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Abstract: Maritime moving target imaging using synthetic aperture radar (SAR) demands high
resolution and wide swath (HRWS). Using the variable pulse repetition interval (PRI), staggered SAR
can achieve seamless HRWS imaging. The reconstruction should be performed since the variable PRI
causes echo pulse loss and nonuniformly sampled signals in azimuth, both of which result in spectrum
aliasing. The existing reconstruction methods are designed for stationary scenes and have achieved
impressive results. However, for moving targets, these methods inevitably introduce reconstruction
errors. The target motion coupled with non-uniform sampling aggravates the spectral aliasing and
degrades the reconstruction performance. This phenomenon becomes more severe, particularly
in scenes involving multiple moving targets, since the distinct motion parameter has its unique
effect on spectrum aliasing, resulting in the overlapping of various aliasing effects. Consequently, it
becomes difficult to reconstruct and separate the echoes of the multiple moving targets with high
precision in staggered mode. To this end, motivated by deep learning, this paper proposes a novel
Transformer-based algorithm to image multiple moving targets in a staggered SAR system. The
reconstruction and the separation of the multiple moving targets are achieved through a proposed
network named MosReFormer (Multiple moving target separation and reconstruction Transformer).
Adopting a gated single-head Transformer network with convolution-augmented joint self-attention,
the proposed MosReFormer network can mitigate the reconstruction errors and separate the signals
of multiple moving targets simultaneously. Simulations and experiments on raw data show that the
reconstructed and separated results are close to ideal imaging results which are sampled uniformly
in azimuth with constant PRI, verifying the feasibility and effectiveness of the proposed algorithm.

Keywords: staggered synthetic aperture radar (SAR); deep learning; multiple moving target
separation; Transformer network; radar data processing

1. Introduction

Maritime surveillance is essential for many specific applications, including fishery
control, vessel traffic management, accident and disaster response, search and rescue, and
trade and economic interests, especially for the surveillance of the Exclusive Economic Zone
(EEZ). A spaceborne synthetic aperture radar (SAR) system combined with an automatic
identification system (AIS) can offer valuable information to the vessel traffic service
(VTS), so as to provide monitoring and navigational advice. A number of studies have
demonstrated the capability of traditional SAR systems to detect and image maritime
targets. The upcoming generation of spaceborne synthetic aperture radar (SAR) calls
for high resolution and wide swath (HRWS). HRWS SAR systems are admirably suited
for maritime surveillance applications, offering all-weather and all-day advantages [1,2].
High-resolution images provide reliable information for the identification, confirmation,
and description of maritime targets, especially for small vessels. Wide swath coverage,
characterized by high temporal resolution with a short revisit time, allows for capturing and
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tracking dynamic changes in maritime regions [3,4]. Given that SAR was initially developed
for the imaging of stationary scenes, the presence of moving targets within an SAR image
will result in both spatial displacement and defocusing due to their motion during the
SAR integration time. The radial velocity dislocates the target position in azimuth. The
along-track velocity causes azimuth blur [5,6]. Furthermore, imaging multiple moving
targets becomes challenging, especially when the targets are located in close proximity,
causing defocused and overlapping images [7].

In recent years, an increasing number of innovative HRWS SAR systems have been
proposed, primarily focused on stationary scenes [8–10]. The imaging capability for moving
targets remains constrained. A system with the capabilities of ground moving target
indication (GMTI) and HRWS imaging uses multiple receive RX channels arranged along
the azimuth [11,12]. The multiple channels resolve the inherent trade-off between the low
pulse repetition frequency (PRF) and high resolution in HRWS SAR systems. The multiple
channels in azimuth increase the spatial degree of freedom, allowing for moving target
imaging. However, despite the apparent similarity of multiple channels in HRWS SAR
and GMTI systems from a system perspective, they typically need to operate with distinct
pulse repetition frequencies (PRFs) to meet their respective performance requirements. As
the analysis conducted by [13] shows, the HRWS SAR system operates with PRFHRWS,
while for the multichannel GMTI system, the PRF should be PRFHRWS multiplied by the
channel number. Thus, scholars tend to choose a low PRF to guarantee a wide swath and
subsequently reconstruct the moving target signals using the low PRFHRWS. However, this
approach comes with the drawbacks of exaggerating the azimuth ambiguities, along with
a long antenna and the expense of high system complexity.

