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Abstract: In hyperspectral unmixing, dealing with nonlinear mixing effects and spectral variability
(SV) is a significant challenge. Traditional linear unmixing can be seriously deteriorated by the cou-
pled residuals of nonlinearity and SV in remote sensing scenarios. For the simplification of calculation,
current unmixing studies usually separate the consideration of nonlinearity and SV. As a result, errors
individually caused by the nonlinearity or SV still persist, potentially leading to overfitting and the
decreased accuracy of estimated endmembers and abundances. In this paper, a novel unsupervised
nonlinear unmixing method accounting for SV is proposed. First, an improved Fisher transformation
scheme is constructed by combining an abundance-driven dynamic classification strategy with su-
perpixel segmentation. It can enlarge the differences between different types of pixels and reduce
the differences between pixels corresponding to the same class, thereby reducing the influence of
SV. Besides, spectral similarity can be well maintained in local homogeneous regions. Second, the
polynomial postnonlinear model is employed to represent observed pixels and explain nonlinear
components. Regularized by a Fisher transformation operator and abundances’ spatial smoothness,
data reconstruction errors in the original spectral space and the transformed space are weighed to
derive the unmixing problem. Finally, this problem is solved by a dimensional division-based particle
swarm optimization algorithm to produce accurate unmixing results. Extensive experiments on
synthetic and real hyperspectral remote sensing data demonstrate the superiority of the proposed
method in comparison with state-of-the-art approaches.

Keywords: hyperspectral imagery; nonlinear spectral unmixing; spectral variability; Fisher
transformation; superpixel segmentation

1. Introduction

Containing hundreds of continuous and narrow spectral bands, hyperspectral imagery
(HSI) has superior discriminatory capability in the identification of diverse materials
compared to multispectral images. HSI has been widely investigated and successfully
applied in various fields, e.g., image fusion [1], image recovery [2], super-resolution [3],
classification [4], and target detection [5]. Nevertheless, due to its inherent limitation of
poor spatial resolution, more than one material inevitably exists in a pixel, which reduces
the precision of traditional pixel-level remote sensing tasks. Hyperspectral unmixing (HU)
is adopted to address this issue by decomposing mixed pixels into a set of pure components
(i.e., endmembers) and their corresponding abundance fractions [6].

In an ideal condition, observed pixels can be simply approximated by the well-known
linear mixture model (LMM) assuming that a pixel is the linear combination of endmembers
based on their corresponding abundances. The LMM has gained popularity in unmixing
due to its physical interpretability and straightforward mathematical formulation [7].
Typically, many studies have tried to jointly exploit spectral and spatial information in
the framework of nonnegative matrix factorization (NMF) by using the total variation
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(TV) [8], graph theory [9], and similarity weighting [10,11], etc., which are promising for the
improvement of linear unmixing. However, linear unmixing results may be poor in many
real scenarios (e.g., complex urban areas or intimately mixed minerals) where nonlinear
mixing effects and spectral variability (SV) are unneglectable.

To explain the nonlinear mixing effects, nonlinear mixture models (NMMs) have been
developed. For example, Heylen and Gader [12] incorporated a simplified Hapke model
into the LMM to explain light’s multiple scatterings in intimate mixtures. Bilinear mixture
models (BMMs) such as the generalized bilinear model (GBM) [13] and the polynomial
postnonlinear model (PPNM) [14] extend the LMM by considering second-order scatter-
ings. The p-order polynomial model [15] and the multilinear mixing (MLM) model [16]
account for high-order interactions among endmembers. Recently, considerable endeavors
have been made to enhance NMM-based unmixing, including the analysis of band-wise
nonlinearity [17], kernel-transformed BMMs [18], and robustness to complex noise [19],
etc. In addition, the use of deep learning (DL) techniques, such as autoencoders, has
also contributed to nonlinear unmixing. Shahid et al. [20] introduced an innovative cross-
product layer to achieve reliable reconstruction of observed pixels in accordance with the
BMMs. Su et al. [21] constructed a double AE structure to simultaneously estimate the
linear and nonlinear components of the hierarchical BMMs under a multitask learning
framework. In [22] the nonlinear mixing effects were modeled by two fully connected
hidden layers with a 3D convolutional neural network (CNN) capturing the spatial-spectral
information of HSI. To enhance physical interpretability, a fully convolutional deep AE
network was combined with the Hapke model in [23], yielding better unmixing results for
intimate mixtures.

It is noted that SV may create a substantial obstacle in the implementation of hyper-
spectral unmixing. SV is usually induced by factors such as environmental conditions
(e.g., atmosphere, illumination, and topography) and materials’ intrinsic properties (e.g.,
composition, morphology, and physicochemical attributes) [24,25]. Furthermore, the spec-
tral signatures of land covers undergo alterations in response to various spatiotemporal
distributions [26]. Due to the typical influence of SV, targets in shadow or surrounded
by tall and bright objects may be unsuccessfully detected [27], and tree species could be
wrongly classified because of the notable variability between canopies’ spectra [28,29]. In
unmixing, endmembers’ spectral signatures belonging to the same class can vary signifi-
cantly across different pixels. However, most existing nonlinear unmixing methods tend
to ignore the issue of SV, despite its consideration in certain exploratory linear unmixing
techniques. Particularly, the inherent endmember errors induced by SV could be consider-
ably enlarged and propagated in nonlinear unmixing. It is meaningful to explore how SV
affects the nonlinear unmixing process and construct an effective scheme to deal with the
two issues simultaneously.

A common strategy for mitigating SV in linear unmixing involves representing an end-
member class with multiple spectral signatures and identifying the optimal combination of
endmembers to minimize reconstruction errors [30]. One typical method for this purpose
is the widely recognized multiple endmember spectral mixture analysis (MESMA) [31].
However, this approach usually suffers from a high computational burden of combinatorial
optimization. To this end, Heylen et al. [32] designed an alternating angle minimization
method whose computational complexity increases linearly with the sizes of the endmem-
ber library. Moreover, some works leverage physically meaningful parameters to model
SV within the framework of the LMM. Thouvenin et al. utilized a perturbation vector
to model the wavelength-dependent variability of a certain endmember, resulting in the
perturbed linear mixing model (PLMM) [33]. In contrast to the PLMM which fails to explain
the principal scaling changes caused by various illuminated or topological conditions, an
extended linear mixing model (ELMM) was proposed in [34] to multiply each reference
endmember with a scaling factor to represent SV in every pixel. Based on the ELMM,
some advanced methods with improvements such as reducing the reference endmember
error [35] and retaining the spatial contextual information of abundances [36] have been
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proposed recently. To better explain complex and nonuniform SV, an augmented linear
mixing model (ALMM) [37] models the pixel-level scaling factors and other spectral vari-
abilities simultaneously by using an endmember dictionary and a low-coherent additional
dictionary, respectively, leading to more accurate abundance estimation. In addition, SV is
often considered to be reduced in a specific feature subspace. Hong et al. [38] designed a
subspace learning strategy to project observed hyperspectral data to a low-rank subspace
where SV can be effectively removed. Fisher transformation [39] has been proved to be
successful in alleviating the effects of SV [40–42]. Liu et al. [41] introduced an unmixing
method based on orthogonal Fisher transformation and applied it to estimate fractional
vegetation cover in semiarid areas. Xu et al. [42] combined linear discriminant analysis
(LDA) with MESMA to obtain impervious surface fractions in urban areas. However,
methods based on Fisher transformation require the construction of an endmember library
before unmixing, and their performance, to a great extent, commonly depends on the
completeness of the library.

