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Abstract: This article presents a method to detect and segment mine waste deposits, specifically waste
rock dumps and leaching wasted dumps, in Sentinel-2 satellite imagery using artificial intelligence.
This challenging task has important implications for mining companies and regulators like the
National Geology and Mining Service in Chile. Challenges include limited knowledge of mine
waste deposit numbers, as well as logistical and technical difficulties in conducting inspections and
surveying physical stability parameters. The proposed method combines YOLOv7 object detection
with a vision transformer classifier to locate mine waste deposits, as well as a deep generative model
for data augmentation to enhance detection and segmentation accuracy. The ViT classifier achieved
98% accuracy in differentiating five satellite imagery scene types, while the YOLOv7 model achieved
an average precision of 81% for detection and 79% for segmentation of mine waste deposits. Finally,
the model was used to calculate mine waste deposit areas, with an absolute error of 6.6% compared
to Google Earth API results.

Keywords: satellite imagery; scene segmentation; deep generative models; mine waste rock; leaching
waste dumps; physical stability; closure planning

1. Introduction

In the global mining sector, addressing the management and monitoring of massive
mining waste deposits (MWDs) is critical, especially in countries like Chile, which leads in
copper production worldwide [1–5]. The numerous phases of mining activities in Chile gen-
erate a significant amount of waste, which is stored in various forms such as tailing dams,
waste rock dumps (WRDs, Figure 1a), and leaching waste dumps (LWDs, Figure 1b) [1–5].
This waste accumulation poses substantial challenges and requires intricate management
and regulatory adherence, particularly during the closure and post-closure stages [6–10].

Addressing the challenges related to MWDs is pivotal due to the complexities in-
volved in their management and the limited information available, which impacts entities
like SERNAGEOMIN in their regulatory and monitoring roles [11,12]. The varied forms
of MWDs, each with their unique characteristics and impacts, necessitate intricate man-
agement strategies and strict adherence to national legislation to ensure the safety and
well-being of people and the environment [6–10].

The national legislation mandates adherence to the “Methodological Guide for the
Evaluation of the Physical Stability of Remaining Mining Facilities” provided by SERNA-
GEOMIN [11]. This guide outlines the comprehensive methodologies and parameters
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for evaluating the potential failure mechanisms of MWDs, thereby optimizing the time,
cost, and efficacy of physical stability (PS) studies and facilitating streamlined regulatory
compliance and approval processes for closure [11].

Figure 1. Mine waste deposits (MWDs) located in the north region of Chile. (a) Waste rock dump
(WRD), (b) Leaching waste dumps (LWDs).

The integration of satellite imagery, specifically from the Copernicus Sentinel series by
ESA [13], and AI technologies offers advanced, innovative solutions in a variety of fields,
including vegetation monitoring [14], urban planning [15], and land use classification [16].

This research aims to harness the capabilities of AI and Sentinel-2 satellite imagery to
bridge the existing information gaps regarding the PS of MWDs during their closure and
post-closure stages [11]. The objective is to create a comprehensive system for maintaining
a national record of MWDs, enabling the extraction of crucial variables related to their PS
through advanced DL algorithms such as image classification, deep generative models,
and object detection. The innovative application of AI in analyzing satellite imagery for the
detection and identification of MWDs is a significant advancement in the field, contributing
to the establishment of a detailed, accurate national record of MWDs.

By providing a nuanced understanding of MWDs and their associated risks, this
methodology supports the advancement of industry standards and regulatory frameworks.
It aids entities like SERNAGEOMIN in their inspection and monitoring roles, enabling pre-
cise identification of MWD locations and condition assessments and facilitating risk-based
prioritization and compliance processes, thereby enhancing operational and environmental
safety protocols in the mining sector [11].

2. Related Works

In this section, a review of the literature most relevant to the research of this article
is carried out. In particular, different works on satellite image classification, the use of
deep generative models, and detection and segmentation algorithms for satellite images
are detailed.