Without the necessity to extend the antenna length, an interesting alternative to
multiple azimuth channel HRWS SAR is staggered SAR. It was initially introduced in [14],
and subsequent research in [15] further established its principles, attracting widespread
attention. It has become the fundamental acquisition mode for satellite systems such as
Tandem-L [16,17] and NISAR [18], allowing for seamless ultrawide swath coverage. Since
the radar is unable to receive signals during its transmission, there are constant blind ranges
across the swath in conventional multiple elevation beam (MEB) HRWS SAR systems [19].
Operated with a variable pulse repetition interval (PRI), staggered SAR shifts these constant
blind ranges and redistributes them over the entire swath. Simultaneously, a variable PRI
sequence causes the raw data to be sampled non-uniformly with intermittent gaps [20].

Therefore, various reconstruction methods have been proposed to recover the lost data
and resample the non-uniform sampling onto a uniformly spaced grid. The simplest way
is two-point linear interpolation [21] with a small computational cost. The multichannel
reconstruction (MCR) method [22] considers the variable PRIs as multiple apertures and
obtains the equivalent uniformly sampled signal using post filters. The authors of [23]
modify the MCR method to improve the azimuth ambiguity-to-signal ratio (AASR). The
main limitation is that the reconstruction becomes unfeasible when the number of variable
PRIs is large. The best linear unbiased interpolation [22] employs the power spectral
density (PSD), which can be completed before range compression. The advantage is that
the lost data width is only half that of the transmitted pulse duration. These methods are
suitable under high oversampling factors. However, the high PRF will deteriorate the range
ambiguity-to-signal ratio (RASR) and increase the burden on data volume. To address this
issue, an increasing number of techniques have been proposed to reconstruct the images
with high precision under medium and low oversampling factors, which includes the
iterative adaptive approach (MIAA) [24], nonuniform fast Fourier transform (NUFFT) [25],
compressed sensing based on Sparsity Bayesian [26], linear Bayesian prediction (LBP) [27],
and so on.

These existing algorithms can precisely reconstruct the images of stationary scenes.
However, their performance for moving targets is limited. The BLU reconstruction method
uses the power spectrum density (PSD) in the case of a stationary scene. The MCR method
is achieved by splicing the Doppler frequency. Since the non-cooperative moving target
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shifts and extends the Doppler frequency, the reconstruction performance is degraded
significantly. Overall, there are two main challenges for imaging moving targets in stag-
gered mode. One is that the non-uniform sampling coupled with the target motion causes
reconstruction errors and degrades the reconstruction performance. Specifically, the radial
velocity of the target shifts the Doppler center, aggravating the spectrum aliasing induced
by non-uniform sampling. The along-track velocity and radial acceleration determine the
Doppler chirp rate, which cannot be estimated accurately because of the reconstruction
error. These issues increase the azimuth ambiguities, which manifest as artifacts and high
sidelobes in azimuth. As a result, these artifacts degrade the imaging performance signifi-
cantly and potentially lead to misleading interpretations of SAR images since the targets are
copied at false positions and obscure the underlying stationary scene. The other challenge is
that when dealing with multiple moving targets in the same azimuth, the distinct motion of
each target contributes to individualized reconstruction errors. These errors cumulatively
aggregate, exacerbating the degradation in imaging performance. As the moving targets are
often non-cooperative, it is difficult to obtain the motion parameters as prior information,
which is the main obstacle for moving target reconstruction in staggered SAR.

