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Abstract: The lack of observed data makes research on the cryosphere and ecology extremely difficult,
especially in Central Asia’s hilly regions. Before their direct hydroclimatic uses, the performance
study of gridded precipitation datasets (GPDS) is of utmost importance. This study assessed the
multiscale ground evaluation of three reanalysis datasets (ERA5, MEERA2, and APHRO) and five
satellite datasets (PERSIANN-PDIR, CHIRPS, GPM-SM2Rain, SM2Rain-ASCAT, and SM2Rain-CCI).
Several temporal scales (daily, monthly, seasonal (winter, spring, summer, autumn), and annual) of
all the GPDS were analyzed across the complete spatial domain and point-to-pixel scale from January
2000 to December 2013. The validation of GPDS was evaluated using evaluation indices (Root Mean
Square Error, correlation coefficient, bias, and relative bias) and categorical indices (False Alarm Ratio,
Probability of Detection, success ratio, and Critical Success Index). The performance of all GPDS was
also analyzed based on different elevation zones (≤1500, ≤2500, >2500 m). According to the results,
the daily estimations of the spatiotemporal tracking abilities of CHIRPS, APHRO, and GPM-SM2Rain
are superior to those of the other datasets. All GPDS performed better on a monthly scale than they
performed on a daily scale when the ranges were adequate (CC > 0.7 and r-BIAS (10)). Apart from the
winter season, the CHIRPS beat all the other GPDS in standings of POD on a daily and seasonal scale.
In the summer, all GPDS showed underestimations, but GPM showed the biggest underestimation
(−70). Additionally, the CHIRPS indicated the best overall performance across all seasons. As shown
by the probability density function (PDF %), all GPDS demonstrated more adequate performance in
catching the light precipitation (>2 mm/day) events. APHRO and SM2Rain-CCI typically function
moderately at low elevations, whereas all GPDS showed underestimation across the highest elevation
>2500 m. As an outcome, we strongly suggest employing the CHIRPS precipitation product’s daily,
and monthly estimates for hydroclimatic applications over the hilly region of Tajikistan.

Keywords: gridded precipitation datasets; multiscale ground evaluation; CHIRPS; reanalysis
precipitation datasets; elevation zones; mountains terrain
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1. Introduction

Precipitation is a very important aspect of the water cycle on a global scale [1]. Pre-
cipitation refills underground aquifers, a primary source of rivers and lakes, and supplies
water to living inhabitants [2]. The most crucial climatic factor is precipitation due to
its potential to increase agricultural productivity, provide drinking water, and maintain
ecological equilibrium [3]. The chance of flooding, which can result in injury, drowning,
and other disastrous flood-related effects, could also be raised by overcast precipitation,
which could also cause crop impairment, soil destruction, stern drought occurrences, and so
on [4]. Therefore, it is essential to measure and monitor the amount of precipitation, its re-
gional distribution, and its temporal variability [5,6]. According to historians, scholars, and
experts in the fields of hydrology and climatology, the most trustworthy source of precipi-
tation measurements is precipitation data that are based on observations at ground-based
recording locations [7]. In the realm of hydrology and climatology, it is widely acknowl-
edged that the most reliable source of precipitation data is grounded in observations from
terrestrial recording stations [8]. However, in practice, maintaining a consistent gauge
network across diverse terrains and challenging topographies remains an arduous task [9].
It is against this backdrop that gridded precipitation datasets (GPDS) have emerged as a
promising solution to bridge gaps in precipitation information. The performance of GPDS
is influenced by a plethora of factors, including terrain characteristics, altitude, geographic
features, precipitation patterns, and, notably, spatial resolution [10].

However, the pursuit of trustworthy precipitation data becomes a formidable challenge
in the face of complex landscapes and a sparse gauge network [11]. In regions like the
Pamir-Alay Mountains of Tajikistan, precipitation data collection is hampered by irregular
or inadequate meteorological station installations [12]. This prompts the exploration of
GPDS to compensate for the shortage of precipitation records [13–16]. Yet, the GPDS,
despite their potential, require a rigorous evaluation of their effectiveness before their
direct application can be deemed reliable [13]. In the modern era, numerous GPDS are
readily accessible on official websites [14–19], incorporating sophisticated techniques for
precipitation estimation. The GPDS now employ a more accurate technique for estimating
precipitation [20–23]. These days, GPDS feed signals from IR and MW sensors into a
sophisticated algorithm for estimating precipitation [24,25], which results in accurate data
on a fine spatiotemporal scale. CHIRPS and MEERA2 are two examples of the many GPDS
that are accessible from organizations (NASA and JAXA) for a variety of hydro-climatic
applications [14]. Additionally, to produce continuous precipitation estimations. Together,
IR and MW sensor data can be used for precipitation estimation from remotely sensed
information using artificial neural networks [26,27]. Numerous hydrologists have assessed
the effectiveness of numerous GPDS in numerous locations around the globe, including
Asia [28], Europe [14], Austria [29], Australia [30], China [31], and Pakistan [32].

