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Abstract: Multi-source image registration has often suffered from great radiation and geometric
differences. Specifically, grayscale and texture from similar landforms in different source images often
show significantly different visual features, and these differences disturb the corresponding point
extraction in the following image registration process. Considering that edges between heterogeneous
images can provide homogeneous information and more consistent features can be extracted based on
image edges, an edge consistency radiation-change insensitive feature transform (EC-RIFT) method
is proposed in this paper. Firstly, the noise and texture interference are reduced by preprocessing
according to the image characteristics. Secondly, image edges are extracted based on phase congru-
ency, and an orthogonal Log-Gabor filter is performed to replace the global algorithm. Finally, the
descriptors are built with logarithmic partition of the feature point neighborhood, which improves
the robustness of the descriptors. Comparative experiments on datasets containing multi-source
remote sensing image pairs show that the proposed EC-RIFT method outperforms other registration
methods in terms of precision and effectiveness.

Keywords: image registration; edge consistency features; multi-source remote sensing images

1. Introduction

With the continuous breakthrough of remote sensing technology, the ways to obtain in-
formation through multi-source satellites, unmanned aerial vehicles, and other sensors have
gradually increased, and the space–air–ground integrated system based on multi-sensors
has gradually improved. Due to the different methods and principles of data acquisition
by different sensors, the acquired Earth observation data have their own information
advantages, and edge intelligence greatly improves multi-source data transmission and
processing speed [1]. In order to integrate the multi-source remote sensing data to achieve
complementary advantages and improve the data availability, information fusion of remote
sensing images is usually required. Multi-source image registration refers to the technology
of matching images in the same scene obtained by different image sensors and establishing
the spatial geometric transformation relationship between them. Its accuracy and efficiency
will directly impact the subsequent tasks, such as remote sensing interpretation in land-use
surveillance [2]. Although the remote sensing data are commonly coarse-registered with
the spatial reference, there are still slight translation or rotation differences between the
images. The fine-registration task is particularly important to realize the precise alignment
of objects.

However, due to the large differences in the operating mechanisms and conditions of
imaging sensors, multi-source remote sensing images often show significant variations in
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the geometric and radiometric features. These obvious differences between multi-source
remote sensing images are reflected in the registration process as the same landform or
the target in the image presents distinct image features, especially internal texture features.
Therefore, algorithms such as SIFT proposed for homologous registration often fail [3].
Traditional multi-source image registration methods can be divided into two categories:
region-based and feature-based methods. Region-based methods often use similarity
measures and optimization methods to accurately estimate transformation parameters.
A typical solution is to evaluate similarity with MI [4], which is generally limited by
high computational complexity. Another approach is to improve processing efficiency
through the domain transfer techniques such as fast Fourier Transform (FFT) [5]. However,
facing large-scale remote sensing images, region-based methods are sensitive to severe
noise caused by imaging sensors and atmosphere, making it difficult to be applied widely.
Therefore, feature-based methods are more commonly used in the remote sensing field.
These methods usually detect significant features between images (such as points, lines,
and regions) and then identify correspondence by describing the detected features. The
PSO-SIFT algorithm optimizes the calculation of image gradients based on SIFT and exploits
the intrinsic information of feature points to increase the number of accurate matching
points for the problem of multi-source image matching [6]. The applicatory multi-source
data include optical, SAR, infrared, and LiDAR images, and the SAR and optical images
are the most widely used and representative ones. Therefore, many studies focus on
SAR–optical registration. OS-SIFT is mainly focused on SAR images and optical images
matching and uses the multiscale exponential weighted average ratio and the multiscale
Sobel operator to calculate the SAR image and optical image gradients to improve the
robustness [7]. The multiscale histogram of local main orientation (MS-HLMO) [8] method
develops a basic feature map for local feature extraction and a matching strategy based on
Gaussian scale space. The development of deep learning technology has accelerated the
research of computer vision, and more and more learning-based methods have emerged
in the registration field [9]. A common strategy is to generate deep and advanced image
representations, such as using the network to train feature detectors [10], descriptors [11],
or similarity measures, instead of traditional registration steps. There are also many
methods based on Siamese networks or pseudo-Siamese networks [12], which obtain the
deep feature representation by training the network [13] and then calculate the similarity
of the output feature map to achieve template matching. As the basis of the deep learning
method, large datasets are critical to its performance. However, there are few available
multi-source remote sensing datasets and the acquisition cost is high; labeled examples
are even rarer, resulting in the difficulty of wide application to multi-source data, which
greatly limits the development of learning-based methods.

