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Abstract: Leaf carotenoids (Cxc) play a crucial role in vegetation as essential pigments responsible for
capturing sunlight and protecting leaf tissues. They provide vital insights into a plant physiological
status and serve as sensitive indicators of plant stress. However, remote sensing of Cxc at the leaf level
has been challenging due to the low Cxc content and weaker absorption features compared to those
of chlorophylls in the visible domain. Existing vegetation indices have been widely applied but often
lack a solid physical foundation, which limits their applicability and robustness in characterizing
Cxc. Yet, physical models can confront this ill-posed problem, though with high operational costs. To
address this issue, this study presents a novel hybrid inversion method that combines the multilayer
perceptron (MLP) algorithm with PROSPECT model simulations to accurately retrieve Cxc. The
effectiveness of the MLP method was investigated through comparisons with the classical PROSPECT
model inversion (look-up table [LUT] method), the convolutional neural network (CNN) hybrid
model, and the Transformer hybrid model. In the pooled results of six experimental datasets, the
MLP method exhibited its robustness and generalization capabilities for leaf Cxc content estimation,
with RMSE of 3.12 µg/cm2 and R2 of 0.52. The Transformer (RMSE = 3.14 µg/cm2, R2 = 0.46), CNN
(RMSE = 3.42 µg/cm2, R2 = 0.28), and LUT (RMSE = 3.82 µg/cm2, R2 = 0.24) methods followed in
descending order of accuracy. A comparison with previous studies using the same public datasets
(ANGERS and LOPEX) also demonstrated the performance of the MLP method from another per-
spective. These findings underscore the potential of the proposed MLP hybrid method as a powerful
tool for accurate Cxc retrieval applications, providing valuable insights into vegetation health and
stress response.

Keywords: multilayer perceptron; leaf carotenoid content; PROSPECT; hybrid inversion; Transformer;
CNN

1. Introduction

Vegetation covers almost 70% of the earth’s land surface, and plant leaves are their
primary photosynthetic organs [1,2]. Carotenoids (Cxc), including carotenes and xantho-
phylls, are crucial structural components of photosynthetic membranes [3,4]. They not only
participate in light harvesting and energy transfer but also protect reaction centers and
prevent photodamage to leaf tissue by dissipating excess energy [5]. Moreover, Cxc provide
valuable information about plant growth, nutritional status, and the degree of damage to
vegetation [6]. Hence, the accurate estimation of leaf Cxc plays a crucial role in monitoring
the health status of vegetation and its functional diversity.

The labor-intensive and destructive nature of laboratory quantitative analyses makes
them impractical for the large-scale monitoring of leaf biochemistry [7]. Fortunately, the
development of remote sensing spectroscopy has made it possible to retrieve biochemical
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information quickly and non-destructively from intact leaves [8]. The methods for estimat-
ing leaf biochemical constituents can be broadly divided into two categories: empirical
methods and physical models [9].

Empirical methods for estimating leaf biochemical content include models based
on vegetation indices [10–12] and machine learning algorithms [13–17]. These methods
establish empirical relationships between biochemical properties and leaf optics [18]. Al-
though these data-driven methods are computationally efficient and can achieve promising
accuracy for specific plant species, their effectiveness heavily depends on the quality and
variability of the training data. Furthermore, they lack generalization for different vegeta-
tion species and environmental conditions without sufficient representative data [19].

Physically based modeling approaches, also known as radiative transfer models
(RTMs), have been proposed to retrieve biochemical contents in a wide range of species and
living conditions, achieving good physical interpretations and satisfactory transferability
by simulating the process of radiation transmission [20–22]. The PROSPECT model [23,24]
is the most popular leaf optical property model. However, the ill-posed nature of the
inversion and computational inefficiency are the main drawbacks of physical models,
limiting their practical application for regional or global studies [25].

Novel hybrid methods [26–30], which combine data-driven methods with RTMs [31],
have been developed to address these issues. With training data simulated by RTMs, a
variety of machine learning algorithms [32], such as Gaussian process regression [33,34],
random forest regression [35], support vector machine regression [36], and artificial neural
network (ANN) [37,38], can be used for biochemical and biophysical vegetation property
retrieval studies. These hybrid methods can achieve promising accuracy and efficiency
while improving generalization, as they benefit from sufficient non-destructive synthetic
data for training.