Recently, DL-based methods have shown their potential in mitigating SV. Regarding
endmembers as stochastic variables for SV representation, Zhao et al. [43] proposed a
variational Bayesian method to learn the probability distribution of endmembers under a 3D
CNN framework. Similarly, such probability distribution can also be derived from the deep
generative models [44,45]. In contrast to these probability-based models, Hong et al. [46]
devised a two-stream network using an additional branch to guide the network to yield
physically meaningful unmixing results. Although the aforementioned methods have
achieved some improvement in addressing SV, most of them (especially conventional
model-based methods) are based on the LMM and fail to take the nonlinear mixing effects
into account, which greatly limits their application in real-world scenarios.

Generally, in scenarios such as urban areas, multiple scattering between natural or
artificial objects at different heights is significant, and SV widely exists in typical impervious
surfaces [47]. SV occurs with nonlinear mixing effects, resulting in an increase in unmixing
error. However, dealing with the two issues could be very challenging due to their coupled
influence on unmixing. Eches et al. mathematically proved that the ELMM can be derived
from the Hapke model [48], indicating that the physical properties (e.g., illumination
and geometry) can not only affect the multiple scattering of intimate mixtures but also
change the spectral shapes, and thus produce SV. SV causes deviations between true pixel-
dependent endmembers and the traditional endmember set for the whole image. Such
deviations could propagate endmember errors in the process of unmixing [26], especially
by deteriorating the interpretability of high-order scattering terms in the NMMs.

To overcome the above issues, this paper develops a novel nonlinear unmixing method
by incorporating Fisher transformation into the PPNM, and thus reducing the impact of SV.
Firstly, an improved superpixel-based Fisher transformation with an abundance-driven
coarse classification strategy is proposed. Its main target is to make the pixels’ spectra which
are classified to the same type of land cover similar, and enlarge the spectral difference
between pixels belonging to different land covers. Particularly, since the transformation
is built based on superpixels, an effective balance could be achieved between the pixels’
spectral similarity and difference in local spatial homogenous regions. Secondly, with the
PPNM being employed to explain the nonlinear mixing effects, we weighted two data
reconstruction terms in both the original spectral space and the transformed subspace. In
this sense, a constrained optimization problem for nonlinear unmixing is formulated by
further using two specific regularizers of the projection matrix and the abundances. Finally,
to improve the convergence and accuracy of calculation, a multi-swarm particle swarm
optimization (PSO) algorithm [49] was exploited to estimate multiple unknown variables
in the complex nonlinear unmixing problem, leading to a Fisher transformation-based
unmixing algorithm via particle swarm optimization (FTUPSO).

The main contributions of our work are as follows:

• A superpixel-based Fisher transformation strategy is proposed to reduce the influ-
ence of spectral variability. In the transformed subspace, it enhances the similarity
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between pixels corresponding to the same class and enlarges the difference between
pixels belonging to different classes. Within-class and between-class scatter matrices
are generated based on superpixels according to abundance-driven dynamic coarse
classification, which can effectively reduce the impact of global misclassification and
retain the similarity of pixels in local spatial homogenous regions.

• The improved Fisher transformation is combined with the PPNM to address the non-
linear mixing effects and spectral variability simultaneously. Based on the PPNM,
pixels are reconstructed in both the original spectral space and the weighted trans-
formed subspace. With the incorporation of a projection matrix’s regularization term
and a TV-based regularizer of abundances, a novel unsupervised nonlinear unmixing
problem is formulated, which can be regarded as a general framework for handling
spectral variability in unmixing.

• Considering the complexity of the formulated unmixing problem, a dimensional
division-based PSO is extended to solve the unknown unmixing variables. More
reliable and accurate unmixing results can be produced by the proposed method.

The remainder of this paper is organized as follows. Section 2 introduces the LMM
and PPNM, two classical approaches accounting for SV and the principle of Fisher transfor-
mation. Section 3 presents the details of the proposed method. Experimental results for
both the synthetic and real datasets are provided in Section 4 and discussed in Section 5.
Section 6 concludes the whole paper.

2. Related Works
2.1. LMM and PPNM

For a given HSI, the LMM interprets it as the linear combination of a set of endmember
signatures and their fractional abundances, which can be formulated as follows:

X = EA + N, (1)

where X = [x1, x2, . . . , xN ] ∈ RM×N denotes the observed data matrix with M spectral
bands and N pixels, E = [e1, e2, . . . , eR] ∈ RM×R denotes a matrix consisting of R end-
member vectors, A = [a1, a2, . . . , aN ] ∈ RR×N represents the abundance matrix, and
N = [n1, n2, . . . , nN ] ∈ RM×N is the residual error. Abundances should usually satisfy two
physical constraints, i.e., the abundance nonnegative constraint (ANC) and the abundance
sum-to-one constraint (ASC):

A ≥ 0, 1T
RA = 1T

N , (2)

where 1R ∈ RR×1 and 1N ∈ RN×1 are two column vectors whose elements are all ones.
Different from the LMM’s assumption, the PPNM further introduces second-order

scattering terms to model the nonlinear contributions. The jth pixel based on the PPNM
can be represented as:

xj = Eaj + bjEaj � Eaj + nj, j = 1, 2, . . . , N, (3)

where bj is a bilinear parameter to adjust the contribution of nonlinearity and the operator
� denotes the Hadamard product. For the entire HSI, a compact matrix form of (3) can be
written as:

X = EA + 1MbT � EA� EA + N, (4)

where all the elements of the vector 1M ∈ RM×1 are one and b = [b1, b2, . . . , bN ]
T ∈ RN×1.

2.2. ELMM and SULoRA

As a variant of the LMM, the ELMM exploits scaling factors to model SV, which allows
endmembers to vary in every pixel:

X = E(S�A) + N. (5)
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In (5), the element of S in the ith row and jth column denotes the scaling factor of
the ith endmember in the jth pixel. On the other hand, SULoRA aims to learn a low-rank
subspace projection for reducing SV in the transformed space. The unmixing problem of
SULoRA can be formulated using:

min
A,Θ

1
2‖Θ(X− EA)‖2

F +
α
2‖X−ΘX‖2

F + β‖Θ‖∗ + γ‖A‖1,1

s.t. A ≥ 0,
(6)

where Θ ∈ RM×M is the transformation matrix, ‖A‖1,1 = ∑R
i=1 ∑N

j=1
∣∣Ai,j

∣∣, ‖·‖F denotes the
Frobenius norm, and ‖·‖∗ denotes the nuclear norm. α, β, and γ are small penalty coefficients.

2.3. Fisher Transformation

Fisher transformation projects training data into a subspace that minimizes the inner-
class differences and maximizes the inter-class differences. Let Y = [y1, y2, . . . , yN ] ∈ RD×N

be N training samples from C classes, and D is the input space’s dimension. The Fisher
transformation matrix can be obtained by solving the following optimization problem:

min
W

trace(WTSwW)

trace(WTSbW)
, (7)

where W ∈ RD×(C−1) is the projection matrix, Sw and Sb are within-class and between-class
scatter matrices. Specifically, Sw and Sb are derived using:

Sw =
C
∑

i=1
∑

yj∈Ci

(yj −mi)(yj −mi)
T

Sb =
C
∑

i=1
Ni(mi −m)(mi −m)T

. (8)

In (8), m represents the mean vector of all training samples, Ni is the number of
samples belonging to the class Ci, and mi denotes their mean vector. Usually, W is collected
as C− 1 eigenvectors corresponding to the first C− 1 smallest eigenvalues of S−1

w Sb.

3. Proposed Method
3.1. Superpixel-Based Fisher Transformation Using Abundance-Driven Dynamic
Coarse Classification

Spectral variability can increase the difference between pixels of the same class and
decrease the differences between those of different classes. Assuming all pixels are consti-
tuted by a common set of endmembers brings errors to the unmixing process, which can
be significantly amplified in nonlinear unmixing problems containing multiple scatterings
terms like (3). To deal with this issue, Fisher transformation is employed to improve
traditional nonlinear unmixing and reduce the impact of spectral variability.