These early feature-based methods are mainly based on gradient information, but the
application in multi-source image registration is often limited due to the sensitivity to
illumination differences, contrast differences, etc. In recent years, as the concept of phase
congruency (PC) [14] has been introduced into image registration, more and more reg-
istration methods based on it show superior performance. The histogram of orientated
phase congruency (HOPC) feature descriptor achieves matching between multiple modal
images by constructing descriptors from phase congruency intensity and orientation infor-
mation [15]. Li et al. proposed a radiation change insensitive feature transformation (RIFT)
algorithm to detect significant corner and edge feature points on the phase congruency
map and constructed the maximum index map (MIM) descriptor based on the Log-Gabor
convolution image sequences [16], realizing the insensitivity to multi-modal image radi-
ation changes. Yao et al. proposed a histogram of absolute phase consistency gradients
(HAPCG) algorithm, which extended the phase consistency model, established absolute
phase consistency directional gradients, and built the HAPCG descriptors [17] achieving
robust matching between different source images with large illumination and contrast
difference. Fan et al. proposed a 3MRS method based on a 2D phase consistency model
to construct a new template feature based on Log-Gabor convolutional image sequences
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and used 3D phase correlation as a similarity metric [18]. In general, although these phase-
congruency-based registration methods demonstrate excellent performance in multi-source
image matching, there are still two problems for remote sensing images registration: (1) the
interference of noise and texture on feature extraction cannot be avoided; (2) the computa-
tion of phase congruency involves Log-Gabor transforms at multiple scales and directions,
which is heavy in computation and results in the extension of feature detection time.

The key to automatic registration of multi-source images lies in how to extract and
match feature points between heterogeneous images. Since edges are relatively stable
features in multi-source images, which can maintain stability when the imaging conditions
or mode changes [19], feature extraction based on edge contour information can greatly
enhance the registration performance. As shown in Figure 1, for the same area, terrain
selected by the red box exhibits significant differences in multi-source images, while the
edge marked with the green box tends to be more consistent. Therefore, a multi-source
remote sensing image registration method based on homogeneous features is proposed
in this paper, namely, edge consistency radiation-variation insensitive feature transform
(EC-RIFT). Firstly, in order to suppress speckle noise without destroying edge integrity, a
non-local mean filter is performed on SAR images, and edge enhancement is applied to
visible images with abundant texture to help extract coherent features. Secondly, image
edge information is extracted based on phase congruency, and the orthogonal Log-Gabor
filter (OLG) is chosen instead of the global filter algorithm for feature dimension reduction,
speeding up the feature detection. Finally, the EC-RIFT algorithm constructs descriptors
based on the sector neighborhood of edge feature points, which is more sensitive to nearby
points and improves the robustness of the descriptors, thus improving the registration
accuracy. The main contributions of our paper are as follows:

1. To capture the similarity of geometric structures and morphological features, phase
congruency is used to extract image edges, and the differences between multi-source
remote sensing images are suppressed by eliminating noise and weakening texture.

2. To reduce computing costs, phase congruency models are constructed using Log-
Gabor filtering in orthogonal directions.

3. To increase the dependability of descriptor features with richer description informa-
tion, sector descriptors are built based on edge consistency features.

Figure 1. Texture and edge differences between multi-source images. The red box represents textured
terrain, and the green box contains significant edges.

The rest of the paper is organized as follows: Section 2 introduces the proposed method
in detail. Section 3 evaluates the proposed method by comparing experimental results with
other representative methods. Section 4 discusses several important aspects related to the
proposed method. Finally, the paper is concluded in Section 5.

2. Materials and Methods

In this section, we first give a brief introduction of RIFT. Firstly, the PC is calculated for
each orientation of the Log-Gabor convolution, and the features on the maximum moment
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map are extracted by the FAST detector [20]. Then the amplitudes of the convolution
results at each scale in the same orientation are summed to obtain the MIM. A convolution
sequence ring structure is applied to generate multiple MIMs for each feature in the
reference image. Based on the MIM, the descriptors are constructed with feature coding
technology like the SIFT algorithm [3]. Finally, the nearest neighbor matching strategy is
used on descriptors to obtain the initial correspondence, and the outliers are removed by
fast sample consensus (FSC) algorithm [21].

The EC-RIFT algorithm process can be divided into five steps: image preprocessing,
feature point detection, descriptor construction, feature matching, and outlier removal. The
main process of the proposed framework is shown in Figure 2. The blue boxes indicate the
focus of the research in this paper. The following subsections provide a detailed description.
Moreover, the important symbols in the paper are explained in Table 1.