2.1. Image Classification

Image classification is a widely used technique for assigning predefined class labels
to digital images based on their visual content. In the context of land classification, this
technique can be used to automatically identify and map different land cover types, such as
forests, croplands, urban areas, and water bodies, from satellite imagery. There are various
popular image classification algorithms that are used in practice, including convolutional
neural networks (CNNs) [17,18], support vector machines (SVMs) [19,20], and vision
transformers (ViT) [21,22]. Each of these algorithms has their own unique strengths and
weaknesses, and they have been shown to generalize well to unseen data. For our work,
we considered as relevant the following studies that utilize the DL techniques mentioned
previously. For instance, ref. [23] examines advancements in DL techniques for agricultural
tasks such as plant disease detection, crop/weed discrimination, fruit counting, and land
cover classification. Future directions for AI in agriculture are presented, emphasizing the
potential of DL-based models to improve automation in the industry. In [24], a remote-
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sensing scene-classification method using vision transformers is proposed, resulting in high
accuracy on various datasets. In [25], a lightweight ConvNet, MSDF-Net, is presented for
aerial scene classification with competitive performance and reduced parameters. In [26],
a new method, E-ReCNN, is presented for fine-scale change detection in satellite imagery,
with improved results compared to other semi-supervised methods and with the potential
for global application once trained.

2.2. Deep Generative Models

DGMs can improve DL models’ performance and robustness when labeled data are
scarce by generating synthetic data to augment the training dataset. These models can also
generate new samples similar to real data, which is useful for data-intensive applications
such as medical imaging and computer vision. Additionally, DGMs can be used to generate
synthetic data when real-world data collection is difficult or costly.

The use of DGMs has been proposed for various medical and mining applications.
In [27], researchers present a study on using GANs [28] for data augmentation in computed
tomography segmentation tasks, showing that using CycleGAN [29] improves the perfor-
mance of a U-Net model. In [30], the authors explore the use of the Stable Diffusion [31]
model for generating synthetic medical images, finding that fine-tuning the U-Net [32]
component can generate high-fidelity images. In [33], a method using AI algorithms and
GANs was proposed to increase the number of samples for studying the PS of tailing
dams in mining applications, resulting in an average F1-score of 97%. These studies high-
light the potential of DGMs in expanding limited datasets and improving performance in
various fields.

2.3. Image Detection and Segmentation

Image detection and segmentation for satellite imagery is a critical task in remote sens-
ing, with applications such as land-use mapping and change detection. Recent techniques
in the field are based on DL, specifically CNNs, which have shown superior performance
compared to traditional methods. Popular algorithms for image detection and segmentation
include RetinaNet [34], Mask R-CNN [35], and U-Net [32], each with their own advantages.

The authors of [36] investigate the use of CNNs for classifying and segmenting satel-
lite orthoimagery and find that CNNs can achieve results comparable to state-of-the-art
methods. Ref. [37] applies DL to detect and classify mines and tailing dams in Brazil using
satellite imagery, demonstrating potential for low-cost, high-impact data science tools.
Ref. [38] proposes a framework using YOLOv4 [39] and random forest [40] algorithms
to extract tailings pond margins from high spatial resolution remote sensing images with
high accuracy and efficiency. Ref. [41] presents a method for semantic segmentation of
high-resolution satellite images using tree-based CNNs, which outperforms other tech-
niques in terms of classification performance and execution time and which suggests that
incorporating data augmentation techniques and deeper neural networks in future work
could enhance the efficiency of the method.

This study proposes an innovative method for the precise localization, detection,
and segmentation of MWDs in Chilean mining facilities. What sets this method apart from
previous studies is the use of cutting-edge DL techniques such as YOLOv7, the ViT classifier,
and generative models, which have not been applied before in this context. In addition,
this study utilizes open access tools to obtain MWD information, making it cost-effective
and accessible to other researchers and mining companies. The proposed method also
addresses a current challenge in the Chilean mining context, which is the lack of accurate
information in the area of MWDs. By leveraging the generated synthetic tiles of MWDs
using deep generative models and the ViT classifier, this study is able to estimate the area of
detected MWDs, which is a crucial factor in evaluating mining activities. Overall, this study
provides a novel and practical approach to the characterization and assessment of MWDs,
which can significantly improve safety and operational efficiency in the mining industry.
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3. Methodology

The research methodology is outlined in two stages. Stage one involves the acquisition
of satellite image datasets, while stage two encompasses tasks for detection, segmentation,
and area estimation. Subsequently, a comprehensive explanation of the relevant metrics
used to evaluate the models is provided.