In addition, apart from the reconstruction algorithm for moving targets in staggered
SAR, multiple moving target separation is another key issue. The ultra-wide swath offered
by staggered SAR usually contains multiple moving targets in azimuth, especially in
maritime applications [28]. The simultaneous imaging of multiple moving targets with
distinct motion parameters presents a formidable challenge. Particularly when these targets
move with similar velocities and are in close proximity, it tends to cause defocused and
overlapping images. The multiple moving target imaging methods in the traditional SAR
system can be classified into two types: the approach based on the image domain [29,30]
and the approach based on the echo data domain [31,32]. The typical methods based on the
image domain are hybrid SAR/ISAR [33–35] and deep learning techniques [36–38]. Both of
them compensate for the satellite movement using SAR processing and obtain blurred SAR
images. Hybrid SAR/ISAR converts these SAR images into the echo domain and applies
ISAR processing to refocus the multiple moving targets, respectively. Deep learning based
on a convolutional neural network inputs blurred images and outputs refocused images.
These existing algorithms fall short in addressing the challenges associated with moving
targets in staggered SAR imaging. This is because these methods only extract the defocused
targets’ image (sub-image). However, in staggered mode, the artifacts and ambiguities
caused by reconstruction errors tend to spread along the entire azimuth. Extracting the sub-
image around the moving target cannot eliminate all the artifacts in the azimuth, degrading
the imaging performance more distant from the target. For the approach based on the echo
data domain, chirplet transform is used to separate the mixed signal into the signals of each
moving target [39]. However, it treats the target as scatterer points and then estimates their
motion parameters. The accuracy would be limited in the case of targets with complex
structures. Additionally, chirplet transform does not support non-uniform sampling in
azimuth, which would not be quite suitable for the staggered mode. So far, little literature
can be found in the field of moving target imaging in staggered SAR systems, especially on
the reconstruction and the separation of multiple moving targets.

In order to address these challenges, we propose a Transformer-based method to
reconstruct and separate the multiple moving targets simultaneously. The task of re-
construction and separation of multiple moving targets in staggered SAR is established.
Then, the MosReFormer network architecture is built on the time-domain masking net
with an encoder–decoder structure. A gated single-head Transformer architecture with
convolutional-augmented joint self-attentions is designed, providing great potential to mit-
igate the reconstruction error. The loss function of the scale-invariant signal-to-distortion
ratio (SI-SDR) is adopted to obtain superior performance. It can improve the imaging
performance of multiple moving targets significantly, and the reconstructed and separated
results are close to the ideal imaging results, which are sampled uniformly in azimuth with
constant PRIs.
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Overall, motivated by deep learning techniques, the main contributions of this article
are summarized as follows.

1. The impact of staggered SAR imaging on moving targets is accessed through temporal
and spectral analyses. It becomes evident that the coupling of non-uniform sampling
and the target motion result in reconstruction errors and spectrum aliasing, degrading
the image quality. These issues need to be addressed effectively.

2. We propose a Transformer-based method to image the multiple moving targets in the
staggered SAR system. The reconstruction and the separation of the multiple moving
targets are solved with a dual-path Transformer. To the best of our knowledge, this is
the first article investigating deep learning methods in staggered SAR imaging, and
also the first article employing deep learning to address the separation of multiple
moving targets within an SAR system.

3. The proposed MosReFormer network is designed by adopting a gated single-head
Transformer architecture using convolution-augmented joint self-attentions, which
can mitigate the reconstruction errors and separate the multiple moving targets
simultaneously. The convolutional module provides great potential to mitigate the
reconstruction error. The joint local and global self-attention is effective for dealing
with the elemental interactions of long-azimuth samplings.

One limitation of our work is the relatively high sensitivity to system parameters.
Typically, the PRI sequence is not constant. The system usually presets several sets of
PRI sequences for different mission modes on the satellite. In the experiment, we found
that the method is sensitive to the PRI values. This also means that the reconstruction
and separation performance would be degraded if the test set included parameters of PRI
sequences that were not trained. An effective solution is to fully train the several preset
sets of PRI sequences, so as to support different PRI sequences. Another limitation is the
number of targets. The performance might be compromised when the target number along
the azimuth in the scene is large. One potential solution is that combined with sub-aperture
technology, multiple targets are divided into blocks and processed separately.