A cloud categorization system with adjustable initializations is one of the GPDS that
are taken into consideration. As opposed to the traditional method, the irregular limit
strategy utilized in PDIR allows the exposure and isolation of cloud processing corners [33].
The CHIRPS dataset offers continuous values of precipitation using data from the pattern
of Global Precipitation Measurement (GPM) satellites [34]. It has a resolution of 0.25 and
provides almost worldwide coverage. In the past, numerous studies have examined the
effectiveness of GPDS in various regions of the world [1,26,35]. The results supported the
widely held belief that local topographical and climatic circumstances play a major role
in determining how accurate precipitation datasets are. Therefore, it is crucial to assess
GPDS’ effectiveness.

To surmount the challenge of gathering precipitation data in rugged terrains and
diverse climatic conditions, a comprehensive assessment of the performance of the most
recent satellite datasets (PERSIANN-PDIR, CHIRPS, GPM-SM2Rain family products) and
reanalysis products (ERA5, MEERA2, and APHRO) over a dense gauge network becomes
imperative. Tajikistan, like many regions, confronts threats posed by natural disasters,
such as floods, storms, landslides, heatwaves, and droughts, with each capable of inflicting
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significant harm upon communities, infrastructure, and agriculture [15]. The scarcity
of gauge data has hampered research on the impacts of climate change, particularly in
emerging nations [12], where unevenly distributed gauge networks further complicate
precipitation data collection [21]. This study seeks to bridge this substantial research gap
by conducting a comprehensive performance analysis of the latest three reanalysis datasets
(ERA5, MEERA2, and APHRO) and five satellite datasets (PERSIANN-PDIR, CHIRPS,
GPM-SM2Rain, SM2Rain-ASCAT, and SM2Rain-CCI) over the demanding terrain of Central
Asia, specifically Tajikistan. Furthermore, as Tajikistan’s Ministry of Energy and Water
Resources embarks on an ambitious program to construct numerous hydrological structures,
the absence of in situ meteorological stations in the region poses challenges for various
hydroclimatic applications [15,22,23]. This work introduces an innovative dimension by
conducting a comprehensive evaluation of multiple advanced precipitation products, with
a specific focus on distinct elevation zones. While previous studies have assessed only a
limited set of datasets, our research broadens the scope by including PERSIANN, PDIR,
CHIRPS, GPM-SM2Rain, SM2Rain-ASCAT, and SM2Rain-CCI [24]. Our in-depth analysis
across elevation zones (≤1500, ≤2500, >2500 m) allows for a comprehensive examination of
precipitation estimates across varying elevation gradients. This unique approach enhances
our understanding of precipitation accuracy and reliability in Tajikistan, providing a more
robust assessment of the region’s water resources.

In summary, this study aims to assess and compare the error characteristics of ob-
served precipitation estimates from Tajikistan’s in situ gauge network with those derived
from three reanalysis datasets (ERA5, MEERA2, and APHRO) and five satellite datasets
(PERSIANN-PDIR, CHIRPS, GPM-and SM2Rain family products). Additionally, it rep-
resents the first performance evaluation of these datasets across varied elevation zones
(≤1500, ≤2500, >2500 m) of the dense gauge network in Central Asia. The outcomes
of this study will be very beneficial to those who create algorithms, meteorologists, and
hydrologists, users of GPDS, water conservation techniques, and Tajikistani politicians.

2. Materials and Methodology
2.1. Study Region

Tajikistan is a rugged surface country in Central Asia due to its mountains. Tajikistan
is situated between 36◦40′ and 41◦05′N and 67◦31′ and 75◦14′E in the southeast of Central
Asia. There are 142,100 km2 in the entire nation. It is important to note that Afghanistan’s
territory, which is 15–65 km in width, separates Tajikistan from India and Pakistan to the
southeast. The high elevation and abundant precipitation in Tajikistan have a significant
effect on the region’s hydrological system [15,22]. Figure 1 shows the salient features of the
study area. At an elevation of less than 1000 m, the annual climate regime is characterized by
a generally warm air temperature and relatively low precipitation. Precipitation averages
560–650 mm per year between 1200 and 3200 m in elevation. The eastern Pamirs (Murgab
region) receive just about 80 mm of precipitation per year at a height of 4000 m. In the
central region of Tajikistan, between 1500 and 2000 m in elevation, yearly precipitation
reaches 1800 to 2000 mm. Annual precipitation varies across Tajikistan’s many regions.
Most of Tajikistan’s plains and foothills see the least amount of precipitation during the
eastern summer. March and April are wet months in the foothills and valleys, while April
and May are wetter months in the highlands.

