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Abstract: The successful launch of Landsat-9 marks a significant achievement in preserving the data
legacy and ensuring the continuity of Landsat’s calibrated Earth observations. This study compre-
hensively assesses the continuity of reflectance and the Normalized Difference Vegetation Index
(NDVI) between Landsat-8 and Landsat-9 Operational Land Imagers (OLIs) over diverse Chinese
landscapes. It reveals that sensor discrepancies minimally impact reflectance and NDVI consistency.
Although Landsat-9’s top-of-atmosphere (TOA) reflectance is slightly lower than that of Landsat-8,
small root-mean-square errors (RMSEs) ranging from 0.0102 to 0.0248 for VNIR and SWIR bands (and
larger RMSE for NDVI at 0.0422) fall within acceptable ranges for Earth observation applications.
Applying atmospheric corrections markedly enhances reflectance uniformity and brings regression
slopes closer to unity. Further, Bidirectional Reflectance Distribution Function (BRDF) adjustments
improve comparability, ensuring measurement reliability, and the NDVI maintains robust consistency
across various reflectance types, time series, and land cover classes. These findings affirm Landsat-9’s
success in achieving data continuity within the Landsat program, allowing interchangeable use of
Landsat-8 and Landsat-9 OLI data for diverse Earth observation purposes. Future research may
explore specific sensor correlations across different vegetation types and seasons while integrat-
ing data from complementary platforms, such as Sentinel-2, to enhance the understanding of data
continuity factors.
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1. Introduction

For over five decades, the Landsat mission has stood as an illustrious and prosper-
ous collaborative endeavor between the National Aeronautics and Space Administration
(NASA) and the U.S. Geological Survey (USGS). Designed, executed, and maintained
with exceptional success, the mission’s overarching aim has been to amass, archive, and
disseminate multispectral imagery on a global scale [1–3]. Since the launch of Landsat-4
in 1982, the saga of the Landsat series has been etched in the land surface imagery, with
instruments such as the Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper
(ETM+) embarking on this journey [4]. The year of 1984 saw the advent of Landsat-5,
carrying an identical TM instrument, followed by Landsat-7 in 1999, which hosted the
next-generation ETM+ instrument [5]. The torch was then passed to Landsat-8, launched
in 2013, ushering in the Operational Land Imager (OLI) and Thermal Infrared Sensor
(TIRS) instruments as successors to ETM+ [6]. Together, these instruments orchestrate a
seamless continuum of satellite imagery, encompassing six reflective wavelength bands in
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the visible and near-infrared (VNIR) domain, with a ground resolution of 30 m, and one or
two thermal infrared (TIR) bands offering coarser spatial resolution.

Introduced as the latest satellite iteration within the esteemed Landsat series, Landsat-9
commenced its operational phase in September 2021, marking a significant stride in the
domain of continuous Earth observation [7]. Aligning with its predecessor, Landsat-8,
Landsat-9 is equipped with the OLI-2 and the TIRS-2, attuned to meticulously capture
intricate details of the Earth’s land surface. Employing a well-orchestrated 16-day repeat
cycle that spans a width of 185 km, Landsat-9 endeavors to maintain an uninterrupted con-
tinuum of invaluable observational data. Engaging in a meticulously planned week-long
maneuver, the nearly identical sensors aboard Landsat-8 and Landsat-9 embarked on a
crucial endeavor, capturing a collection of pivotal images necessary for their subsequent
cross-calibration. The meticulous analysis of the acquired data during the underfly event
yielded outcomes of profound significance [8]. Although Landsat-8 and Landsat-9 share
a multitude of common attributes, it is noteworthy that Landsat-9’s technical prowess
extends to augmenting the radiometric resolution of the OLI from the former’s 12 bits, as
employed by Landsat-8, to a higher specification of 14 bits [7]. The resulting amplifica-
tion in radiometric resolution subsequently augments sensor sensitivity, yielding tangible
enhancements in terms of luminance and color rendition.

A fundamental objective of the Landsat program lies in the provision of a steadfast and
comprehensive repository of radiometrically and geometrically calibrated data spanning
its entire mission chronicle. The attainment of sensor consistency crucially hinges upon
several intricate factors, including the relative spectral filter characteristics, the correction
of atmospheric effects [9,10], the sensor misregistration concerns [11], and the diligent
management of sensor degradation and calibration adjustments [12]. Additionally, the
view angle of the acquired images, often slightly off nadir spanning±7.5◦, introduces subtle
directional nuances in surface reflectance owing to surface reflectance anisotropy [13,14].