3.1. Dataset Creation

The methodology employed for acquiring the dataset utilized in this research is de-
scribed in Figure 2. The process consists of four distinct stages: (a) retrieval of satellite
imagery from the European Space Agency’s Copernicus Open Access Hub platform and
subsequent processing utilizing TorchGeo v0.4.1 [42] to facilitate image analysis; (b) im-
plementation of vision transformer (ViT) techniques for image classification; (c) utilization
of deep generative models to generate synthetic maps, thereby augmenting the number
of samples in the dataset; and (d) making the prepared dataset available for subsequent
analytical stages.

Figure 2. Methodology applied to obtain satellite imagery from the European Space Agency’s (ESA)
Copernicus site to create datasets for conducting experiments.

3.1.1. Satellite Imagery Acquisition

The areas of interest for the study were determined through the identification of the
major mining facilities within the country, as sourced from the website of the National
Mining Council of Chile [43] and depicted in Table 1. A total of 30 mining facilities were
identified and used as a basis for the study.

The acquisition of satellite imagery was conducted through the Copernicus Open Ac-
cess Hub, a platform that provides access to Sentinel data through an interactive graphical
user interface. To ensure a high-quality dataset, only products (data items for satellite im-
agery [44]) with a cloud cover percentage of less than 9% were selected from the Sentinel-2A
and Sentinel-2B platforms and S2MSI2A products with bottom-of-atmosphere reflectance.
The products were downloaded within the time frame of 2019 to 2022 in SENTINEL-
SAFE [45] format. The RGB bands (bands 02, 03, and 04; see Figure 3) were combined
into a single image and then segmented into 256 × 256 pixel resolution tiles, with a 20%
overlap on adjacent tiles, using the TorchGeo [42] software, for a 10 m spatial resolution.
The metadata of the downloaded products were used to determine the vertices in decimal
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format coordinates in the resulting tiles, and this process was repeated for each of the
determined zones.

Table 1. Major mining facilities in Chile. Figure adapted from [44].

Map of Chile Zone Region Name Region Key Mining Facilities

Northern

Tarapacá I Cerro Colorado, Quebrada Blanca, Collahuasi.

Antofagasta II
Antucoya, Chuquicamata, Ministro Hales, Spence, Sierra Gorda,

Centinela, Gabriela Mistral, Lomas Bayas, Zaldivar,
Escondida, Franke.

Atacama III Cerro Negro Norte, Salvador, La Coipa, Lobo Marte, Maricunga,
Ojos del Salado, Candelaria, Caserones, Los Colorados.

Coquimbo IV El Romeral, Carmen de Andacollo, Los Pelambres.

Central

Valparaíso V El Soldado, Andina.

Metropolitana RM Los Bronces.

Rancagua VI El Teniente.

Figure 3. Different satellite image bands of the Chuquicamata mining facility (Region II, Antofagasta,
Chile). From left to right are the red, green, and blue bands, respectively.

3.1.2. Image Classification

Once the tiles from the mining facilities in Table 1 were obtained, and given the 1:159
relationship of tiles containing MWDs, a ViT image classifier was employed to select the
MWD regions for analysis. The images were then categorized into five classes, namely
city, desert, sea, tailings pond, and MWD, with each class consisting of 2200 images. This
selection was made based on the most frequently occurring scenes from the analysis.

ViT utilizes self-attention mechanisms and the transformer architecture for learning
spatial hierarchies of features without image-specific biases. This study adopted the ap-
proach of splitting images into positional embedding patches processed by the transformer
encoder, which has proven to be highly effective. The results show the effectiveness of the
ViT architecture in this context.

To improve performance and prevent overfitting, the selected images were augmented
through horizontal and vertical flips and rotations of 90° and −90°, with each class contain-
ing 2200 images, including augmentations.