The absorption peaks of chlorophyll (Chl) and Cxc are in similar spectral ranges, but
the content of Chl in the leaves is much higher than that of Cxc. Thus, the estimation of
the leaf Cxc content is confounded by the leaf Chl content. Studies on the retrieval of the
total Chl content of leaves using various inversion methods have achieved satisfactory
accuracy [39,40], while studies on Cxc are scarce, and the performance achieved falls
short of expectations for the reasons introduced above [8]. Traditionally, look-up tables
(LUTs) have been widely employed for Cxc content inversion. However, the inherent
non-linearity of the relationship between spectral reflectance and Cxc content poses a
substantial challenge. LUTs may struggle to account for the intricate interplay between Cxc
and other constituents, particularly Chl, causing inaccuracies in Cxc content estimation. In
light of these challenges, alternative approaches such as multilayer perceptrons (MLPs) [41]
offer a promising avenue to enhance the precision of Cxc content estimation, thanks to
their capacity to model complex non-linear relationships [42,43] and adapt to varying
scenarios [44]. Through parameter optimization during training, an MLP fine-tunes its
internal parameters for target trait estimation. Thus, the MLP method holds great potential
to distinguish the contribution of leaf Cxc from the interference of leaf Chl.

In recent years, domain-specific neural network architectures, such as the convolu-
tional neural network (CNN) for image processing [45,46] and the Transformer model for
natural language processing [47,48], have achieved significant advancements and impres-
sive results in their respective domains. Given the success of these architectures in handling
specific data types, investigating their potential effectiveness in the context of Cxc content
inversion is essential. In this research, we introduce CNN and Transformer as alternative
ANN architectures to MLP, as well as PROSPECT model inversion, which has often been
used for Cxc inversion. By comparing their performances on the same datasets, we aimed
to gain insights into how each model handled the complexity of spectral reflectance data
and its ability to accurately predict the Cxc content.

The main objective of this study was to develop a robust and accurate method for
estimating leaf Cxc content by combining the MLP with the PROSPECT model. The
robustness and generalizability of the proposed method were tested by evaluating the
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model on six diverse leaf datasets encompassing various plant species and physiological
states. Furthermore, a comparative analysis was conducted between the MLP hybrid model
and a traditional physical model inversion method, as well as two hybrid methods based
on domain-specific neural network architectures (CNN and Transformer). This analysis
could provide valuable insights into the strengths and limitations of the MLP approach
compared with other state-of-the-art techniques.

The remainder of this article is organized as follows. Sections 2.1 and 2.2 introduce
the construction of synthetic datasets for model training and the development of the MLP.
Section 2.3 introduces the main characteristics of the six independent datasets for model
testing. Section 2.4 presents two quantitative indicators for model evaluation. Section 2.5
describes three alternative methods for comparison. Section 3 presents the estimated Cxc
results. Section 4 analyzes the experimental results and discusses a comparison with the
existing literature, along with the constraints and future prospects of this study. Finally,
Section 5 presents the conclusion of this study.

2. Materials and Methods

This study’s workflow began with the generation of a synthetic training dataset using
the PROSPECT model’s forward mode, serving as the foundation for training the MLP model
(Figure 1). Subsequently, the trained MLP model was applied to real-world scenarios, utilizing
diverse datasets, including ANGERS, LOPEX, NX, XS, BM, and JTL, which offer a wide range
of species for comprehensive validation. To provide a thorough analysis, we conducted a
comparative evaluation involving alternative inversion techniques, such as look-up table
(LUT)-based model inversion, the CNN hybrid model, and the Transformer hybrid model.
Notably, both CNN and Transformer, being part of the family of artificial neural networks
(ANNs), follow a model inversion process similar to the one depicted in Figure 1.
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2.1. Training Set Construction: Simulated Data

In the forward mode, the PROSPECT model simulated leaf directional–hemispherical
reflectance and transmittance, referred to as reflectance and transmittance hereafter, from
400 nm to 2500 nm with input biochemical contents per unit of leaf surface and the leaf
structure parameter (N), which accounts for the mesophyll structure [23]. In the inverse
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mode, PROSPECT could estimate the leaf biochemical parameters from the observed spec-
tral data. Various versions and extensions of the PROSPECT model have been introduced
in the literature [49], and Cxc were first included in the fifth version, PROSPECT-5 [50].

The MLP model requires a substantial amount of training sample data consisting of leaf
reflectance spectra and corresponding biochemical parameters to accurately estimate Cxc from
leaf reflectance spectra. This was necessary to effectively approximate the relationship between
the two. Representative leaf reflectance data were simulated by running the PROSPECT-5
model in the forward mode to meet the training quantity and quality requirements.