Moreover, the extensive Landsat imagery time series has profoundly enriched the
capacity to monitor terrestrial vegetation [15]. Researchers have consistently endeavored
to establish models that derive biophysical parameters from the reflectance values, effec-
tively translating reflectance into quantities of heightened physical significance. In this
context, vegetation indices (VIs) derived from satellite data have emerged as indispensable
tools for appraising the dynamic variations in the physiological state and biophysical
attributes of vegetation [16]. However, the intricate nuances inherent to distinct sensor
characteristics often yield disparities among VIs derived from diverse sensors targeting the
same terrain [17,18]. The NDVI (normalized difference vegetation index) has been widely
employed in Earth observation studies to monitor vegetation health, assess land cover
changes, and analyze ecosystem dynamics. With the advent of Landsat series data, which
spans several decades, researchers have increasingly utilized this dataset for long-term
vegetation monitoring [19]. Consequently, the pursuit of multi-sensor NDVI continuity and
compatibility assumes paramount significance within the realm of multi-sensor vegetation
observations, albeit remaining as a nuanced and intricate undertaking.

Previous research endeavors have provided valuable insights into the comparative
analysis of Landsat-7 ETM+ and Landsat-8 OLI data in diverse geographic contexts. For
instance, Flood conducted a comprehensive examination of these datasets across the Aus-
tralian landscape [20]. Similarly, statistical analyses were also conducted in the contexts of
China and Korea [21], South East Asia [22], Libya [23], and the contiguous United States
(CONUS) [24]. In addition, another critical aspect of such studies involves assessing the
continuity of NDVI measurements across different Landsat missions [25]. These findings
underscored subtle yet discernible disparities in both reflectance values and vegetation
indices and have predominantly conveyed a narrative of favorable continuity between
Landsat-8 OLI and Landsat-7 ETM+, reaffirming the efficacy of these sensors. These col-
lective contributions have significantly enriched our understanding of the Landsat sensor
continuity landscape.
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The onset of an extended science mission for Landsat-7 at a lower orbit commenced
in May 2022 at an altitude of 697 km. While Landsat-7 continues to maintain operational
stability and data acquisition, its pivotal role within the Landsat series has diminished.
Consequently, the mantle of major data provision within the Landsat constellation now
rests firmly upon Landsat-8 and Landsat-9 [7,26]. These two satellites represent the ful-
crum of ongoing Earth monitoring endeavors, underpinning the program’s future data
recording missions. Preliminary studies have undertaken cross-calibration and evaluation
exercises, focusing on the spectral consistency of their VNIR and TIR bands. For instance,
Kabri et al. [27] undertook a meticulous evaluation of Landsat-9’s OLI2 radiometric per-
formance, particularly in the context of aquatic applications. Their findings underscored
the presence of consistent reflectance values with Landsat-8’s OLI, along with heightened
signal levels in OLI2 and improved signal-to-noise ratios across the VNIR and SWIR bands.
Initial calibration adjustments were implemented before the culmination of the on-orbit
initial verification phase, with the subsequent Phase 2 analysis culminating in refined
cross-calibration gain values that have been instrumental in updating the Landsat-9 calibra-
tion [8]. Nevertheless, a conspicuous gap persists in the scholarly landscape, characterized
by the absence of an exhaustive comparative analysis across extensive regions with diverse
land covers and over extended time periods, encompassing both reflectance and derived
vegetation indices—a critical knowledge deficit that this study seeks to address.

In response to the aforementioned research gap, this paper aims to provide a com-
prehensive characterization of the continuity in Landsat-8 and Landsat-9 OLI sensor data,
with a specific focus on reflectance and the NDVI, the most widely used vegetation index,
across the diverse landscape of China. This investigation encompasses an evaluation of the
corresponding bands’ reflectance and derived NDVI values. The assessment is conducted
both at the top-of-atmosphere (TOA) reflectance level and after meticulous atmospheric
correction to yield surface reflectance data. Additionally, the surface reflectance values
undergo an adjustment process to account for the nadir view and local solar observation
geometry, yielding nadir bi-directional reflectance distribution function (BRDF)-adjusted
surface reflectance values that are systematically compared between the two sensors.

The organization of this article is as follows. Section 2 describes the material used
in this study, which includes Landsat-8 and Landsat-9 images and a spectral reflectance
library. Detailed descriptions regarding the implementation of the analysis, including
the data pre-processing and comparison, are described in Section 3. Comparison results
are presented in Section 4. Section 5 discusses the causes of uncertainty in consistency
analyses and future research directions. This article concludes in Section 6 with a summary
of the results.

2. Materials
2.1. Landsat-8 and Landsat-9 Images

This study relies on the utilization of Landsat-8 and Landsat-9 Collection 2 Level 1
Precision and Terrain (L1TP)-corrected data, along with Level 2 Science Products (L2SPs).
The Collection 2 dataset augments the existing metadata with essential angle coefficients,
facilitating the derivation of per-pixel solar and viewing geometry parameters. Additionally,
it offers invaluable per-pixel masks, encompassing cloud, cloud shadow, cirrus cloud, and
snow, derived through the CFmask algorithm [28]. The analysis primarily centers on
four VNIR bands and two SWIR bands from the OLI sensor, specifically corresponding
to bands 2 through 7 (as illustrated in Figure 1). These bands are processed to yield
orthorectified top-of-atmosphere (TOA) reflectance or Surface Reflectance (SR).