2.2. Datasets

There are very few in situ gauge stations in the research area, and those that do exist
are mostly weather stations managed by the National Meteorological Service. Daily data
were collected from 29 in situ gauging stations. The Tajikistani meteorological service uses
a network of standardized gauges that can record both liquid and solid precipitation. The
daily data were being measured with calibrated equipment every day. A considerable
lack of data (more than 35%) resulted in only 18 meteorological stations’ daily estimations
being considered accurate for this performance rating. These measurement-based datasets
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have previously been extensively utilized in hydroclimatic research in Central Asian
mountainous regions. The specific details (period, spatiotemporal resolutions, and data
sources of GPDS) are also provided in Table 1. All data was accessed on 13 February
2023. These data sources include five satellite datasets (PERSIANN-PDIR, CHIRPS, GPM-
SM2Rain, SM2Rain-ASCAT, and SM2Rain-CCI), as well as three reanalysis datasets (ERA5,
MEERA2, and APHRO). Moreover, the yearly average interpolation of all gauging stations
is shown in Figure 2. The different algorithms, input data sources, and spatial and temporal
resolutions of the eight GPDS have different strengths and weaknesses. For example,
IR-based GPDS are less susceptible to cloud cover than MW-based GPDS, but they can be
less accurate in regions with high humidity. MW-based GPDS are more accurate in regions
with high humidity, but they can be less accurate in regions with high surface emissivity.
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Table 1. Key characteristics shared by all GPDS.

Precipitation
Datasets

Spatial/Temporal
Resolution Algorithm Input Data

Sources Time Coverage Official Link

GPM-SM2Rain 0.25 degree/1 day MW data GPM January 2007 to
December 2018

https://doi.org/10.5281/
zenodo.3854817 (accessed on

13 February 2023)

PERSIANN-PDIR 0.25 degree/1 day Multispectral IR
and MW data

TRMM, MODIS,
GOES, and GPM

March
2000–Present

https://irain.eng.uci.edu/
(accessed on 13 February

2023)

SM2Rain-CCI 0.25 degree/1 day MW data
SSM/I, TMI,

AMSR-E, and
AMSR2

January 1998 to
December 2015

https://doi.org/10.5281/
zenodo.1305021 (accessed on

13 February 2023)

CHIRPS 0.05c /daily Geostationary IR
data

GPM, Meteosat,
GOES, and INSAT

January 1990 to
December 2020

https://data.chc.ussb.edu/
products/CHIRPS-2.0/

(accessed on 13 February
2023)

weSM2Rain-ASCAT 10 km/1 day MW data ASCAT January 2007 to
December 2021

https://doi.org/10.5281/
zenodo.2591214 (accessed on

13 February 2023)

ERA5 30 km/daily Reanalysis
Satellite and

ground-based
observations

January 1980 to
December 2020

https://www.ecmwf.int/en/
forecasts/datasets/

reanalysis-datasets/era5/
(accessed on 13 February

2023)

MEERA 2 0.25 degree/daily Reanalysis
Satellite and

ground-based
observations

January 1980 to
December 2020

https://gmao.gsfc.nasa.gov/
reanalysis/MERRA-2/

(accessed on 13 February
2023)

APHRO 0.05 degree
/daily Reanalysis

Satellite and
ground-based
observations

January 1990 to
December 2018

http://aphrodite.st.hirosaki-
u.ac.jp/download/ (accessed

on 13 February 2023)
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ASCAT, and SM2Rain-CCI), as well as three reanalysis datasets (ERA5, MEERA2, and
APHRO) was assessed. Only GPDS grids with minimum of one gauging station were
taken into consideration for this ground assessment using same methods as earlier GPDS
evaluations. A grid-to-point matching approach was utilized to add weather stations to
the GPDS [36]; this approach was also used in a number of earlier studies [33]. Over the
broad network of Central Asia, the estimates of the considered GPDS were contrasted with
one another at various spatiotemporal scales. Table 2 provides details on the evaluation
indices and categorization indices that were employed to validate the GPDS using gauge
estimations. The locations of all the meteorological stations and zone divisions based on
different elevations that were taken into consideration for this study are shown in Table 3.

Table 2. Principal characteristics of all evaluation and categorical indices.