The construction of the synthetic dataset involved two steps. First, a total of 11,000 sets
of leaf biochemical parameters were randomly drawn from a multivariate Gaussian distri-
bution [51]. Among these, 10,000 sets were used for training and validation of the model,
while the remaining 1000 sets were reserved for accuracy testing of the MLP model. The re-
alistic ranges and distributions of these parameters (listed in Table 1) were defined based on
previous studies [52–54]. In addition, strong correlations reported in the literature [55,56]
between parameters such as leaf Chl and Cxc (R2 = 0.86), as well as leaf mass per area and
equivalent water thickness (R2 = 0.63), were taken into account during this step. Then, the
PROSPECT model was executed in the forward mode to generate the corresponding leaf
reflectance spectra by utilizing the leaf biochemical parameters obtained in the first step
as input. The biochemical parameters and their corresponding spectral data generated
through these two steps collectively formed the synthetic dataset used for model training
in this study.

Table 1. Statistical characteristics of leaf biochemical parameters for the generation of synthetic dataset.

Parameter Unit Min Max Mean Std.

Leaf structure parameter (N) - 1.1 2.3 1.60 0.30
Total chlorophyll content (Chl) µg/cm2 0.3 106.72 32.81 18.87

Carotenoid content (Cxc) µg/cm2 0.04 25.3 8.51 3.92
Equivalent water thickness (EWT) cm 0.0043 0.0713 0.0129 0.0073

Leaf mass per area (LMA) g/cm2 0.0008 0.0331 0.0077 0.0035

2.2. Model Training: Multilayer Perceptron
2.2.1. Model Description

Technological advancements have led to the development of ANNs from shallow
neural networks to deep learning neural networks (DNNs) [57]. DNNs contain multiple
non-linear layers that can learn complex functions by transforming representations from
one level to a higher, more abstract level through simple but non-linear modules. DNNs can
automatically extract deeper features through this general-purpose learning procedure and
are therefore better equipped than conventional machine learning techniques to process
raw natural data, which require engineering skills and domain expertise to design feature
extractors [58,59].

The MLP is a powerful DNN model widely used in machine learning and renowned
for its simplicity and efficiency [60]. It emulates the structure and information processing of
neural networks in the human brain. The MLP consists of interconnected nodes that apply
activation functions to transform inputs into outputs. It has multiple layers, including an
input layer, one or more hidden layers, and an output layer [61]. The MLP excels at auto-
matically extracting relevant features from data, eliminating the need for extensive manual
feature engineering. This feature makes it well suited for tasks such as leaf functional traits
retrieval. By leveraging the backpropagation algorithm [62], the MLP can learn complex
relationships between input features and target variables.

2.2.2. Model Architecture

In this study, we employed a five-layer neural network architecture, as depicted in
Figure 2. The network consisted of three hidden layers with 512, 256, and 128 nodes,
respectively. The output layer consisted of a single node, which was responsible for
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producing the estimated value of Cxc. The input layer had 512 nodes, each representing a
specific wavelength within the 400–911 nm reflectance spectrum.
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The use of the 400–911 nm spectral range was driven by several considerations. Firstly,
the 400–911 nm wavelength range covers a broad spectrum sensitive to both Cxc and
Chl [63,64]; the latter is strongly correlated with the Cxc content. Beyond the visible range,
the absorption diminishes, resulting in reduced sensitivity to Cxc levels. Secondly, the
choice of using a power-of-two number of data points (512) offered computational efficiency
advantages for the MLP. Many deep learning frameworks and hardware architectures are
optimized for power-of-two dimensions, resulting in faster and more efficient calculations.
Thirdly, a narrow spectral range simplifies data processing, feature extraction, and the
design of neural network structures. In contrast, a wide spectral range would require more
complex processing and could lead to increased computational costs and complexity.

The activation function used in the hidden layers was the scaled exponential linear unit
(SELU) [65]. SELU has shown effectiveness in DNNs, addressing the vanishing/exploding
gradient problem and promoting self-normalization. It helps stabilize the learning process
and improves the overall performance of the model [66,67]. For model optimization, the
Adam [68] algorithm was utilized, which is an adaptive learning rate optimization method.
The learning rate was set to 1 × 10−6, allowing the precise adjustments of the model’s
weights during training. The model was trained for 1500 epochs, and a batch size of
128 was used during the training process. The MLP model was implemented in Python and
executed on a machine with eight cores and an NVIDIA GeForce GTX 1080 Ti GPU. During
the training process, the training data inputs were randomly shuffled and divided into a
training set (75%) for model training and a validation set (25%) for hyperparameter tuning.

2.3. Model Prediction: Experimental Datasets

In this study, a diverse dataset consisting of fresh leaf samples from six independent
datasets collected in different locations and growth stages was utilized. These datasets
encompass a wide range of species and physiological statuses, including dicotyledon and
monocotyledon, annual and perennial plants, and trees and herbs.