The L1TP product encompasses a comprehensive suite of corrections, encompassing
radiometric, geometric, and precision adjustments. It leverages Digital Elevation Models
(DEMs) to rectify parallax errors stemming from local topographic variations. The accuracy
of the precision/terrain-corrected product is contingent upon the availability of Ground
Control Points (GCPs) and the resolution of the most optimal DEM at hand. Conversely, the
L2SP products are derived through the Land Surface Reflectance Code (LaSRC) [10]. The
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LaSRC is instrumental in generating TOA reflectance, harnessing calibration parameters
gleaned from the metadata. Subsequently, the dataset undergoes meticulous atmospheric
correction routines, facilitated by auxiliary input data, including water vapor, ozone,
and Aerosol Optical Thickness (AOT), sourced from the Moderate-Resolution Imaging
Spectroradiometer (MODIS). Moreover, digital elevation data derived from the Earth
Topography Five-Minute Grid (ETOPO5) are harnessed to compute surface reflectance.
The culminating output is presented as the Landsat SR data product, which forms the
foundation for the ensuing analyses.
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Figure 1. Relative spectral response functions of OLI for the corresponding reflectance bands used in
this research. The solid lines depict the spectral filters for Landsat-8, while the dashed lines represent
those for Landsat-9.

Landsat-8 and Landsat-9, operating in a synchronized orbit offset by 8 days, inherently
exhibit an overlapping acquisition pattern. This design results in the western side of a
sensor’s acquisition footprint being juxtaposed with the eastern side of the other sensor’s
footprint, and vice versa. Consequently, these adjacent acquisitions transpire with a mere
one-day separation. While this brief temporal gap may witness alterations in atmospheric
conditions, it remains an acceptable timeframe for capturing surface changes, which are
less likely to occur within such a compressed interval. For the purpose of this study, we
identify and employ fifteen strategically selected regions across the expansive Chinese land-
scape (Figure 2) where Landsat-8 and Landsat-9 acquisitions exhibit this side-overlapping
configuration. These regions encapsulate a diverse spectrum of major land cover types,
including evergreen needleleaf forests (ENFs), evergreen broadleaf forests (EBFs), decidu-
ous needleleaf forests (DNFs), deciduous broadleaf forests (DBFs), grasslands, croplands,
urban and built-up areas, barren terrain, and water bodies, classified in accordance with
the International Geosphere-Biosphere Program (IGBP) scheme adopted from the MODIS
land cover product (MCD12Q1) [29].

In order to encompass a wide array of surface and atmospheric conditions, we meticu-
lously curate four Landsat data pairs for each region, corresponding to the distinct seasonal
periods of January–March, April–June, July–September, and October–December of the
year 2022. However, it is noteworthy that certain regions encounter limitations in the
form of high cloud cover within the available Landsat imagery during specific seasons.
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Consequently, we judiciously select 53 Landsat-8 and Landsat-9 data pairs that satisfy the
requisite criteria, thus forming the foundation for our comparative analysis.
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Furthermore, to facilitate a comprehensive time-series analysis of NDVI data, we
assemble a complete annual dataset encompassing Landsat-8 and Landsat-9 imagery
spanning from November 2021 to October 2022. This extensive dataset is meticulously
curated to encompass the specific regions of interest, known as the six Benchmark Land
Multisite Analysis and Intercomparison of Products (BELMANIP) sites [30], strategically
situated across China (Figure 2). Each of these sites represents distinct land cover types,
including DNF, DBF, EBF, grasslands, croplands, and barren terrain. This dataset serves
as a resource for conducting cross-sensor comparisons of NDVI time-series data, offering
insights into the temporal dynamics of vegetation across various land cover categories
within the selected regions.

2.2. Spectral Library and Simulated Dataset

To explore potential differences in reflectance between Landsat-8 and Landsat-9 arising
solely from disparities in their spectral response characteristics, we conduct an extensive
simulation study. This involves the generation of a substantial volume of simulated sensor
reflectance values, particularly focusing on Landsat-9 and Landsat-8 OLI band reflectance
data. The derivation of these reflectance values is accomplished by convolving laboratory
spectra with sensor-specific spectral response functions, a methodology well documented
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in previous research [31]. The formulation for computing the simulated reflectance for a
specific Landsat-9 or Landsat-8 band (Figure 1) is expressed as follows:

ρband =

∫ λmax
λmin

RSR(λ)ρ(λ)dλ∫ λmax
λmin

RSR(λ)dλ
(1)

where ρband signifies the simulated reflectance specific to the Landsat-9 or Landsat-8 band,
while RSR(λ) represents the relative spectral response function associated with the respec-
tive band of Landsat-9 or Landsat-8. Furthermore, λmin and λmax denote the minimum and
maximum wavelengths, respectively, where RSR(λ) has a value greater than zero, while
ρ(λ) stands for the reflectance spectral library data for a given spectrum.