The remainder of this paper is organized as follows. The staggered SAR signal model
of moving targets is first described in Section 2. Section 3 analyzes the influence of non-
uniform sampling on moving target imaging in the staggered SAR system, illustrating
that the coupling of non-uniform sampling and the target motion results in reconstruction
errors and spectrum aliasing.

To address this problem, a MosReFormer-based method for staggered SAR moving
target imaging is proposed in Section 4, including the task description, preprocessing, the
network architecture, and the loss function of the MosReFormer network. In Section 5,
simulated data and equivalent raw data have been utilized to verify the feasibility and
effectiveness of the proposed method. Section 6 gives a brief conclusion.

2. The Signal Model of Moving Targets in Staggered SAR system

With the technology of multiple elevation beams (MEBs), an HRWS SAR system
generates multiple beams directed towards distinct orientations. During transmission,
the system illuminates an ultrawide swath as indicated by the broad red beam. On the
receiving, digital Beamforming (DBF) is employed to sweep sub-swaths based on the angles
of echo arrival. It is also denoted as scan-on-receive (SCORE), as illustrated by the colored
regions in Figure 1a. However, since the radar is unable to receive echoes while transmitting,
the constant PRI causes constant blind ranges (gaps) in the sub-swaths. Operated with
variable PRIs, staggered SAR can address this problem, as shown in Figure 1b. The variable
PRIs change the time delays of the echoes and further shift the position of the blind ranges
along the azimuth. Consequently, the constant blind areas disappear and instead become
distributed across the entire swath, allowing for gapless images.
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Figure 1. (a) HRWS SAR operation mode with multiple elevation beams using constant PRI.
(b) Staggered SAR operation mode with multiple elevation beams using variable PRIs.

Staggered SAR employs linear frequency modulation pulses characterized by variable
PRIs, denoted as PRIm, m = 0, 1, . . ., and M− 1. PRImax and PRImin represent the maxi-
mum and minimum, respectively. The M pulses repeat periodically. The total number of
transmitted pulses in slow time is Mall , signifying the sampling number in azimuth. The
sth pulse is transmitted at the slow time ts as

ts =
⌊ s

M

⌋
Tsw +

s−bkbMc·M−1

∑
p=0

PRIp (1)

where b·c is the floor operation. The sequence period of the PRI is Tsw = ∑M−1
p=0 PRIp.

In the staggered SAR geometry for moving targets, the satellite operates at the height
H with the speed v along the x-axis. At the initial time, the ith moving target is located
at (xi0, yi0, 0). In the slant range plane, the radial velocity perpendicular to the track is vir
and the velocity along the track is via. The radial velocity of the ith target on the ground
is viy = vir/sin(φ), where φ is the look angle of the radar assuming that v, via and vir are
constant during the whole aperture time.

Ri0 =
√
(yi0 − virtac)2 + H2 represents the slant range between the ith moving target and

the platform at ts = ti0 moment. The beam center time is represented as tac = xi0/(v− via),
which corresponds to the moment when the antenna beam reaches the minimum slant
range. ϑi = [via, vir, tac, Ri0, σi]

T denotes the motion vectors of the ith target, where σi is the
scattering coefficient, and (·) denotes transpose operation.

The instantaneous slant range Ri(ts, ϑi) between the ith target and the radar is ex-
pressed by

Ri(ts, ϑi) =
√
[xi0 + viats − vts]

2 +
(
yi0 − viyts

)2
+ H2 (2)

The echo pulses are partially or totally lost because the radar cannot receive the signal
when it is transmitting. The constant PRI results in constant blind ranges across the whole
swath. Operated with the variable PRIs, staggered SAR changes the time delays for the echo
pulses. The different transmitted pulses with different PRIs generate different positions of
blind ranges, so as to eliminate the constant blind ranges. The blind ranges vary with the
slow time, which is represented by the blind range matrix B(t f , ts). If the sth echo pulse is
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lost, the value of the blind matrix equals 0, B(t f , ts) = 0. Otherwise, B(t f , ts) = 0. Thus,
the echo signal after demodulation can be given as

Sr

(
t f , ts

)
= ∑

i
B
(

t f , ts

)
σiwr

( t f − 2Ri(ts, ϑi)/c
Tp

)
wa(ts)

× exp

[
j

(
−4π

λ
Ri(ts, ϑi) + πγ

(
t f −

2Ri(ts, ϑi)

c

)2
)] (3)

where t f represents the fast time, wr(·) is the antenna pattern weights, and wa(·) denotes
the azimuth envelope. λ and Tp, γ denote the wavelength, the pulse duration, and the
chirp rate, respectively.