Figure 2. Implementation flow chart of EC-RIFT algorithm.
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Table 1. Explanations of important symbols.

Symbol Explanation Symbol Explanation

FI input of filter A amplitude

FO output of filter φ phase

w weight s scale

N number o orientation

ρ polar radius σ bandwidth

θ polar angle

2.1. Multi-Source Image Preprocessing

The interference of noises and textures on infrared or LiDAR images is not as obvious
as that on SAR images in terms of feature extraction. The regular denoise filters, such
as median filters, are efficient for infrared images. The design of filters for SAR and optical
images is emphasized in this section.

2.1.1. Non-Local Mean Filtering

SAR images are always corrupted by speckle noise, leading to the challenge of sub-
sequent tasks such as feature detection, so it is necessary to suppress the speckle noise
first. The non-local mean filtering algorithm (NLM) defines similar pixels as the same
neighborhood pattern and uses the information within a fixed-size window around the
pixel to represent it. The loss of image structure information during the noise reduction
process can be avoided, and it thus performs well in maintaining image edge and structure
information [22]. The NLM filtering is calculated as (1):

FONLM(x) = ∑ w(x, y)FINLM(y) (1)

where FONLM and FINLM represent the output and input images of NLM filters, respec-
tively, x and y represent the indices of pixels, and the weight w(x,y) represents the similarity
between pixels x and y, which is determined by the distance ||V(x) − V(y)|| between
rectangular regions V(x), V(y), as shown in (2)–(4).

w(x, y) =
1

Z(x)
exp(−‖Vx−Vy‖2

h2 ) (2)

‖Vx−Vy‖2 =
1
d2 Σz∈Sd‖FINLM(x + z)− FINLM(y + z)‖2 (3)

Z(x) = Σyexp(−‖Vx−Vy‖2

h2 ) (4)

where Z(x) is the normalization parameter, h is the smoothing parameter, Sd denotes the
search window region that regulates the degree of Gaussian function’s decay, d represents
the window side, and z is the point within Sd.

2.1.2. Co-Occurrence Filtering

To take full advantage of the edge information of image, the edges need to be enhanced
while weakening the texture. The co-occurrence filter (CoF) is an edge-preserving filter
in which pixel values that appear more frequently in the image are weighted higher in
the co-occurrence matrix, so the image texture can be smooth without considering the
grayscale difference [23]. Pixel values that rarely appear at the same time are weighted
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lower in the co-occurrence matrix, which can better maintain the boundaries. The CoF is
defined according to (5):

FOCoF(p) =
∑q∈N(p) Gσs(p, q) ·M(FICoF(p), FICoF(q)) · FICoF(q)

∑q∈N(p) Gσs(p, q) ·M(FICoF(p), FICoF(q))
(5)

where FOCoF and FICoF represent the output and input images of CoF filters, respectively,
p and q are pixel indices, G denotes the Gaussian filter, σs is the standard deviation of G,
and M is calculated from the co-occurrence matrix as (6)

M(FICoF(p), FICoF(q)) =
C(FICoF(p), FICoF(q))

h(FICoF(p))h(FICoF(q))
(6)

where h denotes the histogram of pixels, indicating the occurrence frequency of p and q.
The co-occurrence matrix C is computed as (7).

C(FICoF(p), FICoF(q)) = ∑
p,q

exp

(
−d(p, q)2

2σ2

)
(7)

In Equation (7), d denotes the Euclidean distance, σ2 is a fixed value, σ2 = 2
√

5 + 1.
The comparison of images with/without preprocessing is shown in Figure 3. There

are significant geometric and radiometric differences between the original images, making
it more difficult to be matched with high precision. It is clear that the speckle noises in SAR
image Figure 3a are filtered in Figure 3b, and the textures in optical image Figure 3c are
suppressed in Figure 3d with complete edge maintained. The edge information left in the
two images has a stronger consistency.

(a) (b)

(c) (d)

Figure 3. Results of preprocessing. (a) Original SAR image. (b) Denoised SAR image. (c) Original
optical image. (d) Enhanced optical image.
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2.2. Edge Feature Detection

Edge information can largely reflect the structural features of objects and is more
stable in heterogeneous images, so feature detection based on complete edges can provide
a more reliable foundation for registration. The phase congruency model can overcome the
effects of contrast and brightness changes and extract more complete feature edges than
gradients. The Log-Gabor filter is able to maintain zero direct current components in an
even symmetric filter, and the bandwidth is arbitrary. Therefore, the Log-Gabor filter is
efficient to calculate the phase congruency. However, the feature extraction based on it is
time-consuming because of the high dimensions. The number of scales and orientations
are set to four and six, respectively. Therefore, in this paper, a 2D orthogonal Log-Gabor
filter (OLG) is used instead of the global filter to achieve feature dimension reduction [24].