Our simulation endeavors incorporate a total of 344 spectra, spanning various cat-
egories including 45 vegetation spectra, 25 soil spectra, 33 man-made material spectra,
160 mineral spectra, 3 water spectra, 4 snow cover spectra, and 74 dry vegetation spectra.
These spectra are meticulously sourced from three distinct spectral libraries: the Version
6 USGS spectral library [32], the spectral library affiliated with Johns Hopkins University
(JHU), and the Chris Elvidge dry and green vegetation spectral library. The simulated
NDVI is derived as the simulated NIR reflectance minus the simulated red reflectance
divided by their sum [33].

3. Methods

A flowchart depicting the methodology employed in this research is presented in Figure 3,
including image processing, the comparison of Landsat-8 and Landsat-9 reflectance and
NDVI, as well as time-series NDVI analysis.

Remote Sens. 2023, 15, x FOR PEER REVIEW 6 of 17 
 

 

minimum and maximum wavelengths, respectively, where 𝑅𝑆𝑅 𝜆  has a value greater 
than zero, while 𝜌 𝜆  stands for the reflectance spectral library data for a given spectrum. 

Our simulation endeavors incorporate a total of 344 spectra, spanning various cate-
gories including 45 vegetation spectra, 25 soil spectra, 33 man-made material spectra, 160 
mineral spectra, 3 water spectra, 4 snow cover spectra, and 74 dry vegetation spectra. 
These spectra are meticulously sourced from three distinct spectral libraries: the Version 
6 USGS spectral library [32], the spectral library affiliated with Johns Hopkins University 
(JHU), and the Chris Elvidge dry and green vegetation spectral library. The simulated 
NDVI is derived as the simulated NIR reflectance minus the simulated red reflectance 
divided by their sum [33]. 

3. Methods 
A flowchart depicting the methodology employed in this research is presented in 

Figure 3, including image processing, the comparison of Landsat-8 and Landsat-9 reflec-
tance and NDVI, as well as time-series NDVI analysis. 

 
Figure 3. Flowchart illustrating the overall methodology for analyzing the continuity of reflectance 
and NDVI data between Landsat-8 and Landsat-9 OLI sensors. 

3.1. Landsat Data Pre-Processing 
3.1.1. Cloud, Cloud Shadow, Snow, and Spectral Saturation Masking 

The initial data preprocessing involved the removal of cloud, cloud shadow, and 
snow pixels, which were identified using the Landsat quality assessment (QA) band. Ad-
ditionally, pixel observations were excluded if any of the six Landsat-8 or Landsat-9 VNIR 
and SWIR bands (as illustrated in Figure 1) were flagged as saturated. Consequently, only 
Landsat data pairs with observations that exhibited no indications of cloud cover, snow 
contamination, or saturation were retained for further analysis. Subsequently, a filter 
based on blue band TOA reflectance was applied to screen out pairs of Landsat-8 and 
Landsat-9 pixels [24,31]. This filtering criterion is expressed as follows: ρ , − ρ ,0.5 ρ , + ρ , 1.0 (2) 

where ρ ,  and ρ ,  represent the blue band TOA reflectance values for Landsat-9 
and Landsat-8, respectively. This filter was devised to exclude observation pairs where 
substantial atmospheric changes were detected. The selection of the blue band is strategic, 
given its heightened sensitivity to atmospheric effects [34,35]. Moreover, the filter tends 
to reject observation pairs when either of the two observations is obscured by cloud or 
snow cover. This is attributed to the fact that vegetation and soil typically exhibit consid-
erably lower blue reflectance compared to cloud or snow [36]. 

  

Figure 3. Flowchart illustrating the overall methodology for analyzing the continuity of reflectance
and NDVI data between Landsat-8 and Landsat-9 OLI sensors.

3.1. Landsat Data Pre-Processing
3.1.1. Cloud, Cloud Shadow, Snow, and Spectral Saturation Masking

The initial data preprocessing involved the removal of cloud, cloud shadow, and
snow pixels, which were identified using the Landsat quality assessment (QA) band.
Additionally, pixel observations were excluded if any of the six Landsat-8 or Landsat-9
VNIR and SWIR bands (as illustrated in Figure 1) were flagged as saturated. Consequently,
only Landsat data pairs with observations that exhibited no indications of cloud cover,
snow contamination, or saturation were retained for further analysis. Subsequently, a filter



Remote Sens. 2023, 15, 4948 7 of 17

based on blue band TOA reflectance was applied to screen out pairs of Landsat-8 and
Landsat-9 pixels [24,31]. This filtering criterion is expressed as follows:∣∣∣ρTOA, L9

blue − ρTOA, L8
blue

∣∣∣
0.5
∣∣∣ρTOA, L9

blue + ρTOA, L8
blue

∣∣∣ > 1.0 (2)

where ρTOA, L9
blue and ρTOA, L8

blue represent the blue band TOA reflectance values for Landsat-9
and Landsat-8, respectively. This filter was devised to exclude observation pairs where
substantial atmospheric changes were detected. The selection of the blue band is strategic,
given its heightened sensitivity to atmospheric effects [34,35]. Moreover, the filter tends to
reject observation pairs when either of the two observations is obscured by cloud or snow
cover. This is attributed to the fact that vegetation and soil typically exhibit considerably
lower blue reflectance compared to cloud or snow [36].