3.1.3. Data Augmentation

Data augmentation is a technique used to artificially increase the size of a dataset in DL
and computer vision by applying various random transformations to the existing data, such
as rotation, scaling, and flipping. This technique can improve the robustness and general-
ization of models by exposing them to different variations of the same data. Additionally,
it can help to mitigate overfitting by providing the model with more diverse examples.

The procedure was carried out in two phases. The first phase was applied to the ViT
classifier, while the second phase was applied to the original 769 MWD image dataset
(Figure 4a). For both phases, two augmentations were employed: horizontal flip (Figure 4b)
and −90° rotation (Figure 4c).
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Figure 4. (a) Original MWD image used for data augmentation, (b) original image flipped horizontally,
and (c) original image rotated −90°.

3.1.4. Deep Generative Model

For the generation of synthetic images of maps containing MWDs, we propose a
pipeline based on denoising diffusion probabilistic models (DDPMs) [46]. The basic idea
behind diffusion models is quite simple. They take the input image x0 and gradually add
Gaussian noise through a series of T steps (direct diffusion process). Subsequently, a neural
network is trained to recover the original data by inverting the noise process. By modeling
the inverse process, we can generate new data. This is called the inverse diffusion process
or, in general, the sampling process of a generative model (see Figure 5).

Figure 5. Reverse denoising process applied to generate a synthetic sample of MWDs.

The process is formulated using a Markov chain consisting of T steps, where each step
depends solely on the previous one, a moderate assumption in diffusion models. Most
diffusion models use architectures that are some variant of U-Net. The forward diffusion
process executed at training is given by Equation (1):

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) q(x1:T |x0) =
T

∏
t=1

q(xt|xt−1). (1)

This approach is useful as DDPMs are able to generate high-resolution images, pre-
serving fine details and textures, making it suitable for data augmentation. This is essential
for our application of generating synthetic maps containing MWD zones. As we saw in
the previous stage, the ViT classifier is utilized to detect the patches corresponding to
MWDs. The images classified as MWDs are then utilized as input to train the DDPM
algorithm, using unconditional guidance. In our implementation, we train a DDPM model
with a database of 792 MWD images. A U-Net architecture is used for the image denois-
ing, configured with two ResNet layers for each U-Net block, with identical input and
output channels corresponding to 3 channels for RGB and a resolution of 256 × 256 pixels.
The noise scheduler process is configured to 1000 steps in order to add noise to the images.
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3.1.5. Unlabeled Dataset

The images were arranged in preparation for the subsequent stage of locating, de-
tecting, and segmenting MWDs. The images are assembled into two datasets as the final
step of the procedure outlined in Figure 2 to perform the different experiments. These
correspond to:

1. Unlabeled Dataset 1. Original dataset containing 792 MWD images.
2. Unlabeled Dataset 2. Original dataset plus increased data as described in data aug-

mentation and synthetic MWDs tiles, totaling 2430 MWD images.

The composite image in Figure 6 displays the tiles (centered in the Centinela mining
facility) that make up the dataset, showcasing the 20% overlap used. The image consists of
unlabeled images.

Figure 6. Representation of the detected MWD-containing tiles superimposed on Google Earth in the
Centinela mining facility, Region II, Antofagasta, Chile.

3.2. Detection and Segmentation of MWDs

Once the various image datasets have been obtained and arranged, the second part of
the methodology enables detection, segmentation, and estimation of the areas of MWDs.
This methodology is shown in Figure 7, where the following steps are observed: (a) the two
obtained datasets are labeled with human-annotated labels for the MWD regions within
each dataset; (b) the two datasets are then used to train three experiments with detection
and segmentation algorithms; and (c) compute the surface area measurements based on
the outputs of the detection and segmentation algorithms.
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Figure 7. Methodology employed for the detection, segmentation, and calculation of the area of MWDs.