LOPEX [69] and ANGERS [50] are public datasets that are widely used for leaf model
calibration and validation. The ANGERS leaf database comprises a total of 276 leaves
sourced from 43 herbaceous and woody plant species. The LOPEX dataset consists of
330 leaves representing 46 plant species. These two datasets are available online (https:
//ecosis.org/package/angers-leaf-optical-properties-database{-}{-}2003-, https://ecosis.

https://ecosis.org/package/angers-leaf-optical-properties-database{-}{-}2003-
https://ecosis.org/package/angers-leaf-optical-properties-database{-}{-}2003-
https://ecosis.org/package/leaf-optical-properties-experiment-database{-}{-}lopex93-
https://ecosis.org/package/leaf-optical-properties-experiment-database{-}{-}lopex93-
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org/package/leaf-optical-properties-experiment-database{-}{-}lopex93- accessed on 10
May 2023) and were thus often used in previous studies [40,49,50,52,70], which offered us
a valuable opportunity to compare our results with the results of these studies. The XS,
NX, BM, and JTL datasets were obtained from field campaigns conducted near Nanjing
(Jiangsu Province, Eastern China) between 2014 and 2015. Top-of-canopy leaf samples were
collected at various stages during the growing seasons. The XS and NX measurements
were taken from leaf out to leaf fall, covering the entire growing season in 2014. The leaves
in BM were measured in the summer of 2015. The JTL samples were collected in May
and July of 2015 from an evergreen forest, including both current-year and second-year
or older leaves. The key characteristics of the six datasets are summarized in Table 2.
Comprehensive information about vegetation species and leaf measurement methods can
be found in [71]. The leaf reflectance spectra were measured using spectroradiometers
coupled with integrating spheres, and the spectral resolution was 1 nm for all datasets.
Only reflectance wavelengths ranging from 400 nm to 911 nm were considered as inputs to
ensure a fair comparison with the MLP model structure.

Table 2. Main characteristics of the six experimental datasets used in this study.

LOPEX ANGERS XS NX BM JTL

Year 1996 2003 2014 2014 2015 2015
Number of samples 330 276 175 140 54 35
Number of species 46 43 2 1 8 1
Spectral range (nm) 400–2500 400–2450 400–2300 400–2300 400–2300 400–2300

Chlorophyll (µg/cm2)
Min 1.29 0.78 16.75 20.12 1.41 30.10
Max 119.87 106.72 93.77 71.72 80.82 83.88

Mean 56.92 33.88 50.86 44.03 40.08 56.09
Std. 21.08 21.71 15.54 11.21 15.51 15.93

Carotenoids (µg/cm2)
Min 4.11 0.00 3.84 3.94 4.44 6.77
Max 27.41 25.28 17.23 12.82 16.67 15.22

Mean 12.35 8.66 9.90 8.04 9.88 10.74
Std. 4.86 5.07 2.86 1.87 2.65 2.33

Water (g/m2)
Min 2.93 43.93 58.99 84.43 64.99 143.79
Max 655.26 339.96 144.76 168.78 206.11 312.01

Mean 115.31 116.20 102.90 117.21 115.27 213.60
Std. 79.16 48.63 15.86 16.09 29.14 46.98

Dry matter (g/m2)
Min 17.07 16.55 55.37 8.74 49.04 66.95
Max 157.32 331.04 166.24 56.10 145.58 185.91

Mean 52.76 52.43 100.88 33.24 81.75 122.60
Std. 24.68 36.69 24.69 5.99 21.84 26.86

2.4. Model Evaluation

Two quantitative indicators, namely, the coefficient of determination (R2) and the
root-mean-square error (RMSE), were calculated to assess the accuracy and generalizability
of the proposed methods across diverse independent datasets with varying biochemical
compositions. Let yj and y′j represent the measured and estimated values, respectively; y
denotes the average of yj, and n denotes the number of samples. The formulas for R2 and
RMSE are as follows:

R2 = 1−
∑n

j=1

(
y′j − yj

)2

∑n
j=1

(
y′j − y

)2 (1)

https://ecosis.org/package/leaf-optical-properties-experiment-database{-}{-}lopex93-
https://ecosis.org/package/leaf-optical-properties-experiment-database{-}{-}lopex93-
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RMSE =

√√√√∑n
j=1

(
y′j − yj

)2

n
(2)

These metrics provide a quantitative measure of how well the estimated values cor-
respond to the measured values. A high R2 value indicates a good fit of the model to the
data, while a low RMSE value signifies low prediction errors.