3.1.2. Nadir BRDF-Adjusted Reflectance (NBAR) Computation

Most terrestrial surfaces do not exhibit the Lambertian Bidirectional Reflectance Distri-
bution Function (BRDF), causing variations in reflectance solely due to alterations in solar
and viewing geometry. Within the Landsat swath, red and near-infrared (NIR) reflectance
can fluctuate by up to 0.02 and 0.06, respectively, primarily due to BRDF effects [13]. These
variations can introduce significant noise into various applications, as they often rival or
surpass sensor calibration errors [37]. In this study, we employed a semi-physical approach
previously developed for Landsat applications [13] to adjust the surface reflectance values
for Landsat-8 and Landsat-9 sensor bands to a nadir view (0◦ view zenith) and a fixed 30◦

solar zenith angle.
To independently normalize pairs of Landsat-8 and Landsat-9 reflectance values to

nadir BRDF-adjusted reflectance (NBAR) equivalents, we adopted the c-factor approach
as introduced in [38]. This approach facilitates the adjustment of Landsat reflectance to
specified viewing and solar geometry conditions. The normalization process is represented
as follows:

NBARsensor
λ

(
θv = 0, θs =

θL8
s +θL9

s
2

)
= c(λ)× ρsensor

λ (θsensor
v , θsensor

s )

c(λ) =
ρ̂MODIS

λ

(
θv=0, θs=

θL8
s +θL9

s
2

)
ρMODIS

λ (θsensor
v , θsensor

s )

(3)

where “sensor” corresponds to either Landsat-8 or Landsat-9 OLI, and each pair of NBARsensor
λ

values is defined with a solar zenith angle set as the mean of the solar zenith angles of the
Landsat-8 (θL8

s ) and Landsat-9 (θL9
s ) observations, along with a nadir view zenith angle

(θsensor
v ) of 0◦. Due to the one-day separation between the Landsat data pairs used in this

study, the difference in θsensor
v between the two sensors is typically only 0.2◦, which can

be neglected. NBAR values were derived for the six Landsat VNIR and SWIR bands, as
illustrated in Figure 1.

The MODIS spectral reflectance values for the specified viewing and solar geome-
try conditions were predicted utilizing a Ross–Thick/Li–Sparse-Reciprocal BRDF model
as follows:

ρ
(
λ, Ω, Ω′

)
= fiso(λ) + fvol(λ)Kvol

(
Ω, Ω′

)
+ fgeo(λ)Kgeo

(
Ω, Ω′

)
(4)

This model defines reflectance as a weighted sum of an isotropic parameter and
two functions (or kernels) of viewing and illumination geometry, with one kernel derived
from radiative transfer models and the other based on surface scattering and geometric
shadow casting theory [39–41]. The fixed BRDF model parameters ( fiso, fvol , fgeo) for each
Landsat band were referenced from [13] for both Landsat-8 and Landsat-9, as the relative
spectral responses are very similar between their OLI sensors.
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3.1.3. Reprojection

In cases where adjacent paths from the Landsat swath fall under different Universal
Transverse Mercator (UTM) zones, it becomes essential to harmonize the coordinate systems
by projecting one of the images to match the projection system of the other. This projection
process involves the conversion of the coordinate system of one Landsat image to align
with the projection system of the other, thereby ensuring compatibility and enabling a
smooth integration for subsequent analyses. To achieve this, we opted for the UTM zone
with a central meridian closest to the overlapped region as the target projection system,
and subsequently transformed the projection of the other image to align with it. This
approach ensures consistency in the spatial representation of the data, facilitating accurate
and coherent analysis.

3.2. Reflectance and NDVI Comparison Method

The level of agreement between Landsat-8 and Landsat-9 reflectance and NDVI was
assessed through ordinary least squares (OLS) regression analysis. Additionally, quanti-
tative evaluation of their continuity was performed by calculating the root-mean-square
difference (RMSE) and correlation coefficient (R) using the following formulas:

RMSE =

√
1
n∑n

i=1

(
vL9

i − vL8
i
)2 (5)

R =
∑n

i=1
(
vL9

i − vL9)(vL8
i − vL8)√

∑n
i=1
(
vL9

i − vL9)2
∑n

i=1
(
vL8

i − vL8)2
(6)

where vL9
i and vL8

i represent specific variables (such as reflectance or NDVI) from Landsat-9
and Landsat-8, respectively. In the case of NDVI comparisons, only NDVI values within
the range of zero to one were considered to reflect typical land surface NDVI values. This
rigorous statistical analysis provides a robust assessment of the agreement and continuity
between the two datasets.