Notably, a predefined spectral library containing pure spectra of land covers is commonly
required for Fisher transformation to learn the projection matrix W in (7), which is often
inaccessible for unsupervised nonlinear unmixing. Therefore, we developed an abundance-
driven coarse classification strategy to build a dynamically updated spectral library. During
the unmixing, pixels with large abundances are recognized and classified into different classes,
generating approximate Sw and Sb in (8) for Fisher transformation. Specifically, a pixel xj can
be coarsely classified into the category of its dominant endmember that has the maximum
abundance:

cj =

 Cr, if max
{

ai,j
}R

i=1 ≥ ε and r = argmax
i

{
ai,j
}R

i=1

C0, other
, (9)

where ai,j denotes the abundance of the endmember ei in the pixel xj. cj denotes the
class label of xj, and Cr is the category of endmember er (r = 1, 2, . . . , R), and C0 is an
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invalid category. Considering the influence of data’s mixing degree, a threshold value
ε is introduced in (9) for the selection of approximate pure pixels. In terms of highly
mixed data, it is possible that only a part of the pixels could be used for training W. As
shown in Figure 1, the proposed method exploits dynamically updated abundances to
determine clusters of land covers directly from HSIs for Fisher transformation, which could
be consistent with the nature of hyperspectral data.
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Figure 1. Schematic of the proposed FTUPSO method.

However, this strategy may also induce impractical estimation of neighboring objects’
spatial distribution, especially for large heterogeneous scenarios. Two globally determined
scatter matrices Sw and Sb can make the negative effects of misclassification serious and the
optimization of W more sensitive to the value of ε. As a result, the difference in abundances
between neighboring pixels within local spatial regions may increase excessively after
the global Fisher transformation. It is in conflict with the common phenomenon that
pixels within locally homogenous regions usually possess spectral similarity and similar
abundances [50].

To overcome this limitation, the popular superpixel segmentation method SLIC [51]
is exploited to improve the Fisher transformation. Let P = {P1, P2, . . . , PK} denote K
superpixels, each of which contains a group of pixels in small, locally homogenous regions.
Superpixel-based Sw and Sb can be further determined as follows:

Sw =
K
∑

k=1

R
∑

r=1
∑

xj∈Cr and xj∈Pk

(xj −mr,k)(xj −mr,k)
T

Sb =
K
∑

k=1

R
∑

r=1
Nr,k(mr,k −mk)(mr,k −mk)

T
, (10)

where mk denotes the mean vector of pixels in Pk, mr,k is the mean vector of pixels belonging
to Cr in the superpixel Pk (pixels belonging to C0 are excluded from both mk and mr,k), and
Nr,k is the number of pixels belonging to Cr in Pk.

3.2. Nonlinear Unmixing Accounting for Spectral Variability

The PPNM is used to explain the nonlinear mixing effects. After superpixel-based
Fisher transformation is incorporated into the process of unsupervised nonlinear unmixing,
hyperspectral data are required to be approximately reconstructed in both the original
spectral space and the transformed feature subspace. Thus, the final mathematical problem
of nonlinear unmixing accounting for spectral variability can be formulated using:

min
W,E,A,b

λ

∥∥∥∥X−
^
X
∥∥∥∥2

F
+ (1− λ)

∥∥∥∥WT(X−
^
X)
∥∥∥∥2

F
+ αΦ(W) + βγ(A)

s.t. A ≥ 0, 1T
RA = 1T

N ,
(11)
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where
^
X = EA+ 1MbT�EA�EA ∈ RM×N represents the PPNM-based reconstructed data.

W is an M×M projection matrix in Fisher transformation. In (11), two data reconstruction
terms are balanced by a nonnegative parameter λ. This structure requires pixels to be
accurately approximated not only in the original spectral space but also in the transformed
feature space. The first term is optimized to produce model-conforming endmembers
and abundances. The second term further guides the searching direction into the solution
space where SV can be reduced. In practice, according to the applications and observed
hyperspectral data’s property, a large λ may be selected to make the proposed method
work as a traditional PPNM-based unsupervised nonlinear unmixing method, while a
small λ makes a solution with prominent variance between different land covers’ unmixing
results which is preferred. A proper λ can be set to mitigate the coupled effect of the
nonlinearity and SV. Thus, the impact of SV on nonlinear unmixing can be reduced and
satisfactory unmixing results can be obtained. Φ(W) and γ(A) are two regularization terms
for variables W and A. α and β are two small penalty parameters to adjust the influence of
HSIs’ structural features on unmixing. To make unmixing results have a more practical
significance, Φ(W) and γ(A) can be defined as follows:

(1) Fisher Regularization term Φ(W): The transformation matrix W should satisfy the
Fisher criterion, i.e.,

Φ(W) =
trace(WTSwW)

trace(WTSbW)
, (12)

where scatter matrices Sw and Sb are obtained by (10). Φ(W) in (12) guarantees
that the transformation can reduce the differences between pixels of the same class
and the similarities between different materials. In contrast to traditional Fisher
transformation-based methods calculating W in a preprocessing step, our proposed
method trains it in an iterative unmixing process. Moreover, to facilitate the optimiza-
tion of W, (12) is rewritten as an approximate equivalent form [52,53]:

Φ(W) = trace(WT(Sw − µSb)W) =
M

∑
t=1

wT
t (Sw − µSb)wt, (13)

where wt denotes the t th column vector of W and µ > 0 is a small constant used to
balance the contributions of Sw and Sb.

(2) TV Smoothness Regularization term γ(A): In natural scenarios of hyperspectral data,
the spatial distribution of land covers is often considered to be piecewise smooth, i.e.,
abundances of neighboring pixels in local homogeneous regions are similar. In this
sense, the total variation (TV) regularization term [54] is further introduced to exploit
the HSIs’ spatial information and improve the smoothness of estimated abundances,
which can be formulated using:

γ(A) = ‖AH‖1,1, (14)

where H ∈ RN×4N is an operator utilized to calculate the differences between a given
pixel and its four neighboring pixels (i.e., pixels on the top, bottom, left, and right).
Notably, the settings of parameters λ, α, and β can depend on applications and the
spatial-spectral structures of data for different observed scenarios.

3.3. Alternating Update of Unmixing Variables via Multi-Swarm PSO

There are four unknown variables, W, E, A, and b, that need to be estimated in the
formulated unmixing problem (11). Commonly, traditional gradient-based alternating update
methods are used, but they are easily trapped into the local optima, and produce unsatis-
fied unmixing results in solving nonconvex constrained optimization problems. However,
the complexity and nonconvexity of (11) require a robust optimization method with global
convergence to produce more accurate unmixing results. PSO has the superiority of easy
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implementation and robustness to local optima in solving nonconvex constrained optimiza-
tion problems, which has been investigated in the field of unmixing [55,56]. Considering the
high-dimensional characteristics of hyperspectral unmixing, our previous work [49] developed
a divide-and-conquer-based strategy to efficiently exchange particles’ historical and global
optimal information in different swarms according to the dimensions divided using the indices
of pixels or bands. The dimensional division-based multi-swarm PSO can estimate particles’
positions (i.e., the optimal solutions) more accurately in a finer search mode and work as a
general framework to generate reliable results for different unmixing tasks [47,57]. Hence, the
proposed method adopts this improved PSO framework for optimization.