3. The Impact of Staggered SAR Imaging on Moving Targets

In this section, temporal and spectrum analyses are provided to illustrate that the
coupling of non-uniform sampling and the target motion results in reconstruction errors
and spectrum aliasing. This inevitably deteriorates the imaging performance of multiple
moving targets in staggered mode, which can be addressed with the proposed method
in Section 4.

3.1. Temporal Analysis

The variable PRIs in staggered SAR cause the pulse losses and the non-uniform
sampling in azimuth. Echo pulses that are not lost can be compressed normally in the slant
range domain. Thus, we mainly concentrate on analyzing the influence of moving target
imaging in azimuth. According to (3), the signal of the ith moving target in azimuth is
simplified as

Sra(ts) = B(ts) exp
[
−j

4π

λ
Ri(ts, ϑi)

]
(4)

Equation (2) is approximated using a second-order Taylor series expansion, which can
be rewitten as

Ri(ts, ϑi) ≈ Ri0 − viy sin φ(ts − tac) +
v2

iy(ts − tac)
2 + [(via − v)(ts − tac)]

2

2Ri0
(5)

Since we have viy = vir/sin(φ) and v2
iy � (v− via)

2, the slant range (5) can be further
expressed as

Ri(ts, ϑi) ≈ Ri0 − vir(ts − tac) +
[(via − v)(ts − tac)]

2

2Ri0
(6)

Substituting (3) into (4), the signal sampled non-uniformly in azimuth is given as

Sra(ts) = B(ts) exp
(
−j

4π

λ
Ri0

)
exp

[
j2π

2vir
λ

(ts − tac) + jπ

(
−2(v− via)

2

λRi0

)
(ts − tac)

2

]
= B(ts) exp

[
j2π fdc(ϑi)(ts − tac) + jπγ(ϑi)(ts − tac)

2
] (7)

where fdc(ϑi) = 2vir/λ denotes the Doppler center. γ(ϑi) = −2(v − via)
2/λRi0 is the

Doppler chirp rate.
The non-uniform sampling can be considered as the sum of a uniform sampling and

an offset ∆T, as
ts = nTmean + ∆T (8)

where Tmean is equal to PRImean =
√

PRImax · PRImin. tn = nTmean = ts−∆T is the uniform
sampling of an ideal reference signal. Based on (7), the ideal reference signal sampled
uniformly is expressed as
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Srare f (ts) = B(tn) exp
[

j2π fdc(ϑi)(tn − tac) + jπγ(ϑi)(tn − tac)
2
]

= B(tn) exp
[

j2π fdc(ϑi)(ts − ∆T − tac) + jπγ(ϑi)(ts − ∆T − tac)
2
] (9)

Therefore, we further explore the relationship between Sra(ts) and Srare f (ts) as follows(
Re(Sra(ts))
Im(Sra(ts))

)
=

(
cos θ sin θ
− sin θ cos θ

)(
cos α sin α
− sin α cos α

) Re
(

Srare f (ts)
)

Im
(

Srare f (ts)
) 

= < ·Ω

 Re
(

Srare f (ts)
)

Im
(

Srare f (ts)
) 

= <re f<mov ·Ωre f Ωmov

 Re
(

Srare f (ts)
)

Im
(

Srare f (ts)
) 

(10)

The rotation matrixes < =

(
cos θ sin θ
− sin θ cos θ

)
and Ω =

(
cos α sin α
− sin α cos α

)
. The rotation

angle θ = ( fdc(ϑi)− γ(ϑi)∆T)tac is related to the initial position of the target described by
tac, and α = ( fdc(ϑi) + γ(ϑi)ts)∆T− γ(ϑi)∆T2/2 is related to the offset ∆T. It indicates that
the real and imaginary azimuth signal in staggered SAR can be regarded as the reference
signal rotated by θ and α in the Re-Im coordinate.