4. Results
4.1. Simulated Spectral Reflectance and NDVI Comparison

The simulated spectra employed in this study encompass a wide range of reflectance
and NDVI values, clustered around the 1:1 line. Remarkably, the regression slopes for
all bands and derived NDVI closely approach unity (ranging from 0.9997 to 1.0002). It
is important to note that the tiny differences are solely attributed to simulated spectral
response function disparities. The simulation inherently assumes surface homogeneity with
Lambertian reflectance, devoid of calibration errors, geolocation discrepancies, atmospheric
scattering or absorption, residual cloud cover, or shadows. However, it is crucial to
acknowledge that the actual Landsat-8 and Landsat-9 data, as examined in the subsequent
section, deviate from these idealized conditions.

4.2. Spectral Reflectance and NDVI Cross-Sensor Comparison
4.2.1. TOA Spectral Reflectance and NDVI Cross-Sensor Comparison

A comprehensive dataset comprising 59,490,068 30 m pixel values for each spectral
band was extracted from the overlapping sensor data over the Chinese landscape in 2022.
As depicted in Figure 4, the TOA reflectance scatterplots are devoid of saturated pixels,
clouds, and snow, thanks to the application of the filtering criteria defined in Equation (2).
Notably, the Landsat-8 and Landsat-9 TOA reflectance values span a broad spectral range,
corresponding to diverse surface types and conditions.
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In Figure 4, the solid black lines represent the ordinary least squares (OLS) regression
fits. In an ideal scenario where Landsat-8 and Landsat-9 observations are perfectly identical,
all data points in each scatterplot in Figure 4 would align precisely on the 1:1 line, resulting
in regression fits with zero intercepts and slopes equal to unity. However, deviations from
the 1:1 line can be attributed to several factors: (a) disparities in spectral response between
the sensors, (b) surface and atmospheric alterations occurring over the one-day interval,
and (c) bi-directional reflectance effects [20,24]. The effects of surface changes due to the
one-day time difference between sensor acquisitions are assumed to be mitigated by the
application of Equation (2). Furthermore, bi-directional reflectance effects can largely be
discounted due to the specific acquisition geometry within the sensor overlap region. This
region is consistently acquired in the forward scattering direction from one sensor and the
backward scattering direction from the other sensor. Bi-directional effects typically result in
higher reflectance in the backscatter direction than in the forward scatter direction, except
for cases of specular reflectance in the forward scattering direction [42]. For all spectral
bands, the OLS regression intercepts closely approach zero. However, the OLS slopes
exhibit values less than unity for all VNIR and SWIR wavelength bands (as observed in
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Figure 4). In other words, the TOA reflectance of Landsat-9 is consistently lower than that
of Landsat-8, with minimal RMSEs ranging from 0.0102 to 0.0248 for the VNIR and SWIR
bands, and a larger RMSE of 0.0422 for the NDVI.

4.2.2. Surface Spectral Reflectance and NDVI Cross-Sensor Comparison

In Figure 5, we present the outcomes of the atmospheric correction process, which
is reflected in the differences observed between the surface reflectance and surface NDVI
data from Landsat-8 and Landsat-9. Notably, atmospheric correction leads to an expanded
data range, particularly pronounced in the VNIR bands when compared to the TOA results
(as seen in Figure 5 in comparison to Figure 4). This phenomenon aligns with findings
in similar studies [24,31] and is attributed to the impact of atmospheric contamination.
Specifically, atmospheric interference tends to reduce the contrast in surface reflectance due
to the combined influence of Rayleigh and aerosol backscatter, which positively contributes
to the sensor signal over darker surfaces, and aerosol absorption, which diminishes the
sensor signal over brighter surfaces [43].
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An interesting observation is that the OLS regression slopes for surface reflectance
exhibit closer proximity to unity for the VNIR bands when compared to the TOA reflectance
regressions. This phenomenon is likely attributed to the heightened susceptibility of
VNIR bands to atmospheric contamination [43,44]. Conversely, there is minimal deviation
between the OLS slopes for the SWIR bands and NDVI between the TOA and surface
reflectance datasets. Additionally, the RMSE values follow a consistent pattern, with
smaller values observed for the visible bands in contrast to the NIR and SWIR bands.