Specifically, four swarms, denoted as ΩE, ΩA, Ωb and ΩW , are constructed to optimize
E, A, b and W, respectively. Each swarm has Q particles. Assuming the other three variables
are known, the optimization subproblems of these swarms are written as:

min
E

λ

∥∥∥∥X−
^
X
∥∥∥∥2

F
+ (1− λ)

∥∥∥∥WT(X−
^
X)
∥∥∥∥2

F
, 0 ≤ E ≤ 1

min
A

λ

∥∥∥∥X−
^
X
∥∥∥∥2

F
+ (1− λ)

∥∥∥∥WT(X−
^
X)
∥∥∥∥2

F
+ βγ(A), A ≥ 0, 1T

RA = 1T
N

min
b

λ

∥∥∥∥X−
^
X
∥∥∥∥2

F
+ (1− λ)

∥∥∥∥WT(X−
^
X)
∥∥∥∥2

F
,

min
W

(1− λ)

∥∥∥∥WT(X−
^
X)
∥∥∥∥2

F
+ αΦ(W).

(15)

The fitness functions of four swarms are vectorized according to the matrices’ rows or
columns in (15). For example, the fitness vectors of swarm ΩE can be generated by M band-
wise divisions, the fitness vectors of swarm ΩW can be obtained by M column-wise divisions,
and the fitness vectors of swarms ΩA and Ωb can be obtained by N pixel-wise divisions. In
this sense, the fitness vectors of the four swarms are given in (16) and are detailed in (17)–(20):

f itness(E) = [ f1, f2, . . . , fM],
f itness(A) = [g1, g2, . . . , gN ],
f itness(b) = [h1, h2, . . . , hN ],
f itness(W) = [z1, z2, . . . , zM],

(16)

and

fi = λ
N

∑
j=1

(X−
^
X)

2

i,j + (1− λ)
N

∑
j=1

(WT(X−
^
X))

2

i,j, i = 1, 2, . . . , M, (17)

gj = λ
M
∑

i=1
(X−

^
X)

2

i,j + (1− λ)
M
∑

i=1
(WT(X−

^
X))

2

i,j

+β
R
∑

i=1
(
∣∣∣(AH)i,j

∣∣∣+∣∣∣(AH)i,j+N

∣∣∣+∣∣∣(AH)i,j+2N

∣∣∣
+
∣∣∣(AH)i,j+3N

∣∣∣), j = 1, 2, . . . , N,

(18)

hk = λ
M

∑
i=1

(X−
^
X)

2

i,k + (1− λ)
M

∑
i=1

(WT(X−
^
X))

2

i,k, k = 1, 2, . . . , N, (19)

zt = (1− λ)
M

∑
j=1

(WT(X−
^
X))

2

t,j + αwT
t (Sw − µSb)wt, t = 1, 2, . . . , M. (20)

Then, based on (16), particles compare their fitness vectors, and update their positions and
velocities in corresponding dimensions using a velocity update equation [55] during the search
for PSO. Notably, a particle’s position represents a potential solution for E, A, b or W according
to a specific swarm, ΩE, ΩA, Ωb or ΩW . In the velocity update equation, each particle’s
current position and velocity, its best position in history, and the best position in its swarm
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are used to calculate its new velocity and position following a simple physical momentum
process. An inertia weight can be used to control the swarm’s exploration and development,
and two accelerating factors are often applied to balance the influence of cognitive and social
learning of particles. Moreover, randomness is introduced to avoid the premature issue. In
each iteration, each particle’s best position in history and the best positions in the swarms could
be updated. The detailed settings of PSO’s hyperparameters, and the updated and boundary
control rules of velocities and positions can be referred to [49].

In the proposed method, the positions of the particles in ΩE are initialized by randomly
selecting pixels from the HSI, and for the other three swarms, the initial positions are set as
random values. The velocities of all particles are initialized as zeros. In order to accelerate
convergence and better guide the search direction, four elite particles are added into the
swarms. The positions of elite particles for ΩE and ΩA are provided by VCA [58] and
FCLS [59], respectively. For Ωb, its elite particle’s position is initialized by the least square
solution of the first term in (11). The elite particle’s position in ΩW is set as the eigenvectors
of Sw − µSb referring to [52]. The four initial global best positions W(0)

gbest, E(0)
gbest, A(0)

gbest,

and b(0)
gbest (superscript represents the current number of iterations) are determined by

alternately updating the particles in the four swarms. As shown in Figure 1, for a given
swarm, its fitness vectors are calculated by using the global best positions of the other three
swarms, e.g., in every iteration, the global best position W(it)

gbest of ΩW is determined by

using E(it)
gbest, A(it)

gbest, and b(it)
gbest belonging to ΩE, ΩA and, Ωb, respectively. The proposed

FTUPSO can be briefly summarized in Algorithm 1.

Algorithm 1: Fisher transformation-based unmixing algorithm via particle swarm
optimization (FTUPSO)

Input: Hyperspectral image X ∈ RM×N , parameters α, β, and λ.
Output: Endmember matrix E ∈ RM×R, abundance matrix A ∈ RR×N , transformation matrix
W ∈ RM×M, and bilinear parameter vector b ∈ RN×1.
Initialization:
1: Perform the SLIC method on X to obtain K superpixels.
2: Generate four swarms, ΩW , ΩE, ΩA, and Ωb, and initialize the particles’ positions in the

swarms and set the particle’s velocities as zeros, and determine the global best positions, W(0)
gbest,

E(0)
gbest, A(0)

gbest, and b(0)
gbest; it = 0.

3: Whileit < maxiter, performit = it + 1

3.1: Calculate f itness(E) for particles in ΩE using W(it−1)
gbest , A(it−1)

gbest , and b(it−1)
gbest from (17), then

determine the global best position E(it)
gbest.

3.2: Calculate f itness(A) for particles in ΩA using W(it−1)
gbest , E(it)

gbest, and b(it−1)
gbest from (18), then

determine the global best position A(it)
gbest.

3.3: Calculate f itness(b) for particles in Ωb using W(it−1)
gbest , E(it)

gbest, and A(it)
gbest from (19), then

determine the global best position b(it)
gbest.

3.4: Use A(it)
gbest to classify X by (9), then calculate Sw and Sb using (10).

3.5: Calculate f itness(W) for particles in ΩW using E(it)
gbest, A(it)

gbest, and b(it)
gbest from (20), then

determine the global best position W(it)
gbest.

3.6: Update the velocities and positions for particles in four swarms using the historical and
global best positions obtained in the previous iteration.

End

4: Output Wgbest, Egbest, Agbest, and bgbest.
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4. Experiments and Results

In this section, experiments on synthetic datasets and two real hyperspectral images
were conducted to validate the effectiveness of the proposed FTUPSO. Experimental re-
sults were compared with nine classical and state-of-the-art methods, including VCA,
FCLS, NMF_QMV [60], SULoRA [38], ELMM, PGMSU [44], PPNM-GDA, MLMp [61],
and Fan_NMF [62]. Regularization parameters in these methods were experimentally and
empirically chosen to achieve the best performance according to the related references.
VCA and FCLS were used for the initialization of unsupervised unmixing methods. All
the experiments were run on MATLAB R2021b using a computer with a 3.80-GHz Intel®

Core™ i7-10700K CPU and 64 GBs of memory.

4.1. Evaluation Metrics

In order to assess the performance of the compared methods, four quantitative metrics
are utilized in this work. For synthetic datasets, spectral angle distance (SAD) in (21), and
abundance overall root mean square error (aRMSE) in (22) were adopted to compare the ac-
curacy of estimated endmembers and abundances. Due to the ground truth of endmembers
and abundances being unavailable in the real hyperspectral data, a reconstruction error
(RE) in (23) and a signal-to-reconstruction error (SRE) in (24) are employed to evaluate
the fitting capability of the methods as auxiliary metrics like most published works. In

(21) and (22),
^
er (r = 1, 2, . . . , R) and

^
A denote the estimated endmembers and abundances,

respectively.