Indices Specifics Description Acceptable Value

CC = ∑n
i=1(wi−w)(Si−S)√

∑n
i=1(wi−w)2×

√
∑n

i=1(Si−S)2

CC = correlation coefficient
wi = in situ weather estimations

w = average of in situ weather data
Si = estimations of GPDS

s = mean of GPDS evaluations
n = total number of GPDS

A measure of the strength and
direction of the linear

relationship between two
variables.

1

BIAS = ∑n
i=1(wi−si)

n

si = estimates of GPDS
wi = weather estimations
n = total number of GPDS

A measure of whether a
precipitation estimate is

consistently overestimating or
underestimating the observed

precipitation.

0

rbias = ∑n
i=1(si−wi)
∑n

I=1 wi × 100

rBIAS = relative bias
si = estimations of GPDS
wi = in situ weather data
n = total number of GPDS

The rBIAS provides a measure
of the magnitude and
direction of the bias.

±10

RMSE =
√

1
n

n
∑

I=1
(si− wi)2

RMSE = Root Mean Square Error
si = estimations of GPDS
wi = in situ weather data
n = total number of GPDS

The RMSE provides a measure
of the magnitude of the error. 0

POD = A
A+B

POD = Probability of Detection
A = amount of precipitation that

was recorded by the GPDS
B = amount of precipitation that
was recorded by the reference

gauging stations but not by GPDS

The POD provides a measure
of the ability of the

precipitation datasets to detect
precipitation events.

1

FAR = C
A+C

FAR = False Alarm Ratio
C = amount of precipitation that
was underreported by the GPDS
A = amount of precipitation that

was recorded by the GPDS

The FAR provides a measure
of the ability of the

precipitation datasets to avoid
issuing false alarms.

0

CSI = A
A+B+C

CSI = Critical Success Index
A = amount of precipitation that

was recorded by the GPDS
B = amount of precipitation that
was recorded by the reference

gauging stations but not by GPDS
C = amount of precipitation that

were underreported by the GPDS

The CSI provides a measure of
the accuracy and reliability of

the precipitation datasets.
1

Figure 3 explains the Thiessen polygon method for calculating aerial average precip-
itation. The gauge weight for each meteorological station was initially calculated using
the Thiessen polygon method [30] in ArcGIS 10.8.1. The estimated amount of airborne
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precipitation was calculated by multiplying the gauge weight for each station by its precip-
itation. According to the Thiessen polygon method (A), each pixel will be used to record
the amount of precipitation in a specific area. As a result, only that region is affected by the
amount of precipitation recorded at pixel I. Each pixel’s weight depends on the region of
the Thiessen polygon to which it belongs, following the methodology of [37]. For the perfor-
mance analysis of GPDS in accordance with the WMO (World Meteorological Organization
conventions), the standards for daily precipitation scales for low (2 mm/day), medium
(>10 mm/day), and heavy precipitation were (>10 mm/day) used [27]. To evaluate the
results of category indices using classified indices, ref. [5] devised the presentation graph.

Table 3. Salient features of weather stations and elevation zones.

Elevation Zones Elevation Ranges # Weather
Station Lat (◦) Lon (◦) Altitude (m)

A ≤1500

1 Dushanbe 38.58 68.787 790
2 Faizobod 38.55 69.325 1215
3 Darvoz 38.47 70.887 1284
4 Khovaling 38.35 69.953 1468
5 Sangiston 39.39 68.623 1500

B ≤2500

6 Humrogi 38.31 71.383 1736
7 Rushon 37.46 71.527 1966
8 Khorug 37.56 71.512 2075
9 Madrushtak 39.44 69.656 2234
10 Dehavz 39.45 70.270 2500

C >2500

11 Ishkoshim 36.73 71.620 2646
12 Savnob 38.19 72.285 2800

13 Agbai
Shahriston 39.34 68.351 3143

14 Irkht 38.17 72.634 3290
15 Agbai Anzob 39.08 68.872 3373
16 Javshangoz 37.37 72.461 3576
17 Bulunkul 37.42 72.575 3747
18 Shaymoq 37.47 74.433 3835
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3. Results
3.1. Spatiotemporal Performance of GPDS