3.2.1. Human-Annotated Labels

In DL, human-annotated labels, which include object or image classes, bounding
box coordinates, and other attributes, are used to train and evaluate machine learning
models. Image classification recognizes objects and properties within an image, while
object detection localizes objects through bounding boxes. Image segmentation allows
for understanding of an image at the pixel level, with semantic segmentation assigning
each pixel to a single class. In this research, the use of segmentation masks is employed
to achieve the proposed objectives and application. The masks are labeled using Label
Studio [47] software v1.5.0. The labels are confirmed by an expert who recognizes MWDs
based on the geographical location of the mining facility and the characteristics of the
MWDs, such as the distance from the mining pit, texture and color of the mine waste,
the shape, and geometry. This process is repeated for all available datasets.

3.2.2. Detection and Segmentation of MWDs

Two segmentation algorithms were tested for extracting features from manually la-
beled tiles containing MWDs, resulting in 792 zones. The first algorithm is YOLOv7 [48],
developed by Wong Kin-Yiu and Alexey Bochkovskiy, a state-of-the-art model for object
detection and instance segmentation.

YOLOv7 is built upon the Efficient Layer Aggregation Network (ELAN) [49], optimiz-
ing several parameters and computational densities to design an efficient network, and is
specifically extended to E-ELAN for more substantial learning ability. E-ELAN enhances
the model’s learning capability by using group convolution to expand the channels and
cardinality of the computational block and by applying the same channel multiplier and
group parameter to all the computational blocks in a computation layer. This model pre-
serves the architecture of the transition layer while modifying the computational block in
ELAN. The enhancements lead to the improvement of gradient flow paths and an increase
in diverse feature learning, contributing to faster and more accurate inferences.

YOLOv7 employs advanced model scaling techniques, which are crucial for adjusting
the model’s depth, image resolution, and width to meet various application requirements.
These adjustments are meticulously done to maintain the optimal structure and the initial
properties of the architecture, even when concatenating with other layers.

In this study, the YOLOv7 pre-trained model was utilized with its default architecture.
The chosen hyperparameters, including epochs, batch size, learning rate, and input image
size, are described in Table 2. The image data were normalized and distributed into training
(70%), validation (20%), and testing (10%) subsets to ensure a balanced evaluation.

The second algorithm is Mask R-CNN [35], another advanced object instance segmen-
tation model that extends Faster R-CNN [50] by adding a fully convolutional network to
predict object masks in parallel with bounding box and class predictions. For Mask R-CNN,
two different backbones, namely ResNet50 and ResNet101 [51] from the Detectron2 [52]
library, were employed, with fine-tuning performed on both configurations. The hyperpa-
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rameters for these experiments are also detailed in Table 2, providing a consolidated view
of the training configurations for both segmentation algorithms.

Table 2. Hyperparameters used in the detection and segmentation stages.

Hyperparameter YOLOv7 Mask R-CNN

epochs 3000 3000
batch size 448 450

learning rate 0.002 0.0025
image input size 256 × 256 256 × 256

3.2.3. Area Estimation

Once the models were trained and their evaluation metrics obtained, they were applied
to unseen images to make predictions regarding object detection and segmentation. This
was done using tiles generated from RGB bands at 10 m of spectral resolution, with each
pixel in the image representing a 10 m × 10 m square on the ground. Information on
vertex coordinates in decimal format was also available from the tile generation process.
By utilizing the fact that the image always has a resolution of 256 × 256 pixels, it was
possible to establish a correlation between the identified mask and its representation in
decimal format coordinates.

The calculation of the MWD area was performed using the Gaussian area formula.
The area of the polygon P with vertices (x1, y1), (x2, y2), . . . , (xn, yn) is calculated using the
Gaussian area formula, as shown in Equation (2).

A =
1
2

∣∣∣∣∣ n

∑
i=1

(xiyi+1 − xi+1yi)

∣∣∣∣∣ (2)

Furthermore, the Google Earth (GE) API [53] can be employed to calculate the area
of a polygon through its coordinates. This enables a comparison between the estimated
area obtained through a mathematical approach and the measurements obtained through
the API. The GE API is utilized to corroborate the results obtained, thereby obtaining
verified values.

3.3. Evaluation Metrics

Evaluating the performance of the algorithms employed in this experiment requires
an understanding of relevant metrics.