SAD =
1
R

R

∑
r=1

arccos(
eT

r
^
er

‖er‖
∥∥∥∥^

er

∥∥∥∥ ) (21)

aRMSE =

√√√√ 1
RN

N

∑
j=1

R

∑
i=1

(Ai,j −
^
Ai,j)

2

(22)

RE =

√√√√ 1
MN

N

∑
j=1

M

∑
i=1

(Xi,j −
^
Xi,j)

2

(23)

SRE = 10 log10(
‖X‖2

F∥∥∥∥X−
^
X
∥∥∥∥2

F

) (24)

4.2. Synthetic Data Experiments

To quantitatively compare the unmixing accuracy, synthetic datasets with different
noise intensities, numbers of endmembers, and numbers of pixels were generated. Five
endmembers were selected from the USGS spectral library (available at http://speclab.
cr.usgs.gov/spectral-lib.html (accessed on 1 April 2023)) as the reference endmembers
(shown in Figure 2) where each endmember is composed of 224 spectral bands covering
wavelengths from 380 to 2500 nm. Then, the reference endmembers were multiplied with
randomly generated scaling factors in the range [0.75, 1.25] to model SV for each pixel [37].
Abundances were sampled by the Gaussian random field (available at http://www.ehu.
es/ccwintco/index.php/Hyperspectral_Imagery_Synthesis_tools_for_MATLAB (accessed
on 1 April 2023)) method. The maximum abundance was set as 0.8 to simulate the highly
mixed scenarios. Finally, pixels were mixed based on the PPNM with pixel-wise random
bilinear parameters in the range [−0.3, 0.3], and additive Gaussian white noise was added.
For a fair comparison, each method was run ten times independently, and the mean and
standard deviation of the unmixing results were provided. The best experimental results
are marked in bold.

http://speclab.cr.usgs.gov/spectral-lib.html
http://speclab.cr.usgs.gov/spectral-lib.html
http://www.ehu.es/ccwintco/index.php/Hyperspectral_Imagery_Synthesis_tools_for_MATLAB
http://www.ehu.es/ccwintco/index.php/Hyperspectral_Imagery_Synthesis_tools_for_MATLAB
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extraction and abundance estimation are considered simultaneously. In addition, for the 

Figure 2. Reference endmembers selected from the USGS library. (a) Maple_Leaves DW92-
1, (b) Olivine GDS70.a Fo89 165 um, (c) Calcite CO2004, (d) Quartz GDS74 Sand Ottawa,
(e) Grass_dry.9+.1green AMX32.

(1) Parameters’ Settings

In the experiments, three parameters, λ, α, and β in (11), were determined to make
the proposed method achieve the best performance. The accuracies of the endmember
extraction and abundance estimation are considered simultaneously. In addition, for the
SLIC method-based superpixel segmentation, the weight ws measuring spectral and spatial
similarities was set as 0.5, and the average size of the superpixels was determined referring
to [51]. A dataset comprising three endmembers and 32 × 32 pixels was first generated
with the Signal to Noise Ratio (SNR = 10 log10(E[xTx]/E[εTε])) being 40 dB. Compared to
α and β, λ directly controls the minimization of reconstruction errors in the original space
and the transformed feature space, which plays the most important role in the optimization
problem of unmixing. Therefore, λ was previously studied with α and β being fixed.
According to Figure 3, λ could be set as 0.9. Then, based on the experimental results in
Figures 4 and 5, α = 0.01 and β = 0.1, the average size of the superpixels was 6.
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(2) Ablation Experimental Analysis

To study the function of Fisher transformation, superpixel segmentation, TV regu-
larization, and multi-swarm PSO on the proposed FTUPSO, ablation experiments were

conducted for this section. First, a multi-swarm PSO method to optimize
∥∥∥∥X−

^
X
∥∥∥∥2

F
in (11)

was implemented as the baseline. It actually solves a simple PPNM-based unsupervised
nonlinear unmixing problem. Then, the other three ablation factors were added into the
method in turn. The ablation analysis was performed on the same datasets as the parameter
selection experiment to demonstrate the contribution of each of FTUPSO’s parts.

In Table 1, the simplified baseline PSO method provides the poorest unmixing results.
The adoption of a TV regularization term makes the unmixing accuracy outperform the
baseline to a small degree due to the enhancement of the abundances’ spatial smoothness.
Moreover, as the Fisher transformation is further considered in the baseline framework, the
errors of estimated endmembers and abundances are significantly reduced, indicating its
effectiveness for addressing SV. Finally, it is clear that FTUPSO consisting of all four of the
factors has the best unmixing performance. Superpixel improved Fisher transformation
creates a good balance between the similarity and the difference of neighboring pixels.
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Table 1. Ablation analysis on synthetic data.

Metrics aRMSE SAD

PSO 0.0724 ± 0.0270 3.6999 ± 2.8524
PSO + TV 0.0675 ± 0.0244 3.1646 ± 2.4182

PSO + TV + Fisher 0.0551 ± 0.0160 2.5460 ± 2.0137
PSO + TV + Fisher + Superpixel 0.0529 ± 0.0100 1.7551 ± 0.6397

The best experimental results are marked in bold.

(3) Noise Robustness Analysis

In this experiment, datasets containing 32 × 32 pixels comprising three endmembers
were generated to investigate the robustness of the compared methods to different noise
intensities (i.e., SNR equals to 30 dB, 40 dB, and 50 dB). aRMSEs and SADs of estimated
endmembers and abundances are listed in Table 2. Induced by the coupled effects of
nonlinearity and SV, the unmixing results of traditional LMM-based methods (i.e., VCA,
FCLS, and NMF_QMV) have larger unmixing errors than the other methods. ELMM,
interpreting SV by scaling factors, improves the estimated abundances to some extent.
However, it has similar SADs as VCA, implying its dependence on reference endmembers.
SULoRA produces acceptable abundances because of its low-rank subspace transforma-
tion’s robustness to SV. In contrast, PGMSU’s aRMSEs are large and it fails to learn such
a complex distribution of SV. It can be observed that most compared methods’ unmixing
results are slightly degraded at 50 dB compared to 40 dB, which may be induced by the
randomness of generating data and noises. Compared to the linear unmixing methods, the
nonlinear unmixing methods obtained more accurate unmixing results, but the ignorance
of SV deteriorates their performance. MLMp cannot solve the endmembers correctly when
the SNR is 30 dB. In conclusion, FTUPSO shows remarkable improvement for data with
different SNRs. It may be inferred that the Fisher transformation is superior in reducing SV
and makes FTUPSO robust to noises.

Table 2. Comparison of unmixing accuracies of all methods for synthetic data with different SNRs.

SNR
30 dB 40 dB 50 dB

aRMSE SAD aRMSE SAD aRMSE SAD

VCA + FCLS 0.1235 ± 0.0277 5.0554 ± 1.0975 0.1175 ± 0.0250 4.8533 ± 0.2147 0.1273 ± 0.0294 5.3393 ± 0.8503
NMF_QMV 0.1136 ± 0.0104 10.0529 ± 2.1945 0.1120 ± 0.0105 10.3264 ± 1.5705 0.1145 ± 0.0087 10.6626 ± 2.1452

SULoRA 0.0876 ± 0.0200 - 0.0853 ± 0.0060 - 0.0956 ± 0.0220 -
ELMM 0.0858 ± 0.0231 4.9727 ± 1.0713 0.0720 ± 0.0046 4.7724 ± 0.2199 0.0872 ± 0.0230 5.2443 ± 0.8369

PGMSU 0.1150 ± 0.0132 2.9392 ± 0.4247 0.1174 ± 0.0100 2.8098 ± 0.6449 0.1171 ± 0.0127 2.8701 ± 0.6919
PPNM-GDA 0.1087 ± 0.0139 - 0.1035 ± 0.0082 - 0.1085 ± 0.0121 -

MLMp 0.0945 ± 0.0223 10.9429 ± 1.9940 0.0860 ± 0.0187 6.1948 ± 0.4053 0.0967 ± 0.0253 6.1932 ± 0.5542
Fan_NMF 0.1090 ± 0.0190 3.3978 ± 0.7028 0.1085 ± 0.0173 3.4620 ± 0.5106 0.1139 ± 0.0155 3.5118 ± 0.6926
FTUPSO 0.0646 ± 0.0174 2.4315 ± 1.0783 0.0553 ± 0.0113 1.9133 ± 0.6487 0.0668 ± 0.0183 2.8610 ± 1.5002

The best experimental results are marked in bold.