Furthermore, the rotation matrixes < and Ω can be decomposed into two components.
One is the terms <re f and Ωre f , generated by a static target, and the other is the terms <mov
and Ωmov generated by a moving target. It also has θ = θre f + θmov, α = αre f + αmov. For the
static target, fdc(ϑi) = 0, γ(ϑi) = −2v2/λRi0. In this case, the rotation angles are expressed
as θre f = − 2v2

λRi0
∆Ttac and αre f = − 2v2

λRi0
ts∆T + v2

λRi0
∆T2. Thus, the rotation angles caused

by moving target are calculated as

θmov =

(
2vir

λ
− 2(va − 2v)va

λRi0
∆T
)

tac (11)

αmov =

(
2vir

λ
+

2(va − 2v)va

λRi0
ts

)
∆T − (va − 2v)va

λRi0
∆T2 (12)

It should be noted that the reconstruction algorithms designed for stationary scenes
could compensate the terms of <re f and Ωre f . However, when dealing with moving targets,
the non-uniform sampling couples with the target motion will result in reconstruction errors,
as shown in θmov and αmov. In particular, for multiple moving targets, the distinct motion
of each target contributes to individualized reconstruction errors. These errors degrade
the reconstruction performance and increase the azimuth ambiguities, which manifest as
artifacts and high sidelobes in azimuth for moving target imaging in staggered SAR.

Spectral Analysis

In order to analyze the spectrum in staggered SAR, the non-uniformly sampled signal
is considered as the composite of the M-channel uniform sampled signal. Due to the PRI
variation, the completely received M samples within one period can be considered as
M channels. Provided that the signal of the reference channel is sampled uniformly by
PRFmean = 1/PRImean, the signal of the mth channel is given as

Sm
ra(ts) =

+∞

∑
k=−∞

Srare f (ts − ∆tm)δ(ts − kTsw) + nm(ts) (13)

In relation to the reference channel, ∆tm is the time delay of the mth channel. nm(ts) denotes
the noise. Thus, the received sampled signal in staggered mode is represented by
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Sra(ts) =
+∞

∑
k=−∞

δ(ts − kTsw)
[
Sare f (ts) + Sare f (ts − ∆t1) + · · ·+ Sare f (ts − ∆tM−1)

]
+ nm(ts)

=
M−1

∑
m=0

+∞

∑
k=−∞

Sare f (ts − ∆tm)δ(ts − kTsw) + nm(ts)

(14)

Equation (14) can be written in the discrete time domain as

Sra(k) = Srare f (ts)
∣∣∣
ts=kTsw

+ Srare f (ts)
∣∣∣
ts=kTsw−∆t1

+ · · ·+ Srare f (ts)
∣∣∣
ts=kTsw−∆tM−1

=
M−1

∑
m=0

Srare f (ts)
∣∣∣
ts=kTsw−∆tm

(15)

Equation (15) is non-uniform sampling of a continuous time signal, and can be written as

Sra(k) =
M−1

∑
m=0

srare f (t)
∣∣∣
ts=kTsw−∆tm

=
M−1

∑
m=0

1
2π

∫ +∞

−∞
Srare f (jΩ) exp(jΩ(kTsw − ∆tm))dΩ

=
M−1

∑
m=0

1
2π

+∞

∑
r=−∞

∫ 2π
Tsw r+ π

Tsw

2π
Tsw r− π

Tsw

Srare f (jΩ) exp[jΩ(kTsw − ∆tm)]dΩ

(16)