The geometric structure of images can be well preserved by phase congruency. Oppen-
heim first identified the ability of phase to extract significant information from images [25],
and later Morrone and Owens proposed a model of phase congruency [26]. Since the degree
of phase congruency is independent of the overall amplitude of signal, it has better robust-
ness and gives more detailed edge information than the gradient operator when employed
for edge detection. Kovesi simplified the calculation of phase congruency with Fourier
phase components and extended the model to 2D [14]. Kovesi employed Log-Gabor filters
in the computation, which were demonstrated to be more natural for human eyesight.

The intensity value of phase congruency is calculated as Equation (8):

PC(x, y) = ∑s ∑o ωo(x, y)bAso(x, y)∆Φso(x, y)− Tc
∑s ∑o Aso(x, y) + ξ

(8)

where s and o respectively denote the filter scale and orientation, ωo denotes the weight, and ξ
is a minimal constant preventing the denominator from being 0. Aso and φso denote the
amplitude and phase of the PC, respectively, and can be derived from Equations (9) and (10):

Aso(x, y) =
√

Eso(x, y)2 + Oso(x, y)2 (9)

φso(x, y) = arctan(Oso(x, y)/Eso(x, y)) (10)

Eso and Oso represent the results of even-symmetric filtering and odd-symmetric
filtering convolved with image I, respectively. The calculation formula is shown in (11):

[Eso(x, y), Oso(x, y)] =
[

I(x, y) ∗ Leven(x, y, s, o), I(x, y) ∗ Lodd(x, y, s, o)
]

(11)

L is a 2D Log-Gabor filtering function, defined as (12):

L(ρ, θ, s, o) = exp

(
−(ρ− ρs)

2

2σ2
ρ

)
exp

(
−(θ − θso)

2

2σ2
θ

)
(12)

where σ represents the bandwidth, and ρs and θso are the center frequencies of Log-Gabor
filtering.

The edges extracted based on phase congruency are often used for edge detection
because of their ability to be unaffected by local light variations in the image, and they can
contain various information, especially information at low edge contrast.

A 2D OLG is formed with two Log-Gabor filters with mutually orthogonal directions,
which can be expressed by (13). The OLG proposed reduces the amount of computation
while avoiding the redundancy of features, and thus can improve the running speed under
the premise of ensuring the integrity of features.

OL(ρ, θ, s, o) =| L(ρ, θ, s, o)− L
(

ρ, θ ± π

2
, s, o

)
| (13)
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To validate the the effect of the OLG algorithm on removing redundant features,
the FAST algorithm is applied based on the phase congruency representations processed
in the two strategies, respectively, and the results are shown in Figure 4. Subfigures
(a)–(d) denote features detected based on LG algorithm, and (e)–(h) are based on the
OLG algorithm. To illustrate the effectiveness of the proposed algorithm, image pairs
SAR1/OPT1 and SAR2/OPT2 of different landforms are selected for comparison. It can be
observed that the OLG algorithm performs better in depicting the image edges, and some
of the isolated points were removed compared with the results of LG. The feature points
obtained by the orthogonal method tend to be more recognizable, which makes it more
likely to obtain the correct match in the subsequent processing.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. Features detected with LG/OLG. (a) LG-SAR1. (b) LG-OPT1. (c) LG-SAR2. (d) LG-OPT2.
(e) OLG-SAR1. (f) OLG-OPT1. (g) OLG-SAR2. (h) OLG-OPT2.

2.3. Sector Descriptor Construction

Referring to the RIFT algorithm, the descriptors construction of EC-RIFT is performed
on the MIM. It accumulates the amplitudes Aso(x, y) in the same direction at Ns scales first
to obtain Ao(x, y), and then the MIM is constituted with the direction index value ω, which
represents the maximum values of these pixels.