2.5. Alternative Inversion Methods for Comparison

Three inversion methods for leaf Cxc were compared with the MLP method in this
study, namely, the LUT-based PROSPECT model inversion, the CNN hybrid model, and
the Transformer hybrid model. Including the classic PROSPECT model inversion in the
comparison allowed us to assess the performance of data-driven methods such as the MLP
against this well-established physically based approach. Given the necessity for efficient
feature extraction from sequential data, such as spectra, and the benefits of translation
invariance, parameter sharing, and adaptability to diverse data scales, we considered the
utilization of 1D CNNs to address Cxc inversion challenges. Leveraging Transformer
architectures for inversion tasks was driven by their ability to efficiently capture complex
dependencies in sequential data through self-attention. The capability to consider both
local and global context makes Transformer promising for improving Cxc inversion models.

Physically based models can be inverted using two methods: iterative optimization
and the LUT method. We used the LUT-based PROSPECT model inversion in this study
because it is computationally more efficient than numerical iteration and avoids the problem
of local minima [26,72]. As illustrated in Figure 3, PROSPECT model inversion based on a
LUT involved precomputing a database of synthetic spectra covering a range of vegetation
parameters. Actual spectral observations, typically from remote sensing data, were then
compared with the LUT to identify the best-fitting parameters. The LUT established a
relationship between leaf reflectance spectra and Cxc content, enabling Cxc inversion
by looking up values in the table. The LUT generated in this study was composed of
100,000 entries. The setting of the model input parameters was in accordance with Table 1.
The cost function of least-squares estimator was utilized, which assumes the maximum
likelihood criterion [73].
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The CNN is a powerful deep learning architecture that is widely used for image
and sequence data processing tasks [74]. A CNN consists of multiple layers of learnable
filters or kernels that convolve (apply sliding windows) over the input data to extract
hierarchical features [75]. These features are progressively learned and combined through
convolution, pooling, and nonlinear activation functions, allowing CNNs to automatically
identify patterns and structures within data. The CNN used in this study consisted of
10 convolutional layers with a kernel size of 3 and 32 filters in each layer (Figure 4), followed
by a fully connected layer with 256 units and a final output layer for regression. ReLU was
used as the activation function, and max-pooling layers with a kernel size of 2 and dropout
rates with a probability of 0.5 were applied for dimension reduction and regularization.
The CNN model was trained using the Adam optimizer with a learning rate of 0.0001 and
a batch size of 128 and ran for 20 epochs. The mean squared error (MSE) was used as the
loss function.
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The Transformer is a revolutionary deep learning architecture that excels in processing
sequential data such as text and time series [76,77]. It relies on a mechanism called “self-
attention”, which allows it to weigh the importance of different parts of the input sequence
when making predictions [78]. Transformers process the entire sequence in parallel, facili-
tating scalability and capturing long-range dependencies efficiently [79]. This architecture
has enabled significant breakthroughs in natural language processing and various other
fields due to its superior ability to model complex relationships within data [80]. Our
specific Transformer model comprised 6 layers of encoder blocks with 8 attention heads
and 2 hidden layers of dimension 512 (Figure 5). We applied a dropout rate of 0.1 to prevent
overfitting during training. For optimization, we used the Adam optimizer with a small
learning rate of 1 × 10−6, which ensured efficient convergence. The model was trained for
100 epochs with a batch size of 128 samples.

Both CNN and Transformer models were trained following the flowchart illustrated
in Figure 1 using the same simulated dataset as the one used for the MLP. All the four
methods were evaluated on six diverse datasets, which were introduced in Section 2.3.
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3. Results
3.1. Performance of the MLP Model Using Simulated Data

In this section, we describe tests conducted on the MLP model that was constructed
using a simulated test dataset containing 1000 data points based on PROSPECT model
simulations to validate MLP’s effectiveness (Figure 6). The scatter plot illustrates that the
sample values tightly aligned along the y = x line, indicating a strong correlation between
predicted and actual leaf Cxc values. The highest density region on the plot is approximately
in the range from 4 to 12 µg/cm2, indicating that the MLP model achieved better inversion
results when the Cxc content lay within this range. When the Cxc content exceeded
16 µg/cm2, the density plot’s tail exhibited a slight divergence, thereby suggesting the Cxc
tended to be underestimated at higher contents. Nevertheless, the model demonstrated
overall excellent performance, with an RMSE of 0.49 µg/cm2 and a high R2 value of 0.98,
which confirmed its effectiveness in accurately predicting the Cxc content.