Assuming that Ω′ = Ω− 2π
Tsw

r, Sra(k) can be rewritten as

Sra(k) =
M−1

∑
m=0

1
2π

+∞

∑
r=−∞

∫ π
Tsw

− π
Tsw

Srare f

(
jΩ′ + j

2π

Tsw
r
)

exp
(

jΩ′kTsw
)

exp
[
−j(Ω′ +

2π

Tsw
r)∆tm

]
dΩ′

M−1

∑
m=0

1
2πTsw

+∞

∑
r=−∞

∫ π

−π
Srare f

(
j

w
Tsw

+ j
2π

Tsw
r
)

exp(jkw) exp
[
−j
(

w
Tsw

+
2π

Tsw
r
)

∆tm

]
dw

(17)

where Ω′Tsw = w. Owning to the discrete time Fourier transform (DTFT), Sra(k) can also
be provided by

Sra(k) =
1

2π

∫ π

−π
Sra(jw) exp(jwk)dw (18)

Compared (17) with (18), we have

Sra(jw) =
1

Tsw

M−1

∑
m=0

∞

∑
r=−∞

Srare f

(
j

w
Tsw

+ j
2π

Tsw
r
)

exp
[
−j
(

w
Tsw

+
2π

Tsw
r
)

∆tm

]
(19)

Therefore, the spectrum of the nonuniformly sampled signal is written as

Sra( fa) =
∞

∑
r=−∞

Srare f ( fa + r · Fsw)

[
M−1

∑
m=0

exp(−j2π( fa + r · Fsw)∆tm)

]
+ N( f )

=
∞

∑
r=−∞

Srare f ( fa + r · Fsw)[H0( fa + r · Fsw) + · · ·+ HM−1( fa + r · Fsw)] + N( fa)

=
∞

∑
r=−∞

Srare f ( fa + r · Fsw) +

[
Srare f ( fa + r · Fsw)

M−1

∑
m=1

Hm( fa + r · Fsw)

]
+ N( fa)

=
∞

∑
r=−∞

Srare f ( fa + r · Fsw) + Samb
rare f ( fa + r · Fsw) + N( f )

(20)

where Fsw = 1/Tsw, ∆t0 = 0, and H0( fa) = 1. The phase term Hm( f ) = exp(−j2π f ∆tm)
accomplishes time-shifting in the frequency domain. N f denotes the noise.

Equation (20) illustrates that the spectrum of the nonuniformly sampled signal is
the sum of Srare f ( fa) and Samb

rare f ( fa). Srare f ( fa) denotes the spectrums of the uniformly

sampled reference signal. Samb
rare f ( fa) represents the spectrum aliasing due to the non-

uniform sampling. The spectrum aliasing aggravates the ambiguities in azimuth.
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Figure 2 shows the schematic diagram of the azimuth spectrum in staggered SAR
mode. The left sub-figure shows the spectrum for the static target Sstatic( fa). The yellow
lines denote Srare f ( fa + rFsw). As apparent from Figure 2, the spectrum aliasing mainly
arises from two aspects. One is aliasing from the multiple pairs of uniformly distributed
weak Samb

rare f ( fa + rFsw) caused by non-uniform sampling, as denoted by the blue dotted
lines. The other is the spectrum aliasing caused by a non-ideal antenna pattern (sinc-like
pattern), as shown with the green dashed line. The shade of gray indicates spectrum
aliasing resulting from non-uniform sampling for static targets. When dealing with moving
targets, the Doppler center is shifted to fdc. The target motion and the non-uniform
sampling are coupled. Consequently, within [−PRFmean/2, PRFmean/2], the spectrum
aliasing Samb

rare f ( fa + rFsw) caused by the non-uniform sampling is aggravated. Additionally,
the spectrum aliasing caused by the non-ideal antenna pattern is also aggravated, as shown
in the left of Figure 2. In general, the non-uniform sampling causes spectrum aliasing
in azimuth. The non-uniform sampling coupled with the target motion aggravates the
spectrum aliasing. This will cause inevitable ambiguities in azimuth.