To enhance the robustness and uniqueness of the descriptors, the GLOH-like approach
is chosen to construct the descriptors in this paper [27]. For the obtained features based on
edge consistency, the statistical histogram in log-polar coordinates enables the descriptors
to be more sensitive to near points than distant points. As shown in Figure 5, the pixels in
the neighborhood of keypoints are divided into log-polar coordinate concentric circles with
the radius set to 0.25 r and 0.75 r, supposing that the radius of neighborhood is r. If the area
of the divided sector is too small, the features are not sufficient, while the larger section will
increase the descriptor dimension and the burden of computation. The pixels are divided
into eight equal parts in the angular, each equal part being π/4, so that 16 sectors and
1 circle are formed, for a total of 17 image sub-blocks. The points on the same ring are
close to each other, so the feature points are equally discriminated. Each block computes
a histogram of six directions, resulting in a descriptor vector of 17 × 6 = 102 dimensions.
To simplify the calculation, if some descriptor component exceeds the threshold value,
the component is set to the threshold size, and the threshold value is empirically set as 0.2
in this paper. Finally, the descriptor vector is normalized.
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Figure 5. The descriptors of EC-RIFT method.

2.4. Feature Matching and Outlier Removal

An effective algorithm to match feature points is the Nearest Neighbor Distance Ratio
(NNDR) method, which is proposed by Lowe. It screens out local features by comparing the
distances of nearest neighbor and second nearest neighbor features, and filters out features
with low discrimination. A feature point is more likely to be correctly matched if the point
most similar to its descriptor is close, and the point less similar to it is farther away.

After the feature matching, there are still some mismatched point pairs, so the EC-RIFT
algorithm chooses the FSC algorithm to remove the outliers and estimate the parameters of
the affine transformation model.

3. Experiments and Results

In this section, we first introduce the datasets and evaluation metrics. Subsequently,
we investigate the effectiveness of the proposed method in stages. Finally, aiming at proving
the superiority of the EC-RIFT, the results are presented and evaluated by comparing them
with four representative multi-source image registration methods.

3.1. Datasets

Two types of datasets are used to evaluate the registration performance of the EC-
RIFT algorithm in this paper. The first is formed from seven pairs of SAR images and
optical images with various sizes and sources. The image pairs in other modalities are
also employed to assess the generalization ability of proposed algorithm. Both datasets are
described in detail.

The SAR and optical images are obtained from different sensors, such as Terra SAR-X,
Gaofen satellites, Google Earth, and Landsat satellites and aerial vehicles, covering various
resolutions and sizes. The multi-source image dataset consists of infrared–optical, day–
night, depth–optical pairs, widely employed in remote sensing image registration. All
image pairs capture various terrains, including urban areas, fluvial deposits, rivers, and
farmland, and the images exhibit significant geometric and radiometric differences, posing
challenges for registration. The data are shown in Figure 6.
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(a) Pair 1 (b) Pair 2 (c) Pair 3 (d) Pair 4 (e) Pair 5 (f) Pair 6 (g) Pair 7

(h) infrared–optical (i) day–night (j) depth–optical

Figure 6. Dataset presentation. The (a–g) denote sar-optical image pairs of different landforms. And
the (h–j) represent infrared-optical, day-night, depth-optical landforms, respectively.

3.2. Evaluation Criterion

For quantitative evaluation, the repeatability [28], root mean square error (RMSE),
and running time are selected to evaluate the performance of the proposed method.

Repeatability [28] is often used as a metric to evaluate the quality of detected features,
which is defined to represent the rate of potential corresponding points in all detected
points. The repeatability can be calculated as Equation (14):

Repeatability =
Nc

(N1 + N2)/2
(14)

where Nc represents the number of potential corresponding points, and N1 and N2 represent
the total number of feature points detected in the reference image and moving image,
respectively. If a feature point meets the conditions shown in Formula (15), it is considered
as a potential corresponding point. Here, i represents the index of keypoint, (x1i, y1i) is
the keypoint coordinates of the reference image, and (x2i, y2i) is the keypoint coordinates
obtained after affine transformation of the moving image.√(

(x2i − x1i)
2 + (y2i − y1i)

2
)
< 2 (15)

The root mean square error (RMSE) is used to evaluate the precision of the registration
results. RMSE is defined as (16):

RMSE =

√
∑n

i=1 (x2i − x1i)
2 + (y2i − y1i)

2

n
(16)

where i is the pixel index, n is the number of matching pairs, (x1i, y1i) is the keypoint
coordinates of the reference image, and (x2i, y2i) is the keypoint coordinates obtained
after affine transformation of the image to be registered. The smaller the value of RMSE,
the higher the precision of registration.
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3.3. Registration Results and Analysis

To demonstrate the effect of each processing section on the registration results, ex-
periments are designed to evaluate the registration results. The comparison experiments
are conducted with HAPCG [17], OS-SIFT [7], LNIFT [29], and RIFT [16] algorithms to
prove that the proposed method has better performance in registration. The experiments
are implemented using MATLAB 2021b on a platform with Advanced Micro Devices, Inc.
(AMD)-Ryzen-5-3400G with Radeon Vega Graphics 3.70-GHz CPU, and 16-GB RAM.