(4) Sensitivity Analysis to the Number of Endmembers

This section details experiments conducted to analyze the methods’ sensitivity to
the number of endmembers. Table 3 compares the aRMSEs and SADs obtained by the
compared methods. Pixels consist of different numbers of endmembers, ranging from three
to five. Each dataset has a total of 32 × 32 pixels and the SNR is 40 dB. In Table 3, the
variation in the number of endmembers results in different trends in unmixing accuracies
among the methods. NMF_QMV seems to be the most sensitive to the changes of the
number of endmembers. In the cases where no more than four endmembers are considered,
it nearly failed to extract accurate endmembers. However, FTUPSO always provides the
best unmixing results for different datasets. It implies that, even for a complex high-
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dimensional unmixing problem, the dimension-wise search of multi-swarm PSO makes
the proposed method can obtain robust and accurate solutions.

Table 3. Comparison of unmixing accuracies of all methods for synthetic data with different numbers
of endmembers.

Endmembers’
Numbers

3 4 5

aRMSE SAD aRMSE SAD aRMSE SAD

VCA + FCLS 0.1175 ± 0.0250 4.8533 ± 0.2147 0.1182 ± 0.0127 4.7575 ± 0.3368 0.1349 ± 0.0251 4.6193 ± 0.4725
NMF_QMV 0.1120 ± 0.0105 10.3264 ± 1.5705 0.2208 ± 0.0305 11.8767 ± 8.7074 0.1533 ± 0.0173 4.6940 ± 2.0134

SULoRA 0.0853 ± 0.0060 - 0.0924 ± 0.0080 - 0.1028 ± 0.0219 -
ELMM 0.0720 ± 0.0046 4.7724 ± 0.2199 0.1138 ± 0.0159 4.6558 ± 0.3446 0.1048 ± 0.0130 4.5240 ± 0.4673

PGMSU 0.1174 ± 0.0100 2.8098 ± 0.6449 0.1516 ± 0.0180 4.4599 ± 0.8600 0.1587 ± 0.0115 5.7992 ± 0.7512
PPNM-GDA 0.1035 ± 0.0082 - 0.1019 ± 0.0071 - 0.0897 ± 0.0080 -

MLMp 0.0860 ± 0.0187 6.1948 ± 0.4053 0.1025 ± 0.0141 6.5597 ± 0.6135 0.1238 ± 0.0254 4.9190 ± 0.5242
Fan_NMF 0.1085 ± 0.0173 3.4620 ± 0.5106 0.0948 ± 0.0083 3.3640 ± 0.6885 0.1134 ± 0.0262 3.6232 ± 0.4499
FTUPSO 0.0553 ± 0.0113 1.9133 ± 0.6487 0.0845 ± 0.0102 3.2964 ± 0.5120 0.0877 ± 0.0108 2.9669 ± 0.6588

The best experimental results are marked in bold.

(5) Sensitivity Analysis to the Number of Pixels

In this experiment, the methods’ sensitivity to the number of pixels is further studied
in datasets generated using different numbers of pixels varying from 32 × 32 to 64 × 64.
Three endmembers were used and SNR was set as 40 dB. Table 4 shows the quantitative
evaluation of different methods. Consistent with the above experiments, NMF_QMV had
large unmixing errors in most cases, and the other methods were outperformed by FTUPSO.
Simulated data characterized by significant nonlinearity and SV may pose challenges for the
compared methods and deteriorate their performance. Nevertheless, FTUPSO’s estimated
endmembers and abundances have the smallest aRMSEs and SADs. The data’s size has no
significant impact on the proposed method’s unmixing accuracy.

Table 4. Comparison of unmixing accuracies of all methods for synthetic data with different numbers
of pixels.

Pixels’
Numbers

32 × 32 48 × 48 64 × 64

aRMSE SAD aRMSE SAD aRMSE SAD

VCA + FCLS 0.1175 ± 0.0250 4.8533 ± 0.2147 0.1340 ± 0.0214 4.8910 ± 0.2676 0.1124 ± 0.0126 4.8456 ± 0.4261
NMF_QMV 0.1120 ± 0.0105 10.3264 ± 1.5705 0.1144 ± 0.0095 9.9620 ± 2.6018 0.1230 ± 0.0149 10.6720 ± 2.2458

SULoRA 0.0853 ± 0.0060 - 0.0930 ± 0.0061 - 0.0866 ± 0.0063 -
ELMM 0.0720 ± 0.0046 4.7724 ± 0.2199 0.0792 ± 0.0096 4.8209 ± 0.2769 0.0768 ± 0.0074 4.7691 ± 0.4242

PGMSU 0.1174 ± 0.0100 2.8098 ± 0.6449 0.1214 ± 0.0124 2.8836 ± 0.7589 0.1250 ± 0.0182 2.9379 ± 0.6014
PPNM-GDA 0.1035 ± 0.0082 - 0.1045 ± 0.0082 - 0.1006 ± 0.0050 -

MLMp 0.0860 ± 0.0187 6.1948 ± 0.4053 0.0991 ± 0.0149 5.9899 ± 0.3767 0.0836 ± 0.0110 6.3783 ± 0.7071
Fan_NMF 0.1085 ± 0.0173 3.4620 ± 0.5106 0.1238 ± 0.0138 3.7635 ± 0.7783 0.1034 ± 0.0119 3.6131 ± 0.6002
FTUPSO 0.0553 ± 0.0113 1.9133 ± 0.6487 0.0698 ± 0.0111 2.8147 ± 0.8162 0.0576 ± 0.0079 2.1379 ± 0.7995

The best experimental results are marked in bold.

(6) Convergence Analysis and Time Cost Comparison

According to Algorithm 1, the time cost mainly results from the alternating update
of four swarms, i.e., ΩW , ΩE, ΩA and Ωb. Considering the computational burden for
calculating fitness vectors, updating velocities and positions, and comparisons for deter-
mining the best particle, the total computational complexity of FTUPSO can be given as
O(Q(MRN + MMN + RNN)). The theoretical proof of PSO’s convergence can be found
in published works [55]. FTUPSO is a simple extension of traditional PSO and has similar
convergence. In the experiments, the variations of FTUPSO’s REs in both the original data
space and the transformed feature subspace are depicted in Figure 6. It can be observed
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that REs decrease monotonically as the number of iterations increases and they converge to
small values. Hyperspectral data can be well fitted in the two spaces. Table 5 further lists
the execution time of different methods for datasets with different numbers of endmembers
and pixels. Due to the use of a swarm intelligence algorithm, which has a common draw-
back that accuracy gains may bring a high computational burden, the proposed method
needs more time for unmixing compared to the other methods.
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Table 5. Execution time (in seconds) of the methods for synthetic datasets generated using different
numbers of endmembers and pixels.