3.3.1. Metrics for Classification, Detection, and Segmentation

The most commonly used metrics for evaluating image classification, detection, and seg-
mentation models are precision, recall, F1-score, accuracy, macro AVG, and weighted AVG.

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1 =
2× Precision× Recall

Precision + Recall
=

2× TP
2× TP + FP + FN

(5)

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

where TP—true positive, TN—true negative, FP—false positive, and FN—false negative.
Precision (Equation (3)) measures the proportion of true positive detections among all
positive detections made by the model. Recall (Equation (4)) measures the proportion
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of true positive detections among all actual positive instances in the dataset. F1-score
(Equation (5)) is the harmonic mean of precision and recall. Accuracy (Equation (6)) is
a measure of the model’s overall performance, calculated as the proportion of correct
predictions out of all predictions.

Additionally, for image detection and segmentation performance evaluation, the use
of intersection over union (IoU) and mean average precision (mAP) are also considered
relevant metrics in this context.

IoU =
Area of Overlap
Area of Union

(7)

mAP =
1
n

k=n

∑
n

APk (8)

IoU (Equation (7)) is a metric used to evaluate the accuracy of image segmentation
models by comparing the overlap between the predicted and ground truth segments.
mAP (Equation (8)) is a measure of the model’s overall performance, used to measure
the average precision of all classes by taking into account both true positive and false
positive detections.

3.3.2. Metrics for Deep Generative Models

The Fréchet inception distance (FID) [54] is a method for evaluating the quality of
images generated by generative models. It compares the statistics of the generated images
to those of real images by measuring the Fréchet distance between the Inceptionv3 [55]
features of the two distributions. The lower the FID score, the more similar the generated
images are to the real images, indicating a higher quality of the generated images. It has
been shown to correlate well with human judgment of image quality and is widely used
in the literature to evaluate the performance of generative models. It is calculated by
Equation (9):

FID = |µr − µg|2 + Tr(Σr + Σg − 2(Σr × Σg)
1
2 ), (9)

where µr and µg represent the mean vectors of the feature activation in the Inception net-
work for the real data and generated data, respectively. Σr and Σg represent the covariance
matrices of the feature activation in the Inception network for the real data and generated
data, respectively. Tr is the trace operator. (Σr × Σg)

1
2 is the matrix square root of the

product of the two covariance matrices.

4. Experiments and Results

In this section, the results obtained from the methodology presented in the previous
section are presented. Initially, the results obtained in creating the two databases will be
shown. For this, the results for each relevant stage of the process will be presented. In the
second part, the results of the detection and area estimation system will be presented,
with a comparison to the GE API.

4.1. Results for Dataset Creation

The creation of the datasets involved the utilization of two deep learning models: the
ViT image classifier and the deep generative model, specifically, DDPM.

4.1.1. ViT Classifier

The ViT model utilizes the Transformer architecture to perform image classification.
The input image is divided into smaller patches which are then flattened and fed as input
sequences to the Transformer model. The Transformer performs self-attention operations
on these sequences to capture global context and correlations between patches, ultimately
producing a feature representation of the entire image. This representation is then fed
through a classifier head to predict the class label of the image.
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The ViT image classifier was configured with five balanced classes: desert, city, tailings
pond, ocean, and MWD, and each class contained 2200 images. The hyperparameters
from the model in [56], pre-trained on ImageNet-21k [57], were used. This model uses
12 attention heads, encoder layer dimensionality and hidden size set to 768, 12 hidden
layers, and patches of 16 × 16 resolution. The data were split into training, validation,
and testing subsets in ratios of 70%, 20%, and 10%, respectively. The model was trained for
300 epochs with a batch size of 240. The results of the ViT image classifier are presented in
Table 3.

Table 3. ViT classifier results for the experiment proposed in Figure 2 to classify five different types
of imagery.

Class Precision Recall F1-Score

City 0.99 1 0.99
Desert 0.95 0.98 0.97
Ocean 1 1 1
Tailings Pond 0.98 0.96 0.97
MWDs 1 0.98 0.99

Accuracy 0.98
Macro average 0.98 0.98 0.98
Weighted average 0.98 0.98 0.98

The ViT classifier demonstrated high accuracy, with a result of 98.8%, in differentiating
between five scenes of aerial imagery.