3.3.1. Comparison Experiment of Preprocessing Algorithms

The preprocessing step can help in realizing the registration of multi-source images
with large radiometric differences. To demonstrate the effectiveness of the algorithm
applied in this paper, Pair 6 is chosen for the experiment, whose similarity to the original
data is too low to be registered by all algorithms. Figure 7 depicts the registration results
obtained with/without the denoising and enhancement process. Subfigure (a) represents
the matching result of original data, which is obviously unable to be registered. The SAR
and optical images in (b) and (c) are preprocessed, respectively. Even if one of the images is
processed, the image pairs failed to register. For the denoised SAR image and enhanced
optical image, the corresponding points are matched correctly, as shown in (d). It is clear
that the noise in the original SAR image and the texture in the optical image have a strong
impact on registration, and more correct matching pairs are obtained after preprocessing.

(a) (b)

(c) (d)

Figure 7. Registration results with/without preprocessing. (a) Without preprocessing. (b) SAR image
is denoised. (c) Optical image is enhanced. (d) Both images are preprocessed.

In addition, comparison experiments are conducted on images preprocessed with
aforementioned steps. As listed in Table 2, our method performs the best among the four
methods in terms of RMSE and running time.

It should be noted that this step is optional for remote sensing image registration.
There is serious radiation and geometric distortion in the data for this experiment, which
brings greater challenges to registration, and the proposed steps contribute to extracting
the corresponding features.
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3.3.2. Comparison Experiment of OLG and LG

Since the OLG algorithm can reduce redundancy in feature detection, the repeatability
is chosen to evaluate its effectiveness. A higher repeatability indicates a higher probability
of extracting the corresponding features. The results are shown in Figure 8.

Table 2. Comparison of preprocessed data registration results.

Data Method RMSE/px Running Time/s

Pair 6

HAPCG 0.88 2.8
OS-SIFT × 1 ×
LNIFT 1.39 15.45
RIFT 0.99 2.26

EC-RIFT 0.95 1.99

Pair 7

HAPCG 1.59 2.56
OS-SIFT × ×
LNIFT 1.22 12.61
RIFT 1.11 1.79

EC-RIFT 0.92 1.76
1 The ×means that the algorithm fails.

Figure 8. Repeatability of OLG and LG. The bold numbers represent the higher scores.

The OLG algorithm achieves scores higher than or equal to LG on all images, demon-
strating the contribution to improving the registration accuracy.

In addition, the feature detection time and registration precision of OLG are tested in
this experiment, and the results are listed in Table 3. The bold numbers in the table denote
the best results. As can be seen from Table 3, for all image pairs, OLG can reduce the feature
detection time by nearly half, and the accuracy is improved on all data.
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Table 3. Registration results of OLG and LG.

Data Filter Detection Time/s RMSE/px

Pair 1 LG 0.99 1.41
OLG 0.58 1.35

Pair 2 LG 3.20 1.36
OLG 1.81 1.32

Pair 3 LG 1.50 1.32
OLG 1.04 1.27

Pair 4 LG 0.99 1.34
OLG 0.65 1.33

Pair 5 LG 0.23 1.40
OLG 0.15 1.29

3.3.3. Comparison Experiment of Square Descriptor and Sector Descriptor

The purpose of this experiment is to compare the performance of square descriptors
and the sector descriptors used in this paper. The similarity between the descriptor vectors
on paired features determines the success rate of matching. In order to illustrate that
the proposed descriptors are better capable of extracting the common information, we
chose two metrics to measure the similarity of the paired descriptors. Cosine similarity
and Pearson correlation coefficient are commonly used methods to measure the similarity
between two vectors, both in the range of [−1, 1]. A value of 1 means that the vectors are
completely similar, and −1 indicates the opposite.

Five pairs of points are selected randomly from Pair 1 for this experiment, then the
descriptors are built in square and sector methods, respectively. The similarity of vectors
are shown in the Figure 9. The bars in light color represent cosine similarity, and those in
dark color represent Pearson correlation coefficient of two methods. The sector descriptor
(the orange bars) outperforms the square descriptor (the blue bars) on all points selected.
It thus proves that descriptors based on sector neighborhood fit the corresponding points
matching better.

Figure 9. The similarity of MIM.