3.2. Performance of the MLP and Alternative Methods Using Experimental Datasets

The MLP method was tested on six different experimental datasets, namely, ANGERS,
LOPEX, NX, BM, XS, and JTL. The evaluation aimed to assess the method’s ability to
accurately estimate Cxc contents across diverse datasets, thereby confirming its robustness
and generalization capabilities. To validate the effectiveness of the MLP method, we also
conducted a comparative analysis against three well-established methods, namely, the LUT-
based PROSPECT model inversion, the CNN-based hybrid method, and the Transformer-
based hybrid method. This comparison proved the advantages and limitations of the MLP
method in relation to other techniques for Cxc content inversion (Figure 7). The scatter
plots in Figure 7 visually illustrate the performance of the leaf Cxc estimation using each
method on the six datasets.
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In the context of leaf Cxc estimation, the MLP method (Figure 7(a4–g4)) exhibited
exceptional performance. The plotted points aligned closely with the y = x diagonal line
across all datasets, indicating a robust fit between predicted and actual leaf Cxc contents.
This alignment underscored the method’s ability to maintain a strong correspondence
with the true values, even though minor deviations, suggesting a slight overestimation
tendency, were observed in the datasets XS (Figure 7(e4)) and JTL (Figure 7(f4)). Nev-
ertheless, these discrepancies were relatively small, affirming the MLP’s consistent and
accurate performance across diverse datasets. This comprehensive analysis demonstrated
MLP’s consistent superiority over PROSPECT model inversion, CNN, and Transformer, as
evidenced by the lower RMSE values and higher R2 scores, particularly for the datasets
ANGERS (Figure 7(a4)), LOPEX (Figure 7(b4)), and NX (Figure 7(c4)), with MLP R2 val-
ues of 0.80, 0.43, and 0.74, respectively, and RMSE values of 2.29, 3.90, and 2.58 µg/cm2,
respectively. Thus, the MLP outperformed its counterparts.

For the PROSPECT model inversion, the scatter plots (Figure 7(a1–g1)) showed clus-
tered points without clear alignment to the y = x line. This finding indicated that LUT
struggled to capture the continuous relationship between spectral reflectance and Cxc
contents, resulting in poor performance. For the NX (Figure 7(c1)) and XS (Figure 7(e1))
datasets in particular, the fitted line showed a negative trend, which indicated a failed
inversion of the two datasets. The quantitative analysis confirmed these observations. The
PROSPECT model exhibited overall inferior performance, with higher RMSE values and
lower R2 scores, in all cases compared with the other methods.

The scatter plots for the CNN method (Figure 7(a2–g2)) exhibited a trend of a fitted
line close to a horizontal orientation. This tendency suggests that CNN faced challenges in
accurately estimating the Cxc contents, especially at higher content levels. The CNN show-
cased lower RMSE values on the BM (Figure 7(d2)), XS (Figure 7(e2)), and JTL (Figure 7(f2))
dataset. For instance, on BM, the CNN achieved the lowest RMSE of 0.96 µg/cm2, surpass-
ing the MLP RMSE of 1.98 µg/cm2 (Figure 7(d4)). Although the CNN inversion achieved
a low RMSE, a closer examination of the scatter plot revealed that the CNN’s inversion
performance was not satisfactory. This observation was further supported by the relatively
low R2 value obtained from the CNN’s predictions.
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Figure 7. Performance of the MLP hybrid model compared with those of PROSPECT model inversion,
CNN hybrid model, and Transformer hybrid model using six independent experimental datasets
(ANGERS (a1–a4), LOPEX (b1–b4), NX (c1–c4), BM (d1–d4), XS (e1–e4), JTL (f1–f4), and the “pooled”
data from all six datasets (g1–g4)). The diagonal dashed line represents the y = x line. The black line
represents the fitted line for the predicted values. The subfigures x1–x4 display the performance of four
distinct methods: the PROSPECT model inversion, the CNN hybrid model, the Transformer hybrid
model, and the MLP hybrid model respectively, as applied to each dataset. The unit of RMSE is µg/cm2.
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For the Transformer method, the scatter plots (Figure 7(a3–g3)) showed a performance
closely approaching that of the MLP (Figure 7(a4–g4)). The points aligned relatively well
with the y = x line, indicating competitive prediction accuracy. A quantitative analysis
supported this observation of competitive performance, with the Transformer method
sometimes surpassing the MLP in terms of R2 scores and RMSE. This was particularly
evident in the case of the dataset JTL, on which the Transformer method (Figure 7(f3))
achieved an R2 of 0.68 and an RMSE of 1.49 µg/cm2. In contrast, the MLP (Figure 7(f4))
obtained an R2 of 0.54 and an RMSE of 2.85 µg/cm2 on the same dataset. Nevertheless,
when the overall assessment of leaf Cxc was considered, as shown in the pooled dataset,
the MLP (Figure 7(g3)) outperformed the Transformer (Figure 7(g4)).