Execution Time
Number of Endmembers Number of Pixels

3 4 5 32 × 32 48 × 48 64 × 64

VCA + FCLS 0.0434 0.0470 0.0696 0.0326 0.0650 0.1220
NMF_QMV 0.2431 0.2881 0.3406 0.2606 0.4014 0.6931

SULoRA 0.3645 0.3920 0.3853 0.3746 0.5447 0.7816
ELMM 8.0922 14.6351 18.7209 8.0323 21.8451 31.3933

PGMSU 15.7060 14.5231 14.6889 14.1952 15.7322 17.5270
PPNM-GDA 1.7015 4.9834 6.2781 1.6025 3.4623 7.7735

MLMp 2.1957 12.3033 8.6232 2.0675 4.5887 4.8350
Fan_NMF 3.4285 2.1612 2.9618 3.6760 6.1072 20.9294
FTUPSO 110.7060 109.8231 100.7271 111.5885 238.9956 416.8989

4.3. Real Hyperspectral Data Experiments

Two real hyperspectral remote sensing images were further applied to evaluate the
performance of the proposed FTUPSO in practical scenarios. Due to the absence of ground
truth, two quantitative metrics (i.e., RE and SRE) defined in (23) and (24) and qualitative
experimental results including endmember curves and abundance maps were adopted to
compare the overall unmixing accuracy of the methods. In addition, the execution time for
each method was provided. In the following two experiments, considering the difference
between the spatial structures of synthetic data and real hyperspectral data, we have set
β as 0.001 to alleviate the possible issue of over-smoothness. The other settings were the
same as the synthetic data experiments.

(1) Washington DC Mall Dataset

The first hyperspectral image, captured by the Hyperspectral Digital Imagery Col-
lection Experiment (HYDICE) sensor over Washington DC Mall, has 307 × 1280 pixels
and a spatial resolution of 3 m. Spectral bands range from 0.4 to 2.5 µm. A subset of
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165 bands was selected, excluding those impacted by noise (bands 1–15, 102–107, 137–152,
and 203–210). A 100 × 100-pixel sub-image of this dataset was selected as the Region of
Interest (RoI) for unmixing. Five categories of land covers exist: #1 Water, #2 Roof, #3 Tree,
#4 Road, and #5 Grass. Figure 7 depicts the false color image and the superpixels produced
by the SLIC method for this RoI.
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Figure 7. A 100 × 100-pixel RoI of Washington DC Mall data for experiments. The spatial resolution
is 3 m. (a) False color image, (b) Result of superpixel segmentation.

Experimental results’ SREs and REs for the Washington DC Mall data can be observed
in Table 6. In terms of data reconstruction, the linear unmixing methods produced larger
REs and smaller SREs than the nonlinear unmixing methods. ELMM can address the issue
of SV and is considered to have the ability to explain nonlinear mixing effects to some
extent [63], which makes it perform the best. Abundance maps and extracted endmembers’
spectral curves are presented in Figures 8 and 9, respectively. The spatial distribution of
water was recognized by all the methods, but was possibly overestimated by NMF_QMV
and PGMSU in some pixels. SULoRA, incorrectly recognizing roads and water as the roof,
produced the worst result. It is inferred that only enhancing the inner-class similarities but
neglecting the inter-class differences may result in misidentification. Trees and grass were
not clearly distinguished by the methods. However, FTUPSO, taking the advantages of
Fisher transformation and superpixel segmentation, could estimate abundances that were
more consistent with the real spatial distribution of most land covers. Moreover, due to the
use of a TV regularization term, the abundance maps estimated by FTUPSO are smoother
than the other methods’ maps. In terms of endmember curves, NMF_QMV and PGMSU
seem to overestimate the roof spectra’s amplitude, and all the methods have similar results
for the other land covers. The above comparison illustrates that FTUPSO can provide
reasonable and accurate qualitative unmixing results due to its ability to reduce the impact
of spectral variability in nonlinear unmixing.

Table 6. Comparison of the methods’ unmixing performance for real hyperspectral data.

Metrics
Washington Cuprite

RE SRE Time RE SRE Time

VCA + FCLS 0.0314 18.7345 0.7015 0.0082 33.0812 7.0573
NMF_QMV 0.0277 20.2062 1.6970 0.0440 19.1431 33.7064

SULoRA 0.0511 15.1141 0.7667 0.0981 13.3269 4.4248
ELMM 0.0047 35.5494 175.6399 0.0039 39.5010 770.7104

PGMSU 0.0096 29.4179 21.4256 0.0067 34.8311 60.6150
PPNM-GDA 0.0105 28.5890 63.4661 0.0059 35.8866 226.6430

MLMp 0.0121 27.4003 61.4246 0.0061 35.6612 53.2769
Fan_NMF 0.0090 29.9461 4.6028 0.0058 36.0014 84.9318
FTUPSO 0.0062 33.1701 762.0527 0.0039 39.5066 3484.3585
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Figure 8. Abundance maps of Washington DC Mall data estimated by different methods.
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Figure 8. Abundance maps of Washington DC Mall data estimated by different methods. 
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bers with the smallest SADs were extracted by different methods. For example, FTUPSO 

Figure 9. Endmembers of Washington DC Mall data extracted by different methods. (a) Water,
(b) Roof, (c) Tree, (d) Road, (e) Grass.

(2) Cuprite Dataset

The second real dataset was acquired by the Airborne Visible/Infrared Imaging Spec-
trometer (AVIRIS) over Cuprite, Nevada. A total of 224 spectral bands were sampled



Remote Sens. 2023, 15, 5028 18 of 25

ranging from 0.4 to 2.5 µm with a spectral resolution of 10 nm. Its ground sampling dis-
tance (GSD) was 20 m. This dataset’s unique characteristics stem from the widespread,
intimately mixed minerals, resulting in strong nonlinearity and spectral variability. It can
be regarded as a good example for studying the impact of spectral variability on nonlinear
unmixing. A region containing 200 × 200 pixels was selected for the experiments. Its false
color image and superpixel segmentation image are displayed in Figure 10. After low SNR
channels (1–2 and 221–224) and water absorption channels (104–113 and 148–167) were
removed, 188 bands remained for unmixing. Twelve endmembers were considered in the
experiments, i.e., #1 Alunite, #2 Sphene, #3 Kaolinite1, #4 Montmorillonite, #5 Kaolinite2,
#6 Buddingtonite, #7 Pyrope, #8 Nontronite, #9 Muscovite, #10 Halloysite, #11 Chalcedony,
and #12 Desert Varnish.
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(a) False color image, (b) Result of superpixel segmentation.

Table 6 compares the REs, SREs, and time costs of the methods. Due to the existence of
strong nonlinear mixing effects, nonlinear unmixing methods provided better results (i.e.,
lower RE and higher SRE) than most linear unmixing methods except ELMM. FTUPSO
performs better than the others, and the nonlinearity is well explained by its PPNM-based
unmixing modules. Moreover, standard spectra of the USGS library were employed to
quantitatively compare the extracted endmembers. Figure 11 provides the SADs between
the reference endmembers (shown in Figure 12a) where the high spectral similarity can
be observed, e.g., minerals such us Halloysite and Kaolinite have small SADs. Table 7
provides the SADs of the endmembers extracted using the compared methods. Affected
by the intimate mixing effects and SV of different minerals, twelve endmembers with
the smallest SADs were extracted by different methods. For example, FTUPSO provides
the most accurate Alunite, Nontronite, and Muscovite, and Sphene and buddingtonite
extracted by Fan_NMF have the smallest SADs.

Table 7. SADs of endmembers extracted by the methods for Cuprite data.