Furthermore, the comparison experiment of registration results is shown in Figure 10.
For the reliability of the experiment, all parts of the method are kept consistent except
for the descriptor construction step. This result demonstrates that our descriptors have a
higher robustness and are thus conducive to multi-source image registration.
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Figure 10. Comparison of OLG and LG. The bold numbers represent the best results.

3.3.4. Comparative Results on SAR-Optical Data

To analyze the performance of the proposed method, we firstly conduct experiments
on SAR and optical dataset, which is most commonly used in practice. For the fairness of
the experiment, all methods use the same matching method and parameters are set under
the recommendations of their authors.

Figure 11 represents the matching results of the EC-RIFT algorithm. It is clear that
the sufficient features are matched correctly, confirming the effectiveness of the proposed
method for SAR and optical image registration. Table 4 shows the quantitative results of
the five methods. The EC-RIFT method is capable of steadily registering image pairs with
lower error and time.

(a) (b) (c)

(d) (e)

Figure 11. Matching results for SAR–optical images. (a) Pair 1. (b) Pair 2. (c) Pair 3. (d) Pair 4.
(e) Pair 5.
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Table 4. Comparison with other methods. The bold numbers represent the best performance.

Data Method RMSE/px Running Time/s

Pair 1

HAPCG 1.95 9.98
OS-SIFT 1.38 9.15
LNIFT 1.35 54.64
RIFT 1.37 10.45

EC-RIFT 1.35 8.81

Pair 2

HAPCG 1.95 26.13
OS-SIFT × 1 ×
LNIFT × ×
RIFT 1.34 14.26

EC-RIFT 1.19 11.01

Pair 3

HAPCG 1.93 13.64
OS-SIFT NAN 2 NAN
LNIFT 1.29 62.64
RIFT 1.32 6.41

EC-RIFT 1.28 5.06

Pair 4

HAPCG 1.97 7.98
OS-SIFT × ×
LNIFT × ×
RIFT 1.35 9.36

EC-RIFT 1.24 9.27

Pair 5

HAPCG 1.76 2.12
OS-SIFT NAN NAN
LNIFT 1.33 10.01
RIFT 1.36 3.95

EC-RIFT 1.31 2.39
1 The ×means that the algorithm fails. 2 The NAN represents the number of correct matching is less than five.

The performance of OS-SIFT is the most vulnerable. For Pairs 2–5, there are not
enough correct matching pairs obtained by OS-SIFT, which we find unconvincing. The
poor performance of the OS-SIFT algorithm is due to the lack of edge retention capacity,
which reduces the accuracy of feature detecting and matching, and thus fails on the data
with significant radiation variations. In terms of RMSE, the proposed method outperforms
other methods in all image pairs. For Pair 1, the proposed EC-RIFT obtains the same value
of RMSE as LNIFT in Pair 1, but it consumes less time. For Pair 2, the results obtained
by our method are 38.97% and 11.19% better than those obtained by HAPCG and RIFT,
respectively, achieving significant accuracy improvement. The LNIFT method fails on Pair
2 and Pair 4, and the RMSE of other pairs are slightly higher than the method proposed.
The running times of the HAPCG method for Pair 4 and Pair 5 are lower than our method,
but as shown in Figure 12, the average time for all image pairs of our method is 7.31 s,
which is still the shortest among these methods. It should be noted that the OS-SIFT is
annotated as NAN because it obtains valid results only on Pair 1 and takes longer than our
algorithm on it. Taken together, the proposed method outperforms these popular methods
in terms of robustness.
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Figure 12. Average running time of registration methods.

3.4. Comparative Results on Multi-Source Data

The experimental results on SAR–optical images demonstrate the effectiveness and
superiority of our method. As an extension, we focus on the registration performance of
other multi-source images in this subsection. It should be noted that the noise of multi-
source data used in this experiment is weak, so there is no additional processing performed
in the pre-processing step. The visual results are shown in Figure 13. The EC-RIFT method
successfully matched a large number of points on these image pairs.

(a) (b)

(c)

Figure 13. Matching results for multi-source images. (a) Infrared–optical. (b) Day–night. (c) Depth–
optical.

Table 5 lists the comparative registration results on multi-source images. The LNIFT
and OS-SIFT fail on day–night data, and our method obtains robust registration results.
The RMSE of the proposed method is the same as that of OS-SIFT and LNIFT on infrared–
optical data, but the running time is shorter. For the day–night and depth–optical data,
the EC-RIFT method achieves the highest accuracy.
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Table 5. Quantitative results for multi-source images. The bold numbers denote the best results.