4.1.2. Deep Generative Model

The DDPM model was trained using images containing MWDs, with a configuration
of 250 epochs and a batch size of 8, at a resolution of 256 × 256 pixels. The original
denoising DDPM algorithm was employed to sample images for the model, as it generated
the highest number of expert-verified samples of MWDs.

A total of 1125 maps were generated, which were then classified by the ViT classifier
to identify those that visually resemble MWDs. Finally, the best 792 tiles were selected.
The FID score was computed for 792 real and synthetic images using Equation (9), resulting
in a score of 222.46. Potential avenues for improvement of the FID score include the
generation of high-quality synthetic data for comparison with the original dataset and
the implementation of a more diverse and extensive training set for the DDPM model.
The implementation of these proposed solutions has the potential to result in a lower
FID score.

The application of the ViT classifier and DDPM resulted in the successful creation of
two datasets, composed of 792 and 2430 images of MWDs, respectively.

4.2. Results for Detection, Segmentation, and Area Estimation

This section contains the results of experiments using the application of Mask R-CNN
and YOLOv7 detection and segmentation algorithms used for the purpose of estimating the
areas of MWDs in satellite imagery. This procedure is repeated for each dataset created. A
comprehensive analysis of the procedures and results of the area estimation was conducted
using both the segmentation masks and the GE API.

4.2.1. Results for YOLOv7 and Mask R-CNN

The Mask R-CNN and YOLOv7 models were evaluated using a k-fold cross-validation
approach with 5 folds. The experiments were performed on the dataset, and the reported
results represent the average performance across the folds.

The Mask R-CNN models were configured with two backbone networks, namely
ResNet50 and ResNet101, both of which were equipped with FPN for feature extraction,
with 3× schedule [58]. Fine-tuning was performed on both configurations, utilizing the
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respective backbone weights. The experiment was executed with an epoch setting of 3000
and a batch size of 450.

The YOLOv7 model was fine-tuned using the official weights available in its repository,
with an epoch set to 3000 and a batch size of 448. In both cases, the images were normalized
and partitioned into three subsets, with 70% of the images designated for training, 20% for
validation, and 10% for testing purposes, respectively.

The results of the experiments performed using the two generated datasets are pre-
sented in Table 4. The table displays the AP metrics for detection (AP box) and segmentation
(AP Mask), with the best results emphasized in bold for all experiments performed. The AP
calculation was conducted with an IoU of 1.

Table 4. Results of YOLOv7 and Mask R-CNN algorithms for MWD detection and segmentation.

Dataset Algorithm AP Box AP Mask

Original dataset
Mask R-CNN 50 FPN 3× 0.30 0.15
Mask R-CNN 101 FPN 3× 0.31 0.17

YOLOv7 0.72 0.71

Original dataset + augmentation + synthetic
Mask R-CNN 50 FPN 3× 0.39 0.38
Mask R-CNN 101 FPN 3× 0.42 0.40

YOLOv7 0.81 0.79

As can be seen in Table 4, the AP score result for object detection, in all cases, is
higher than for object segmentation, but by a small margin. It is observed that increasing
the data with data augmentation techniques results in a significant improvement in the
performance of MWD detection. Additionally, the YOLOv7 algorithm outperforms Mask
R-CNN in all cases, based on its AP score. The disparity in results between YOLO and
Mask R-CNN can be attributed to their utilization of distinct architectures. YOLO, a single-
shot object detection model, predicts object bounding boxes through the utilization of a
grid-based approach [59]. In contrast, Mask R-CNN operates in two stages, utilizing region
proposal networks (RPNs) and a mask prediction stage to achieve object segmentation [35].
The differing architectures of the algorithms contribute significantly to their performance,
with YOLO’s simpler grid-based approach proving effective for objects with clear bound-
aries and well-defined shapes, while Mask R-CNN’s more complex architecture excels in
handling small or overlapping objects [60], which is not the case for our MWD detection
and segmentation.

4.2.2. Results for Area Estimation

The objective of this experiment is to determine the accuracy of the estimated areas
obtained from the applied area formula compared to the actual measurements obtained
through the GE API.