Endmember VCA NMF_QMV ELMM PGMSU MLMp Fan_NMF FTUPSO

Alunite 5.0488 5.4230 5.0521 4.9842 5.0003 5.0614 3.8052
Sphene 3.4584 4.7743 3.4484 3.1775 3.5226 3.1221 4.4041

Kaolinite1 10.3671 12.8995 10.3774 9.8591 10.5428 10.1228 12.6660
Montmorillonite 6.3181 7.0085 6.3290 9.0302 6.6698 6.8224 7.3845

Kaolinite2 13.1916 10.3799 13.2048 15.8814 13.4972 12.8346 14.1055
Buddingtonite 6.2326 8.3854 6.2354 6.4710 6.2613 5.3374 6.5042

Pyrope 3.9504 7.3195 3.9129 2.6020 3.5621 3.4190 3.1795
Nontronite 5.1284 5.6919 5.1100 6.7004 5.0699 5.4248 4.9914
Muscovite 4.9336 5.7971 4.9339 7.7099 4.9387 4.9679 4.8148
Halloysite 19.2877 24.2131 19.2886 16.4654 19.2655 18.1978 19.8161

Chalcedony 7.7124 5.3233 7.7337 8.6724 7.9504 7.0210 8.5571
Desert Varnish 12.8298 11.5568 12.8295 13.0414 13.0119 13.6539 12.9964
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Moreover, Figure 12 depicts the estimated endmember curves, and their corresponding
abundance maps are shown in Figure 13. Similar unmixing results are obtained by most
methods for minerals including Alunite, Montmorillonite, and Muscovite. SULoRA may
overestimate Halloysite and fail to recognize Chalcedony and Desert Varnish because of
prominent spectral variability between some minerals (i.e., high similarities of spectral
shapes) according to Figure 11. However, the superpixel-based Fisher transformation
makes FTUPSO distinguish similar spectra and produce reasonable unmixing results.
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Figure 12. Endmembers of Cuprite data extracted by different methods. (a) Standard spectra,
(b) VCA, (c) NMF_QMV, (d) ELMM, (e) PGMSU, (f) MLMp, (g) Fan_NMF, (h) FTUPSO.
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Figure 13. Abundance maps of Cuprite data estimated by different methods. 
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5. Discussion

To reduce the impact of spectral variability on nonlinear mixing, the proposed method
incorporates the superpixel-based Fisher transformation into the PPNM-based unsuper-
vised nonlinear unmixing framework. Accurate endmembers and abundances can be
obtained by achieving a balance between the reconstruction error in the original data
space and the reconstruction error in a transformed feature subspace with reduced SV. The
quantitative and qualitative experimental results demonstrate that the proposed FTUPSO
has remarkable unmixing performance in processing data with both nonlinearity and SV.

The results in Table 1 from the ablation experiments on synthetic data confirm the effec-
tiveness of the four components of FTUPSO in improving unmixing accuracy. Quantitative
comparison in Tables 2–4 prove that FTUPSO estimates more accurate endmembers and
abundances than the other state-of-the-art methods. FTUPSO is not sensitive to the noise
intensities, endmembers’ numbers, and data sizes. Specifically, its robustness mainly results
from two factors. First, the superpixel-based Fisher transformation balances reducing SV
and improving similarities of different land covers in locally homogeneous regions. Second,
the dimensional division-based multi-swarm PSO strategy further makes the proposed
method yield better solutions than traditional gradient-based approaches.

In the real hyperspectral data experiments, FTUPSO is more effective in interpret-
ing nonlinear mixing effects compared to methods based on the LMM. As shown in
Figures 8 and 9, FTUPSO distinguishes land covers while mitigating the issues of over-
fitting or underestimation. Moreover, FTUPSO shows the ability to provide reasonable
endmember curves and abundance maps. This is possibly because the superpixel-based
Fisher transformation can not only enhance the spectral similarity in local homogeneous
regions but can also enlarge the differences between the pixels belonging to different classes,
which makes FTUPSO produce more accurate results. However, FTUPSO did not perform
the best in the data fitting for the Washington DC Mall data, which may have been induced
by the tradeoff between its two data reconstruction terms. Notably, in real situations, a
smaller reconstruction error does not always mean a better estimation of endmembers and
abundances. Table 7 and Figures 12 and 13 further verify that FTUPSO has competitive
unmixing performances. In the experiments for Cuprite data, some regions of a mineral’s
abundance map can have pixels with large abundances, and pure pixels may exist. Al-
though Halloysite estimated by SULoRA has large abundances in large parts of regions, it
is not in line with references according to the published results [49]. In Figure 11, we can
observe that Halloysite and minerals such as Alunite and Kaolinite have small SADs, imply-
ing that they have high spectral correlation. Other minerals also have similar characteristics.
The abundance maps in Figure 13 indicate that they also have close spatial distribution. In
contrast to Alunite and Kaolinite which have high abundances in a part of pixels, Halloysite
seems to be highly mixed with some minerals. Therefore, considering the above factors,
most unmixing methods cannot distinguish the spectral curve of Halloysite accurately
because the extraction of Halloysite’s spectra may be interfered with by other minerals.

The determination of the appropriate number of endmembers is important for unmix-
ing [64]. In the synthetic data experiments, as the number of endmembers increases, most
compared methods’ unmixing accuracies decrease, but FTUPSO performs the best. In the
experiments for the HYDICE data containing five endmembers, almost all the compared
methods can identify every kind of land cover because of the prominent difference between
the endmembers and the presence of pure pixels. However, in terms of the Cuprite data
experiments, twelve endmembers should be considered; pure pixels are absent for several
minerals, and the collinearity between endmembers increases significantly. In this situation,
some unmixing methods such as SULoRA failed to estimate accurate endmembers and
abundance maps. On the other hand, it is known that the HYDICE dataset has often been
used for evaluating unmixing methods in many published works [10,49,56]. Although
only five land covers (i.e., water, roof, tree, road, and grass) are taken into account, this
image is very valuable for evaluating unmixing methods. The reason could be that the
coarsely defined five endmembers can conveniently introduce the issue of SV into the
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unmixing process for this image. For example, following such a definition of endmembers,
typical land covers such as roofs, trees, and grasses can have strong SV in this observed
scene. Their spectra vary significantly in different pixels. Therefore, it is meaningful to
employ this image to validate the ability of the proposed method to reduce the impact of
SV on unmixing.

Compared to the AVIRIS and HYDICE data used in this paper, space-borne data
such as EO-1 Hyperion images [65] have lower spatial resolution and larger observation
areas, and the cross-track illumination that includes the nonuniform illumination in the
cross-track direction [66] and the deviation of the central wavelength position [67] becomes
strong. Due to the impact of cross-track illumination, the inherent observation errors
of pixels increase [67,68], indicating that further studies could be conducted to validate
the proposed method’s performance in addressing the issues caused by the cross-track
illumination using Hyperion data.

6. Conclusions

This paper presents a novel unsupervised unmixing method addressing both nonlin-
ear mixing effects and spectral variability. The proposed FTUPSO improves the traditional
Fisher transformation by dynamic coarse classification and superpixel segmentation to
reduce the impact of SV. Then, based on the PPNM, hyperspectral data are reconstructed
in both the original and transformed spaces. With a TV regularizer being added to im-
prove the smoothness of estimated abundances, the weighted minimization of two data
reconstruction terms is achieved in an extended multi-swarm PSO algorithm to accelerate
convergence and search for accurate unmixing results. Experimental results on several
synthetic data and two real hyperspectral images demonstrate the superiority of FTUPSO
in unsupervised unmixing compared to traditional and state-of-the-art methods.

However, FTUPSO may suffer from some limitations. For example, more advanced
mechanisms can be developed to address extremely highly mixed data to avoid the possible
wrong classification. Moreover, since only the scaling factor is considered in this work,
other types of SV (e.g., perturbations) can affect the unmixing process and further study is
required to overcome the limitations. In addition, in our next work, we will exploit FTUPSO
to solve practical application problems such as urban impervious surface detection. Since
the mechanism of FTUPSO is extremely time consuming, we will also accelerate it by using
high-performance parallelization techniques.
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