In the mountainous region of Tajikistan, Figure 4 depicts the spatial variability of
all the products (PDIR, CHIRPS, GPM-SM2Rain, SM2Rain-ASCAT, SM2Rain-CCI, ERA5,
MEERA2, and APHRO) and gauge observations. Each dataset and gauging station show
a sizable amount of precipitation, which is indicative of the research area’s mountainous
terrain. Northern Tajikistan includes the eastern Pamir highlands (yearly precipitation
ranges from 75 to 300 mm). The in situ climatic conditions of the study area have spots
that demarcate the region with a rainy environment (<1200 mm/year). During winter,
more precipitation falls in the southern region of the nation. All datasets and gauge
observations over flat topography capture most of the precipitation. Over the study
area’s northern highlands, no GPDS could track precipitation. The MEERA2, ERA5, and
PDIR datasets showed a poor ability to track the daily estimations caused by observed
precipitation, with a considerable level of underestimation across the northern mountains,
according to the results. The good performance of GPM-SM2rain and APHRO over plain
topography contrasts with their unsatisfactory performance over rugged surfaces, as seen
by a substantial quantity of overestimation. For capturing spatial variability over the
uneven terrain of the research area, CHIRPS fared better than any other chosen dataset.
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Figure 5 compares the average daily precipitation quantity from the in situ gauges to
gridded datasets from 2000 to 2013. Moving averages of daily data from all sources were
used to estimate average daily precipitation. Researchers [27,35] used similar methods
to show the uncertainty in daily precipitation estimates in China’s Tianshan Mountains
and South America’s northwest. The figure shows that the reference data often have two
precipitation time series peaks. SM2Rain and ASCAT failed to track precipitation temporal
variability. CHIRPS, GPM-SM2rain, and gauge temporal variability agree. Only the ERA5
product showed the biggest gauge temporal variability peak around mid-September. Gauge
estimations generally indicate two peaks. MEERA-2 found its peak in early April, not mid-
November as the gauge data showed. APHRO and GPM overestimated from mid-January
to mid-March. APHRO temporal variability matches gauge estimations.
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Figure 5. Temporal variation of every gridded and in situ weather estimation.

3.2. The Ground Evaluation of all GPDS at Multitemporal (Daily, Monthly, and Seasonal) Scales

Figures 6 and 7 show, respectively, the spatial variability of all evaluation indices
derived from ERA5, MEERA2, APHRO, PDIR, CHIRPS, GPM-SM2Rain, SM2Rain-ASCAT,
and SM2Rain-CCI. In the evaluation index ranges across the entire nation, we noticed a
sizable number of changes. The product CHIRPS displayed the greatest spatial variance in
CC values. In comparison to other GPDS, the APHRO, CCI, MEERA2, and PDIR displayed
less spatial variation. Where there was a high precipitation rate, the CC between gauge
and GPDS varied the most. Following the GPM and APHRO products in terms of RMSE
variation is the CHIRPS product. According to the evaluation values of the CHIRPS product,
CHIRPS’ capability to track high and low precipitation occurrences is in good agreement
with gauge’s spatial variability. Figure 8 describes the RMSE of each point over the study
area. Generally, the error values increased with higher altitudes. The CHIRPS showed the
least error values compared to other GPDS.

Figure 9 displays the seasonal rBIAS (percent) for all GPDS: ERA5, MEERA2, APHRO,
PERSIANN-PDIR, CHIRPS, GPM-SM2Rain, SM2Rain-ASCAT, and SM2Rain-CCI models.
ERA5 (60%), PDIR (18%), and CHIRPS (10%) all exhibited significant overestimation during
the spring. During the summer, all GPDS were underestimated, with GPM exhibiting the
most significant underestimation (−78%). The evaluation of PDIR was only satisfactory
during autumn, whereas the GPM product demonstrated significant underestimation
(−25%) during the winter season and significant underestimation (−33%) during the
autumn season. During the winter season, both the ASCAT and CHIRPS exhibited severe
underestimations, with ranges of (−28%) and (−19%), respectively. In all seasons, CHIRPS
performed better than the other GPDS in comparison.
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The monthly variation in the estimated evaluation indices values for all GPDS is
shown in Figure 10. The CC box plot shows how the CHIRPS products performed better
compared to other GPDS. CHIRPS estimates are in good agreement with the in situ gauge
estimation, according to the BIAS (mm/day) box plot. The PDIR product described subpar
performance in terms of CC and error values in the box schemes of RMSE. Only CHIRPS’
performance > 0.7. The RMSE error values for the SM2Rain ASCAT were maximum. The
whole GPDS’ monthly performance is shown in Figure 11. In comparison to daily estimates,
the daily CC estimations of ERA5, MEERA2, APHRO, PERSIANN-PDIR, CHIRPS, GPM-
SM2Rain, SM2Rain-ASCAT, and SM2Rain-CCI were superior. In comparison to other
products, the CHIRPS, APHRO, and PDIR products fared well in the CC box scheme. The
MEERA2 product performed much worse than other datasets, while the ERA5 product
performed poorly on a monthly scale, according to the BIAS box scheme. The GPM-
SM2Rain product performed reasonably well across the monthly scale.