The detected MWDs were obtained using YOLOv7, where the output of the segmenta-
tion model produces a polygonal mask. The Gaussian area formula was used to estimate
the area of the identified MWDs. The same detected polygon was used with the GE API to
obtain the area with this method.

The estimated areas of 10 random samples of detected MWDs, using both the Gaussian
area formula and the GE API, are presented in Table 5.

The average absolute error for the samples in Table 5 was found to be 5.58%, which
is within the expected range. Further analysis of 100 detected MWDs revealed an aver-
age absolute error in area calculation using our proposed method of 6.6%. While there
was a slight increase in error, the results indicate that the performance of our system is
highly satisfactory.

To validate the estimated areas using our solution, Figure 8 shows a detected MWD,
Figure 8a shows the detected polygon area of size 623,886 m2, and Figure 8b shows the
projection of the area of size 647,681 m2 in Google Earth.
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Table 5. Areas of the 10 MWD random samples estimated using both the Gaussian area algorithm
and the GE API. Subsequently, the absolute error, standard deviation, and variance of the two
measurements were calculated.

MWD ID Estimated Area (m2) Area GE API (m2) Absolute Error (%)

0 449,412 439,785 2.19
1 243,687 273,733 10.98
2 1,463,262 1,550,792 5.64
3 514,362 521,347 1.34
4 394,150 359,541 9.63
5 189,962 184,733 2.83
7 571,587 554,441 3.09
8 337,762 322,835 4.62
9 135,975 126,476 7.51

10 47,262 43,776 7.96

Average 5.58
Standard Deviation 3.14

Variance 11.01

Figure 8. Detected MWDs using our proposed methodology. (a) shows the mask detected over a tile
of Sentinel-2 imagery; (b) shows the same area exported to Google Earth.

The experiments demonstrated that the mathematical approach for estimating the
area of MWDs is both accurate and valid, as the estimated area was in agreement with
the measurements obtained through the GE API. This approach offers the advantage of
providing accurate results while saving time compared to manual measurements. The uti-
lization of the GE API also facilitated easy visualization and verification of the results,
further confirming the validity of this approach as an alternative method for estimating the
area of MWDs.

5. Conclusions and Future Work

In this study, we introduced a methodology aimed at the localization and estimation
of the area of MWDs by employing advanced DL techniques. This methodology aspires
to provide a foundational framework for analyzing PS, a crucial aspect during the closure
and post-closure phases of mining operations.

Utilizing a ViT classifier, we achieved a classification accuracy of 98% across various
aerial scenes. This demonstrates a promising avenue for processing satellite imagery
in the context of mining waste management. Additionally, the employment of DGMs
proved beneficial in augmenting the limited data available, showcasing a potential path for
enhancing detection algorithms.



Remote Sens. 2023, 15, 4949 14 of 16

The application of YOLOv7 and Mask R-CNN algorithms on RGB imagery with a
10 m spectral resolution facilitated the accurate detection and segmentation of MWDs while
preserving the location information derived from Sentinel-2 metadata. The experimental
results indicate that the combination of YOLOv7 and diffusion models was effective in
detecting and segmenting MWDs. Specifically, the YOLOv7 algorithm achieved an AP
of 81% for detection and 79% for segmentation when integrating original, augmented,
and synthetic data. This suggests that synthetic data can play a role in improving the
accuracy of detection algorithms.

Furthermore, the methodology allowed for the estimation of areas of detected MWDs,
offering a cost-effective alternative to the challenge of cataloging and accounting for the
quantity of MWDs in a region.

The analysis of satellite images corresponding to the MWD areas could potentially
provide variables associated with site sector, geomorphology, vegetation, populated sectors,
and environmentally protected areas. This lays the groundwork for further exploration
into machine learning algorithms for feature extraction, image processing, manual labeling,
and deep learning in the context of mining waste management.

While this study presents an initial step towards addressing the challenges associated
with the fiscalization process of MWDs, further research is warranted to refine the pro-
posed methodology and explore other machine learning and deep learning algorithms for
improved accuracy and efficiency.
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