4.2.3. BRDF-Adjusted Spectral Reflectance and NDVI Cross-Sensor Comparison

In Figure 6, we present analogous results to those depicted in Figure 5, but with a
focus on the nadir BRDF-adjusted data, referred to as surface NBAR (Nadir Bi-Directional
Reflectance) and surface NBAR NDVI. When comparing the data corrected for BRDF effects
to the atmospherically corrected data (as seen in Figure 5), we observe that BRDF correction
contributes to increased reflectance consistency, as indicated by the OLS regression R2

values, across all bands. However, it is worth noting a slight increase in the absolute
difference, as reflected in the RMSE values.
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Figure 6. Scatter plot of the Landsat-8 and Landsat-9 BRDF-adjusted to a nadir view and the observed
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green color corresponds to regions with a lower density. The black solid lines are fitted using the
ordinary least squares (OLS) regression with corresponding equations provided in the top left corner.
The black dashed lines are 1:1 lines for reference. The root-mean-square error (RMSE) and correlation
coefficient are calculated as Equations (5) and (6).
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Notably, the OLS regression slopes for surface NBAR (Figure 6) are closer to unity
than those observed for surface reflectance (Figure 5). This improvement can be attributed
to the nadir BRDF correction, which effectively addresses variations in solar and viewing
geometry. In the context of the observations in this study, it is important to highlight that
the differences in solar zenith angles (Landsat-9 minus Landsat-8) were relatively small,
with a mean of 0.0663◦ and a standard deviation of 0.7257◦. These observations were
captured within a single day of each other. In contrast, the differences in view zenith
angles exhibited a wider range, with a mean of −0.0074◦ and a standard deviation of
3.2347◦. Negative angles in this context represent the forward scatter direction, and these
larger view zenith differences introduce non-negligible BRDF effects, particularly over
non-Lambertian surfaces.

Conversely, when examining the surface NBAR NDVI regression slopes (Figure 6), we
find them to be consistent with those observed for surface NDVI (Figure 5), with similar
OLS regression R2 values. This alignment with the NDVI formulation’s reduced sensitivity
to BRDF effects, in comparison to red and NIR reflectance [45], is expected. Furthermore,
the influence of BRDF effects on Landsat NDVI data is generally limited in this study due
to the small variations in solar zenith angles between the observations, as previously noted.

4.3. Time-Series NDVI Cross-Sensor Comparison

To assess the temporal coherence of Landsat-8 and Landsat-9 NDVI data further, we
examine the time-series NDVI profiles derived from surface reflectance across six distinct
land cover types (DNF, DBF, EBF, grasslands, croplands, and barren) at BELMANIP sites
spanning from November 2021 to October 2022, as illustrated in Figure 7. The blue and
green dots on the graph represent Landsat-8 and Landsat-9 NDVI values, respectively.
Additionally, the grey dashed lines indicate polynomial fitting curves applied to the data.

In general, the NDVI profiles from Landsat-8 and Landsat-9 exhibit a high level of
agreement across all land cover types. Their combination serves to significantly enhance
the sampling frequency, which proves valuable for revealing phenological variations. For
both EBF and DBF, the NDVI time series demonstrates subtle seasonal dynamics, with
higher values observed in August and smaller values in February. In contrast, the NDVI
time series for DNF and grasslands exhibit more pronounced seasonal fluctuations, with
peaks and valleys also occurring in August and February. Notably, the cropland NDVI
profile displays a bimodal pattern of seasonality. This pattern is attributed to the rotational
agricultural practices involving wheat and maize throughout the year, with the peak for
wheat growth occurring in March and for maize in August [46]. Lastly, barren land exhibits
consistently low NDVI values throughout the year. However, it is worth noting that this
site benefits from the densest Landsat-8 and Landsat-9 observations, owing to reduced
cloud contamination in arid regions.
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BELMANIP sites spanning from November 2021 to October 2022. Polynomial fitting is applied, and
the resulting curves are represented by grey dashed lines.

5. Discussion

The Landsat program has played a pivotal role in supplying consistent and long-
term Earth observation data, thereby facilitating a multitude of applications, including
land cover mapping, change detection, and vegetation monitoring [2]. The continuity of
reflectance measurements between Landsat-8 and Landsat-9 is fundamental for ensuring
the seamless integration of data and the capability to compare and analyze temporal trends
effectively [47]. In this study, we focused on scrutinizing the continuity of TOA, surface,
and nadir BRDF-adjusted reflectance, as well as the NDVI, across the diverse landscape
of China.

The spectral response functions of Landsat-8 and Landsat-9’s OLI sensors exhibit a
remarkable degree of similarity (Figure 1), underscoring the robust match in their spec-
tral characteristics. This alignment allows for a confident assessment of the continuity of
reflectance measurements between the two sensors, a confirmation supported by the com-
parison of simulated reflectance values derived from a spectral library analysis (Figure 3).

However, it is vital to acknowledge that real images obtained by Landsat-8 and
Landsat-9 may exhibit variations in reflectance due to atmospheric effects. These at-
mospheric effects, encompassing the scattering and absorption of light by atmospheric
constituents, introduce uncertainties and can impact the consistency of reflectance measure-
ments [43]. Notably, our findings reveal that the TOA reflectance of Landsat-9 consistently
registers lower values than those of Landsat-8, with RMSEs ranging from 0.0102 to 0.0248
(Figure 4). To mitigate these effects and enhance data comparability, the application of
atmospheric correction to Landsat-8 and Landsat-9 images becomes paramount. By elimi-
nating the influence of atmospheric effects, we observed that the slopes of the ordinary least
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squares (OLS) regressions converge toward unity, yielding more precise and harmonious
data (Figure 5). It is essential to recognize that atmospheric effects can vary based on
geographic location, time of acquisition, and atmospheric conditions, thus emphasizing the
need to account for these effects for reliable and consistent data analysis.

