this equation to reproduce
absolute values of the area of the turbid zone at VS. The root mean square error is 1423 km2

caused by the sensitivity of this characteristic to large errors. We note that the obtained
regression showed better agreement with gauge measurements for low wave forcing cases
compared to storm conditions. The obtained correlation coefficient R = 0.74 was also
analysed using the Student’s t-test. Using a confidence interval of 0.05 (α = 0.05, confidence
level of 95%) and a number of degrees of freedom of 104 (v = n − 2) to determine the critical
value of t, it was found that the absolute t value of the sample studied was greater than
the critical value. Therefore, it can be concluded that the correlation present between wave
length and the area of the turbid zone at VS is statistically significant.

The obtained regression equation described above was applied to obtain the daily
areas of the turbid zone at VS during the ice-free season from 1979 to 2021 using wave
reanalysis data calculated for this period. Note that in the case of the 9-day average of
the wave length preceding a certain day being 20 m or less, the area of the turbid zone at
VS at this day was presumed to be zero, i.e., the turbid zone was absent. The obtained
area values were then used to calculate, first, the volume of seawater V, which contains
the resuspended sediment at VS using bathymetry data from [48,58] and, second, the
mass of the resuspended sediment M = V·C, where the average local concentration of the
suspended sediment C = 15 mg/L was obtained from in situ measurements performed
at VS in September 2005 (Figure 1b) [48]. The main statistical characteristics of the daily
suspended sediment flux at VS during the ice-free season reconstructed for 1979–2021 are
provided in Table 1.
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Table 1. The main statistical characteristics of daily suspended sediment flux (in Tg) at VS during
ice-free season reconstructed for 1979–2021.

Number of
Cases Mean Median Min Max Standard

Deviation
Coefficient
of Variation Skewness

2948 0.33 0.31 0 1.05 0.17 53.22 0.53

In order to calculate the total annual mass of the resuspended sediment at VS, the
resulting daily mass of the suspended sediment in the VS region was analysed and divided
into separate events that corresponded to independent resuspension events. The mass
change for each of these suspension events was calculated and summed to obtain a total
resuspended mass per year. Figure 8 illustrates the inter-annual variability in the recon-
structed total annual mass of the resuspended sediments at VS during the ice-free season
in 1979–2021. The yearly total mass varies from 0.6 to 2.1 Tg with an average yearly value
equal to 1.2 Tg. Considering the fact that, annually, the river discharge accounts for 24.1 Tg
of sediment delivered to the Laptev Sea, while coastal abrasion provides 58.4 Tg [48], the
resulting average annual sediment input by seafloor erosion at VS is only one order of
magnitude smaller that the sediment flux by coastal erosion and riverine discharge.
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ice-free season in 1979–2021. The dashed line indicates an inter-annual trend. Note that no erosion
occurred in 1996 because VS was covered by sea ice during the whole year.

Despite significant fluctuations, the overall trend for the analysed 43-year period is pos-
itive with the average annual flux increasing by 0.13 Tg every decade. This feature is caused
by the increased length of the ice-free season (Figure 9a) in the Laptev Sea (reconstructed
from satellite observations since 1979 [59]) and the resulting increase in the average wave
length. The number of resuspension events during a year also shows a distinct increasing
trend for the study period (Figure 9b). Seasonal variability in the resuspended sediment
mass demonstrates low flux in July (0.1 Tg) and a significant increase in August–October
(0.3–0.35 Tg) (Figure 10), which is also associated with local ice conditions. The largest
monthly flux of resuspended sediments during the study period was registered in October
2015 and was equal to 0.68 Tg.
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5. Conclusions

This study is focused on areas of seafloor erosion in the Laptev Sea that correspond to
offshore shoals (with depths <10 m). Sediments resuspended from the seafloor penetrate
upward towards the sea surface; as a result, seafloor erosion events at these shoals could
be detected in cloud-free optical satellite imagery as turbid zones. Based on MODIS
Terra/Aqua optical imagery acquired in 2000–2021, areas of frequent seafloor erosion at
offshore shoals in the Laptev Sea were identified and synoptic variability in these turbid
zones associated with their formation, dissipation and advection was described.

Sediment resuspension at the Vasilyevskaya and Semenovskaya shoals (VS), which
are located in the southeastern part of the Laptev Sea, received special attention. Using
wind and wave reanalysis data, it was revealed that sediment flux at VS under the first
approximation is governed by wave forcing rather than wind stress. Intense resuspension
of bottom sediments at VS is formed if the 9-day average of the wave length preceding the
considered day exceeds 20 m. In this case, the area of the turbid zone (S, in km2) formed
at VS shows significant linear dependence (R = 0.74) on the local wave length (L, in m)
averaged for the period of 9 days: S = 354·L − 7148.

Using this dependence, in situ measurements of the suspended sediment concentration
in seawater at the study region and wave reanalysis data, daily volumes of sediment flux
at VS during the ice-free season in 1979–2021 were assessed. The main limitation of this
approach is the lack of data pertaining to sediment concentration variability. Moreover, we
presume that the formation of the turbid region at VS manifests erosion of the submarine
permafrost rather than the resuspension of previously accumulated sediments [60].

The reconstructed sediment input by seafloor erosion from VS (1.2 Tg per year on
average) is 20–50 times smaller than those from two other major sources of sediment
delivery in the Laptev Sea, namely, riverine discharge (24.1 Tg per year) and coastal
abrasion (58.4 Tg per year). Inter-annual variability in the sediment flux at VS in 1979–2021
demonstrates a stable increasing trend (0.13 Tg every decade), which is caused by the
increase in the length of the ice-free season in the study region. This feature demonstrates
the increasing role of erosion of the subsea permafrost at shallow areas in the Laptev Sea
caused by the ongoing climate change. Moreover, the total input from seafloor erosion
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from all offshore shoals of the Laptev Sea could play a more significant role in the sediment
income budget.

Finally, erosion of the subsea permafrost is important for local nutrient and carbon
cycles [15,18,61]. The Laptev Sea and the entire East Siberian Arctic shelf could be em-
ployed as the integrator of the ongoing climate change in the surrounding environment.
We suggest that under ongoing changes, more nutrients, the products of bottom and coastal
eroded organic carbon transformation, as well as river runoff would be delivered to the
Arctic Ocean with its shrinking ice cover potentially increasing primary production outside
the shelf. At the same time, because the shelf area is characterized by very low transparency,
which limits euphotic layer thickness, excessive pCO2 would not be utilized by photo-
synthesis, but would rather be emitted to the atmosphere at increasing rates affecting the
regional CO2 balance. Thus, the proposed satellite technique could become an effective
instrument to monitor and evaluate the increasing subsea permafrost erosion, which could
be a potential and still uncounted contributor to the regional CO2 system. The proposed
methodology could also be applied to different coastal and shallow areas in the World
Ocean, which experience intense delivery of terrigenous sediments, seafloor erosion and
resuspension of sediments [62–65].
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