3.3. The Significance of Precipitation Intensity and Altitude on All GPDS Evaluation Indices

For all of the selected GPDS (ERA5, MEERA2, APHRO, PERSIANN-PDIR, CHIRPS,
GPM-SM2Rain, SM2Rain-ASCAT, and SM2Rain-CCI), Figure 12 shows how altitude affects
the assessment indices (CC, BIAS, and RMSE). The dotted lines showed the regression
values of all GPDS. The results show that CC levels decreased as elevation increased.
The elevation and error values have a direct correlation, just like the error values do.
The low performance was shown by the PDIR, MEERA2, CCI, and ERA5 values for CC.
The CHIRPS results were better, even at greater altitudes. Across all GPDS, an elevation
shift seems to have little effect on the BI-AS values. Higher elevations also showed good
agreement in their error values. Similar changes were seen in the APHRO and GPM in
response to elevation.
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For all the selected GPDS (ERA5, MEERA2, APHRO, PERSIANN-PDIR, CHIRPS,
GPM-SM2Rain, SM2Rain-ASCAT, and SM2Rain-CCI), Figure 13 explains the effects of
precipitation intensity on the assessment indices. The findings demonstrate that CC values
rise as precipitation intensity increases. The error values, on the other hand, are inversely
related to the intensity of the precipitation. All of the reanalysis products’ CC values
showed poor agreement with the gauge calculations. Even when the intensity of the
precipitation was reduced, the CHIRPS produced better results. Across all datasets, the
bias values demonstrated a significant response to precipitation intensity. In response to
the intensity of the precipitation, the GPM-SM2Rain and PDIR both exhibited comparable
fluctuations, and their margins of error contrasted significantly during peak precipitation.

3.4. The Performance Diagram of All GPDS at Daily and Seasonal Scales

Figure 14 provides an overview of the abilities of all the systems considered in Tajik-
istan (ERA5, MEERA2, APHRO, PERSIANN-PDIR, CHIRPS, GPM-SM2Rain, SM2Rain-
ASCAT, and SM2Rain-CCI) in terms of POD. This demonstrates how reference gauges,
GPDS, and reanalysis datasets are spatially related. Earlier research made use of this
performance diagram to compare the efficacy of various precipitation products in a range
of environmental settings. POD estimates for the PDIR, SM2Rain-ASCAT, SM2Rain-CCI,
GPM-SM2Rain, and CHIRPS were 0.61, 0.49, 0.36, 0.57, 0.31, 0.36, and 0.60, respectively.
Indicating that the product had a good ability to detect the occurrence of precipitation, the
POD for CHIRPS was at its highest. While the APHRO value of the reanalysis product was
highest when compared to other ERA5 and MEERA 2 products. Figure 15 illustrates the
performance of all GPDS on a seasonal scale in terms of the Probability of Detection and
success ratio. In the winter, the GPM-SM2Rain performed better, whereas the CHIRPS POD
values outperformed the other GPDS. In terms of the chance of detection, APHRO and CCI
performed reasonably well. The CHIRPS and GPM were very comparable throughout the
winter, while MEERA 2’s all-around performance was subpar.
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3.5. The Probability Density Function of All GPDS at Daily and Seasonal Scales

The eight GPDS used to evaluate the estimations of the in situ weather stations (ERA5,
MEERA2, APHRO, PERSIANN-PDIR, CHIRPS, GPM-SM2Rain, SM2Rain-ASCAT, and
SM2Rain-CCI.) are depicted as probability density functions (PDFs) in Figure 16 According
to data from all sources, light precipitation events (2 mm/day) were the most common for
the entire study period (representing about 72% of all events). Every threshold showed a
significant underestimation of precipitation according to the PDIR and ASCAT products.
CCI demonstrated an overestimation of light precipitation occurrences while underesti-
mating moderate and heavy precipitation events. In daily estimations, MEERA2 showed a
sizable overestimation. The CCI results clearly overestimated the frequency of wintertime
light precipitation occurrences. A significant underestimation of light events was found
by SM2Rain-ASCAT. The preponderance of light events was rather well captured by the
APHRO product while exaggerating moderate-to-heavy rains. Tajikistan precipitation
events were best predicted by the CCI product this season. CHIRPS had the best spring
performance. All other items depicted light-to-moderate spring precipitation occurrences
ambiguously. MEERA2 missed summer light-to-heavy precipitation events.
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3.6. The Performance of the Datasets over Different Elevation Zones