Another crucial factor contributing to variations in reflectance measurements is the
BRDF effect, which characterizes the directional reflectance properties of surfaces [13,40,45].
This effect can significantly impact the comparability of reflectance data, particularly for
surfaces with varying angles and orientations. To address this, BRDF adjustments, such
as those based on the Ross–Li models [40], can be employed to minimize the influence of
BRDF on reflectance measurements. These adjustments take into account sensor-specific
spectral and geometric characteristics, as well as surface properties, to correct for variations
introduced by the BRDF effect. Implementation of these adjustments enhances the com-
parability of reflectance measurements, resulting in more consistent and dependable data
analysis (Figure 6).

The NDVI, a widely employed vegetation index computed based on the ratio of NIR
and red reflectance, demonstrates strong consistency across different types of reflectance
data, including TOA, surface, and BRDF-adjusted reflectance. The consistent measure-
ments of NDVI between Landsat-8 and Landsat-9 are of paramount importance for various
applications. For instance, in land cover classification, the continuity of NDVI data ensures
the accurate discrimination of different land cover types, aiding in climate change–human
activity analysis [48], agriculture management, and forest monitoring [49]. Additionally,
the assessment of phenological changes, such as the timing of vegetation growth and senes-
cence, relies heavily on reliable NDVI data. This consistency signifies that the vegetation
dynamics captured by NDVI remain comparable between Landsat-8 and Landsat-9, thus
enabling consistent monitoring of vegetation health and changes across various land cover
types (Figure 7). The ability to compare NDVI values between Landsat-8 and Landsat-
9 provides assurance that data from these sensors can be seamlessly interchanged for
such applications, thereby ensuring the continuity of vegetation monitoring endeavors,
and underpins its relevance for various practical applications, emphasizing the impor-
tance of long-term, consistent Earth observation data for informed decision making and
environmental management.

The continuity of TOA, surface, and nadir BRDF-adjusted reflectance, in conjunction
with NDVI, is paramount for sustaining precise and consistent long-term monitoring of land
surface dynamics. The amalgamation of data from both satellites empowers researchers to
expand and enrich existing time series analyses, fostering a more comprehensive compre-
hension of land cover alterations, vegetation dynamics, and ecosystem health. Moreover,
the integration of Landsat-8 and Landsat-9 data with Sentinel-2, another widely utilized
Earth observation satellite, holds substantial potential for advancing our understanding
of land surface dynamics [50]. Sentinel-2 offers analogous spectral bands and spatial res-
olution to Landsat sensors, facilitating synergistic analysis and enhancing temporal and
spatial coverage [51]. The amalgamation of these datasets further elevates the accuracy and
reliability of numerous applications necessitating multi-source and multi-temporal data.
This integration allows for the optimization of both sensors’ strengths and ameliorates
limitations such as cloud cover, temporal gaps, and spatial heterogeneity, thus providing a
more exhaustive and accurate portrayal of land surface changes, ultimately culminating
in a more holistic comprehension of land surface dynamics [52]. This harmonization of
data is poised to significantly contribute to advancing scientific knowledge and bolstering
decision-making processes across diverse domains, including ecology, agriculture, and land
management, thereby promoting sustainable development and effective environmental
conservation in China.

6. Conclusions

This study thoroughly investigated the continuity of reflectance and NDVI datasets
derived from Landsat-8 and Landsat-9 OLI sensors, focusing on the diverse landscapes of
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China. The findings of this investigation suggest that the differences in sensor characteristics
between Landsat-8 and Landsat-9 have a minimal impact on the overall continuity of
reflectance and NDVI measurements. Specifically, while some variations in TOA reflectance
were observed, predominantly in the VNIR and SWIR bands, their magnitudes, as indicated
by the small RMSE values ranging from 0.0102 to 0.0248 for these bands and the larger
RMSE for NDVI (0.0422), remain within an acceptable range for many Earth observation
applications. Moreover, the application of atmospheric correction procedures significantly
enhanced the consistency of reflectance measurements, bringing the regression slopes
closer to unity. The subsequent implementation of BRDF adjustments further improved the
comparability of reflectance data, ensuring the reliability of the measurements. Notably,
NDVI exhibited robust consistency across different types of reflectance data over various
time series and land cover categories. The findings collectively underline the overall success
of Landsat-9 in ensuring the continuity of Landsat data, facilitating seamless integration
and enabling robust temporal analysis. To delve deeper into this continuity, future research
should explore specific correlational relationships between the two sensors, considering
various vegetation cover types and seasonal variations. The potential integration of Sentinel-
2 data offers an exciting avenue for expanding our understanding of the factors influencing
data continuity, enhancing the accuracy and reliability of Earth observation data for a
multitude of applications.
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