Data Method RMSE/px Running Time/s

Infrared–optical

HAPCG 1.65 18.66
OS-SIFT 1.16 16.71
LNIFT 1.29 64.73
RIFT 1.16 14.70

EC-RIFT 1.16 13.13

Day–night

HAPCG 1.83 9.79
OS-SIFT × 1 ×
LNIFT × ×
RIFT 1.27 12.37

EC-RIFT 1.26 10.68

Depth–optical

HAPCG 1.95 8.90
OS-SIFT 1.41 8.80
LNIFT 1.36 55.06
RIFT 1.36 11.98

EC-RIFT 1.33 11.50
1 The ×means that the algorithm fails.

4. Discussion

Taking both the quantitative and the qualitative results into account, the experimental
results in Section 3 illustrate that the proposed method achieves better registration perfor-
mance for multi-source images. In this section, we first validate the idea that smoothing
textures and noises can enhance the edge features, which are more stable between multi-
source images. Additionally, the rotation and scale invariances of the method are analyzed,
leading to the limitations and future work expectations.

4.1. The Effect of Noises on MIM

Since image descriptors are built based on the histogram statistics of MIM, the dis-
tribution in the neighborhood of feature points on MIM determines the probability of
corresponding points being matched. Therefore, we compare the MIMs of original images
and processed images to research the effect of this step.

As shown in Figure 14, the influence of speckle noises are significant in the SAR
image, and the irregular interference directly disturbs the robustness of descriptors. The
textures which are not present in the SAR image also exacerbate the difference between
MIMs. The MIMs of processed image pairs are much more similar, leading to higher
registration accuracy.

(a) (b)

Figure 14. MIMs of images. (a) MIM of original image pairs. (b) MIM of processed image pairs.

Note that the preprocessing methods in this paper are selected according to the
characteristics of the images. For images of other modalities, the idea of eliminating noise
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and texture differences between image pairs still holds, but the specific algorithms need to
be redesigned.

4.2. Fine-Registration and Considerable Difference

The imaging spatial resolution difference between satellite and drone is great, and the
imaging level is uneven between different satellites. The scale is different depending on
the height, the rotation is different depending on the orbit, and the distortion is different
depending on the modality. Therefore, the multi-sensor data for situational awareness
needs to be fine-registered first in the space–air–ground integrated network [30].

Our research is based on the assumption that remote sensing images have been
registered with geographic information, which means that there are mainly translation
differences between the input image pairs. Actually, there is only a tiny scale difference
on the coarse-registered images calibrated by the location or attitude information, and the
rotation angle is subtle, in which case our method works well. The feature matching results
of image pairs with scale and rotation differences are shown in Figure 15. The resolution
of the SAR image in (a) is reduced from 500 px × 492 px to 400 px × 394 px, while the
resolution of the optical image remains the original. The SAR images of two sizes are
manually rotated clockwise by 5 degrees in (b) and (c), respectively. For indistinctive
differences in scale and rotation, whether one or both exist in the image pairs, the proposed
method can obtain enough matching pairs.

(a) (b)

(c)

Figure 15. Matching results with scale and rotation differences. (a) Scale difference. (b) Rotation
difference. (c) Rotation difference.

However, our method is sensitive to significant scale differences and rotation trans-
formations, so it may fail in these scenes. In terms of rotation-invariance, the solution
has been proposed in [31], but it is computationally heavy and time-consuming. In terms
of scale-invariance, methods based on the image pyramid [32] may help to improve the
registration performance. In future work, we will focus on proposing a more efficient
approach to improve the feature invariance of significant scale and rotation.

5. Conclusions

Aiming at handling the challenge of extracting consistent features from multi-source
images with severe geometric and radiometric distortions, this paper proposes a robust
registration method based on the edge consistency features. We first design the denois-
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ing and enhancing algorithms according to the characteristics of remote sensing images
to reduce the interference of redundant information on registration. Then the orthogonal
method is adopted for feature extraction to improve computational efficiency. Finally,
the sector-neighborhood descriptor is constructed to obtain a more robust representation.
Compared with other representative registration methods, the proposed method obtains
higher speed and accuracy, which can effectively realize the registration task of SAR and
optical images. Due to the potential of real-time performance, the improved algorithm is
expected to be applied in edge intelligence analysis [33] and on-orbit satellite platforms [34].
Furthermore, the proposed method is proven to have a superior generalization ability to
be applied to images in other modalities. However, the proposed method may not work
properly in the case of large rotation and scale deviation in the images, and we will explore
the technology of geometric deformation invariance in the future work.
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