The research makes it possible to thoroughly examine precipitation performance
over a variety of height gradients by categorizing the elevation zones into three groups
(1500 m, 2500 m, and 2500 m). For the zone classification, the elevation of installed in
situ gauging stations was used as a threshold value. Figure 17 highlights the correlation
coefficient spatial distribution of all GPDS (ERA5, MEERA2, APHRO, PERSIANN-PDIR,
CHIRPS, GPM-SM2Rain, SM2Rain-ASCAT, and SM2Rain-CCI). Due to the very complex
topography, the results showed significant variations in CC values. In zone A, all GPDS
performance was comparable with gauge estimations with the dominant performance of
CHIRPS. The correlation coefficients between precipitation estimates from various datasets
and ground-based measurements generally decrease as elevation rises (zones B and C)
because of the complexity of orographic effects, measurement difficulties, scarcity of ground-
based data, microclimates, and snow accumulation. These elements must be considered
while analyzing precipitation patterns at higher altitudes and enhancing the precision of
precipitation estimations for more dependable applications in mountainous areas, like
Tajikistan. Generally, only the CHIRPS performance was satisfactory in all elevation zones,
although its performance in the southern part of the region was not appropriate. Figure 18
describes the error and r-BIAS values of all the GPDS based on different elevation zones.
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Generally, the error values increased as elevation increased. CHIRPS showed the least
RMSE values in each zone. While all the GPDS were underestimated at higher elevations.
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4. Discussion

In this work, the accuracy and error characteristics of the GPDS (ERA5, MEERA2,
APHRO, PERSIANN-PDIR, CHIRPS, GPM-SM2Rain, SM2Rain-ASCAT, and SM2Rain-
CCI) were assessed using widely used assessment and categorization criteria. In numer-
ous locations around the world, the ground validity of various GPDS has already been
evaluated [38–40]. Local terrain and weather conditions are known to have a significant
influence on GPDS performances. For example, ref. [41] examined a range of GPDS over
Pakistan and found that the regional climatology and precipitation retrieval techniques
had a significant impact on the accuracy of the precipitation products. Ref. [42] showed
that the evaluation indices were heavily contingent on the in situ meteorological circum-
stances when comparing the capabilities of all GPDS estimations. The current assessment
discovered that the climatic and topographic characteristics had a considerable influence
on the evaluation of the GPDS under consideration, which is similar to past findings in
many places [43].

According to our findings, CHIRPS has superior spatial and temporal capabilities
to other chosen products. The findings of our investigation were perfectly reflected in
previously published papers [8,14]. According to ground validation, all GPDS predictions
were more accurate than in situ gauge estimations monthly, which is consistent with the
findings of numerous other studies [10,26,34]. The results of [27] suggest that the spatial
distribution of precipitation could be represented by the precipitation products CHIRPS
and ASCAT. The study indicated that SM2Rain and CHIRPS products had improved spatial
distribution tracking capabilities. According to the low correlation coefficient values, the
performance of all GPDS was very poor in comparison to gauge estimations, indicating
the better agreement between the GPDS and the reference datasets on a monthly scale as
compare to daily. According to [33,37], the estimations of GPM and CHIRPS calculations
with the monthly data of the in situ stations were >0.70, showing the superior linear
connections of their monthly observations. Moreover, the algorithm used, the data sources
used as input, and the spatial and temporal resolution can all affect how well a precipitation
estimator performs. Additionally, the location and the weather can have an impact on how
well an estimator performs.

Numerous algorithms are used by satellite-based precipitation estimators to calcu-
late precipitation from satellite data. Infrared (IR), microwave (MW), and multispectral
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algorithms are examples of common algorithms. The foundation of IR algorithms is the
idea that clouds with more ice content are related to more precipitation. However, in areas
with a lot of cloud cover, they may be inaccurate. MW algorithms can be inaccurate in
areas with high surface emissivity because they are based on the idea that precipitation
scatters MW radiation. They are less impacted by cloud cover than IR algorithms. In
general, multispectral algorithms are more accurate at predicting precipitation than IR or
MW algorithms alone, but they can be more difficult to implement.

Global estimates of precipitation are created using reanalysis datasets, which combine
information from several sources, including satellite data, on-the-ground observations,
and numerical weather prediction models. Reanalysis datasets have a coarser spatial and
temporal resolution than satellite-based precipitation estimators, but they are typically more
accurate. Using a variety of equipment, including radar and radiometers, precipitation
satellites offer estimates of precipitation from space. The ability of these devices to detect
precipitation at various scales is impacted by the differing spatial and temporal resolutions
of their equipment. Because they offer a longer time window to make up for the instruments’
poor spatial resolution, monthly scales are better suited for precipitation satellite data. The
satellite data can offer a trustworthy estimate of the average precipitation for a specific
area over monthly timeframes [44]. On the other hand, many variables like cloud cover,
atmospheric conditions, and the timing of the satellite overpasses might have an impact
on daily precipitation estimations from satellites. Unreliable and noisy results could be
the result. It was discovered that as altitude increased, so did the correlations between
the GPDS and the actual estimates [45]. Higher precipitation rates exposed the SM2Rain
product’s subpar performance. The findings of [17] are congruent with these findings. The
POD, FAR, and CSI values of CHIRPS outperform those of competing products, and other
studies have found results that are similar. Figures 17 and 18 showed that all GPDS were
very sensitive in response to the elevation of installed in situ gauging stations. The station
installed at higher altitudes showed a poor correlation coefficient with satellite data and
error values that increased significantly; these findings are in line with [33].