Considering the pooled results of the six datasets, the MLP method outperformed all
others, with RMSE of 3.12 µg/cm2 and R2 value of 0.52. Following were the Transformer
(RMSE = 3.14 µg/cm2, R2 = 0.46), CNN (RMSE = 3.42 µg/cm2, R2 = 0.28), and LUT
(RMSE = 3.82 µg/cm2, R2 = 0.24) methods, ranked in descending order of accuracy. As
for the computational time cost, MLP, Transformer, and CNN required less than a second
for the inversion of the pooled six datasets, while LUT required approximately 21 min.
Consequently, in terms of inversion efficiency, the hybrid approaches based on ANN models
(MLP, CNN, and Transformer) demonstrated significantly higher efficiency compared to
the LUT-based approach.

4. Discussion
4.1. Comparison with Alternative Approaches

With regard to the retrieval effectiveness of leaf Cxc, the comparison between the MLP
and other methods revealed the superiority of the MLP in conducting Cxc content inversion
tasks. The consistent and accurate performance of the MLP across all datasets demonstrated
its effectiveness in this domain. According to the pooled results from the six datasets, the
MLP (Figure 7(g4)) outperformed in effectiveness the Transformer method (Figure 7(g3)),
which outperformed the CNN (Figure 7(g2)). The LUT (Figure 7(g1)) lagged behind these
three methods. Notably, the classic LUT-based PROSPECT model inversion showed subpar
performance across all datasets, thus revealing the incompetence of this physical model in
retrieving the Cxc content accurately. Although the adopted spectral range of 400–911 nm
exceeded the absorption domain of Cxc and Chl and partly covered the sensitive range of
leaf structure parameters, this relatively narrow range could have affected the inversion
performance. As a complementary analysis, this study will further compare the MLP
method with physical models reported in other relevant literature in Section 4.2. While
both one-dimensional CNN and Transformer seem suitable for multi-input single-output
problems, CNN appears more inclined to capture the spatial correlations among sequences,
whereas Transformer excels in discovering semantic relationships [81,82]. However, such
correlations and relationships may not be strongly present in spectral reflectance sequences,
which may explain the fact that these methods did not surpass the MLP in performance.
As a complementary analysis, this paper also references the results from a previous study
on hybrid models based on CNNs in Section 4.2 for comparison and reference.

With regard to the retrieval efficiency of leaf Cxc, hybrid models such as the MLP
exhibited remarkable efficiency once the model was established. They retrieved the pooled
six datasets in less than one second, making them much faster in handling large-scale
tasks. The high computational efficiency of ANN models results from the optimization
of the models’ calculations and the ability to leverage hardware acceleration [83,84]. The
ANN models consist of interconnected neurons, and their computations involve mathe-
matical operations such as addition, multiplication, and activation functions, which are
efficiently organized as matrix multiplications and vector operations [85]. In addition, deep
learning frameworks optimize the computation graph automatically, adapting to available
computing resources and enabling parallel processing and GPU acceleration [86,87].
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4.2. Cxc Retrieval Accuracy in Comparison with Previous Studies

Many previous studies extensively investigated the retrieval of leaf Cxc contents by
using PROSPECT model inversion [40,49,50,52,70]. Notably, the publicly available datasets
ANGERS and LOPEX were widely utilized in these studies, thus allowing us to compare
the results of our MLP-based approach with those of published studies on Cxc estimation.

To facilitate the comparison, we summarized the accuracies of the cited studies on
ANGERS and LOPEX under various conditions in Tables 3 and 4, respectively. An important
detail to note is that the studies incorporating both leaf transmittance spectra and reflectance
spectra in the inversion process should have achieved better accuracies theoretically, as
they utilized a richer set of spectral information. We provided the RMSE values for all
cited studies, and the R2 values were included if they were also reported. For comparison
purposes, we also included the accuracies of our MLP method.

Table 3. Estimation of Cxc on the public dataset ANGERS as reported in previous studies (the results
of the MLP are listed for comparison). The unit of RMSE is µg/cm2. “Ref:

√
” represents the usage of

leaf reflectance spectra. “Trans:
√

” represents the usage of leaf transmittance spectra.