5. Conclusions

The GPM-SM2Rain, SM2Rain-ASCAT, and SM2Rain-CCI models were used in this
work to evaluate the uncertainties in daily, monthly, seasonal, and annual estimations of
various GPDS (ERA5, MEERA2, APHRO, PERSIANN-PDIR, CHIRPS, and GPM-SM2Rain).
Utilizing data from January 2000 to December 2013, the evaluation was based on compar-
isons with measurements from in-country weather stations in Tajikistan:

• All datasets captured most precipitation over flat topography, but no GPDS could
track precipitation over the northern highlands, and GPM-SM2Rain and APHRO
overestimated precipitation over rugged surfaces.

• APHRO outperformed reanalysis precipitation datasets, such as ERA5 and MEERA2,
by a significant margin, with average correlation coefficient c values of 0.69, 0.48, and
0.51, respectively.

• All GPDS performed better when measured monthly compared to daily, with aver-
age CC values increasing by 0.1–0.25. This underscores the importance of temporal
aggregation in reducing uncertainties and inaccuracies in precipitation estimates.

• The rBIAS values for CHIRPS across each zone (1500 m, 2500 m, and 3500 m) were 7%,
18%, and −30%, respectively. Furthermore, all GPDS exhibited underestimation when
assessed in the highest elevation zone (Zone C). Notably, ASCAT-SM2Rain showed
the highest degree of underestimation, with a substantial −72% bias.

• The spatial variation in CC values among soil moisture-based products was notable,
with CHIRPS exhibiting the highest average CC value of 0.89 on a monthly scale.

• The Probability of Detection (POD) estimates for the PDIR, SM2Rain-ASCAT, SM2Rain-
CCI, GPM-SM2Rain, and CHIRPS were 0.61, 0.49, 0.36, 0.57, 0.31, 0.36, and 0.60, respec-
tively, indicating CHIRPS estimations were very effective at detecting
precipitation events.
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• During the summer, all GPDS underestimated, with GPM showing the most signifi-
cant underestimation (−78%); PDIR performed satisfactorily in autumn, while GPM
demonstrated notable underestimation (−25%) in winter and significant underesti-
mation (−33%) in autumn; ASCAT and CHIRPS exhibited severe underestimations
(−28% and −19%, respectively) in winter; CHIRPS consistently outperformed other
GPDS across all seasons.

• GPDS RMSE values generally increased with elevation, except for CHIRPS, which
had the lowest RMSE values across all elevation zones (2 mm, 5 mm, and 6 mm
in zones A, B, and C). However, the correlation coefficients between precipitation
estimates from various datasets and ground-based measurements generally decreased
as elevation increased; this is likely due to the more complex precipitation patterns at
higher elevations.

• Light precipitation events (<2 mm/day) were the most frequent (approximately 80% of
all events), and CHIRPS and GPM-SM2Rain performed best at tracking precipitation
events at different thresholds.

• Overall, the in situ topographical and climatic conditions have a significant impact
on the spatiotemporal performance of GPDS. It is important to be aware of these
limitations when using GPDS, especially in regions with complex topography and
variable climate.

This study found that the performance of the GPDS varied depending on the metric
used and the elevation zone. For example, CHIRPS exhibited the best performance overall,
with the highest average CC values and the lowest RMSE values. At higher elevations, all
GPDS tended to underestimate precipitation amounts. According to the study’s findings,
the three GPDS that performed the best for hydroclimatic applications in the Tajikistan
region were CHIRPS, GPM-SM2Rain, and APHRO. At both the daily and monthly scales,
these products showed a strong correlation coefficient (CC) (>0.70), and the relative bias
(rBIAS) was within a tolerable range (±10). Therefore, for hydroclimatic applications in the
area, we advise using both daily and monthly evaluations of these products. Furthermore,
to improve algorithmic retrievals of satellite precipitation data for more precise applications,
we propose merging deep learning and machine learning approaches and advanced models.
The results of this study may be useful to Tajik politicians, water conservation practitioners,
users of GPDS, hydrologists, and meteorologists.
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