Reference Method RMSE R2 Ref Trans

[50] PROSPECT-5 4.22 \
√ √

[49]
PROSPECT-D 3.81 \

√ √

PROSPECT-5 6.90 \
√ √

[52] PROSPECT-5
3.22 0.74

√ √

3.88 0.49
√

\

[70]
PROSPECT-5B

3.38 \
√ √

3.65 \
√

\

PROCWT-S3
1.84 \

√ √

2.50 \
√

\

[40] PROSPECT-5 +
CNN 2.60 0.74

√
\

Present study MLP 2.29 0.80
√

\

Table 4. Estimation of Cxc on the public dataset LOPEX as reported in previous studies (the results
of the MLP are listed for comparison). The unit of RMSE is µg/cm2. “Ref:

√
” represents the usage of

leaf reflectance spectra. “Trans:
√

” represents the usage of leaf transmittance spectra.

Reference Method RMSE R2 Ref Trans

[50] PROSPECT-5 5.35 \
√ √

[52] PROSPECT-5
4.27 0.17

√ √

5.08 0.06
√

\
Present study MLP 3.86 0.24

√
\

The first three studies in Table 3 employed direct iteration of the PROSPECT model
inversion for Cxc retrieval, with their performance varying based on the model version
and the use of spectral domain. Li et al. [70] introduced modifications to the PROSPECT
model by coupling it with continuous wavelet transform. Shi et al. [40] proposed a hybrid
method combining PROSPECT-5 with CNN.

For the ANGERS dataset (Table 3), our MLP method outperformed most of the cited
studies, as evidenced by its lower RMSE value of 2.29 µg/cm2. Among the previous
methods with reflectance alone, [70] the closest RMSE of 2.50 µg/cm2 was obtained with
the modified PROSPECT model of PROCWT-S3. With regard to the R2 values, though [40]
achieved a high R2 of 0.74 using PROSPECT-5, our MLP method attained R2 of 0.80,
indicating a strong correlation between predicted and observed Cxc contents.
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For the LOPEX dataset (Table 4), the performance of our proposed MLP method
achieved a significant reduction in RMSE compared to all the cited studies. Specifically,
the RMSE of the MLP decreased by 9.6% to 27.9% when compared with the RMSE values
reported in previous studies.

The results in Tables 3 and 4 clearly demonstrate that the performance of our MLP-
based hybrid method was superior to those of the best-performing methods reported in
the literature for the ANGERS and LOPEX datasets. Our MLP hybrid method utilizing
reflectance within the 400–911 nm wavelength range proved effective and competitive in
Cxc estimation, outperforming the cited methods based on physical models and the hybrid
model based on CNN.

The improved performance of our MLP-based hybrid method highlights the effec-
tiveness of the neural network approach in capturing complex patterns and relationships
within spectral data, resulting in more accurate predictions of the Cxc content. This finding
suggests that neural networks are advantageous for handling the intricate characteristics of
spectral data, leading to enhanced estimation accuracy.

The substantial decrease in RMSE achieved by our MLP-based hybrid method indi-
cates its potential as a powerful tool in remote sensing applications, especially for precise
Cxc estimations. Its ability to obtain more reliable Cxc estimates has significant implications
for agricultural and environmental research, facilitating better monitoring and management
of plant health and stress levels.

4.3. Study Constraints and Future Prospects

While our study primarily underscored the MLP’s commendable performance on
the majority of the examined datasets, overestimation of the Cxc content was evident
for the JTL dataset (Figure 7(f4)), which suggests potential limitations of the proposed
method for vegetation types such as Ligustrum lucidum L. (the only species in the JTL
dataset [71]). In future work, additional datasets from various ecosystem types and growing
conditions could be considered to validate the performance of the MLP-based hybrid
method. Furthermore, beyond the Cxc retrieval, our method demonstrated potential in
estimating other biochemical parameters, which requires further validation in subsequent
studies. Our upcoming research will involve integrating the MLP with canopy-scale
models [88,89] for the large-scale estimation of biochemical parameters.

5. Conclusions

This study developed a hybrid MLP method for Cxc content inversion by combining
the PROSPECT-5 model with the MLP algorithm. The robustness and generalization
capabilities of the MLP method in estimating the leaf Cxc content were demonstrated by
comparisons with the classical PROSPECT model inversion and the CNN and Transformer
hybrid models across six diverse experimental datasets. In the pooled results of the six
datasets, the MLP method outperformed all others, with RMSE of 3.12 µg/cm2 and R2 of
0.52. In addition, the computational efficiency of the MLP method significantly surpassed
that of the LUT-based approach. A comparative analysis with previous studies utilizing the
same public datasets (ANGERS and LOPEX) provided additional evidence of the hybrid
MLP method’s performance for Cxc estimation. We highlight the robust generalization
capabilities of the hybrid MLP method for retrieving leaf biochemical traits, substantiating
its efficacy for diverse environmental applications.
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