 

meanPRF

0

1,2, 1m M 

meanPRF

0
af

1,2, 1m M 

1

swT
afmeanPRF meanPRF

Ambiguities caused by the non-uniform sampling for sta tic target

Ambiguities caused by the couple of  non-uniform sampling and ta rget motion
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dcf
1

dc
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f
T



( )raref aS f ( )amb
raref aS f ( )amb

pattern aS f

Figure 2. A schematic diagram of the azimuth spectrum in staggered SAR mode for static target
Sstatic( fa) and moving target Smov( fa).

4. The Staggered SAR Imaging of Multiple Moving Targets Based on the Proposed
MosReFormer Network

In this section, the task of the reconstruction and separation of multiple moving targets
in staggered SAR is established in Section 4.1. Sections 4.2–4.4 present the preprocessing,
the MosReFormer network architecture, and the loss function of the scale-invariant signal-
to-distortion ratio (SI-SDR), respectively.

4.1. Task Description

The task of the proposed MosReFormer network is described and analyzed. The
procedure of staggered SAR imaging of multiple moving targets based on the MosReFormer
network is provided.

The echo signal of moving targets in staggered SAR was given in (3). After range
compression, the signal sampled non-uniformly in azimuth can be expressed as

Sr

(
t f , ts

)
= ∑

i
B
(

t f , ts

)
σiwa(ts)sinc

[
∆ fr

(
t f −

2Ri0
c

)]

× exp

[
j2π

2vir
λ

(ts − tac) + jπ

(
−2(v− via)

2

λRi0

)
(ts − tac)

2

] (21)

In order to reconstruct and separate the multiple targets in azimuth, we focus on dealing
with the azimuth signal (the azimuth line)Thus, assuming that the number of multiple
targets is P, the azimuth signal for each range cell after the range migration correction in
staggered mode is written by
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Sra(ts) =
P

∑
n=1

Nn

∑
i=1

B(ts) exp
[

j2π fdc(ϑi)(ts − tac) + jπγ(ϑi)(ts − tac)
2
]

=
P

∑
n=1

Nn

∑
i=1

AiB(ts) exp
(
−j

4π

λ
Ri0

)
exp

[
j2π

2vir
λ

(ts − tac) + jπ

(
−2(v− via)

2

λRi0

)
(ts − tac)

2

] (22)

where Ai is the amplitude. The nth target has Nn scatterers. B(ts) is the blind range matrix
that describes the data loss for each range cell.

The ideal reference signal of multiple moving targets in azimuth which is sampled
uniformly without gaps can be expressed as

Srare f (tm) =
P
∑

n=1
gn

re f (tm)

gn
re f (tm) =

Nn
∑

i=1
an exp

[
j2π 2vir

λ (tm − tac) + jπ
(
− 2(v−via)

2

λRi0

)
(tm − tac)

2 − j 4π
λ Ri0

] (23)

where an denotes the amplitude. The slow time sampled uniformly tm = m · PRImean.
PRImean =

√
PRIminPRImax.

Our task focuses on two key issues: (i) Reconstructing the non-uniformly sampled
signal Sra(ts) into the ideal reference signal Srare f (tm). (ii) Separating the echoes of multiple
moving targets in azimuth, which can be modeled as[

g1
re f (tm), g2

re f (tm), · · · , gP
re f (tm)

]
= F(Sra(ts)) (24)

where F(·) denotes the operation of reconstruction and separation.
For the reconstruction, we aim to obtain Srare f (tm) = F(Sra(ts)). However, we have

found that it is difficult for the Transformer-based network to learn the mapping from
Sra(ts) to Srare f (tm), and the network generalization ability is greatly reduced. One potential
explanation is that the difference between the non-uniform sampling time ts and the
uniform sampling time tm is too small to the order of microseconds. Consequently, the
network’s sensitivity to the reconstruction of non-uniform sampling remains limited.

To solve this problem, we opt to employ a simple interpolation method to roughly recon-
struct the uniform samplings as Xra(tm) = Ψ(Sra(ts)), where Ψ denotes the spline interpola-
tion operation. Thus, the task in (24) can be rewritten as

[
g1

re f (tm), g2
re f (tm), · · · , gP

re f (tm)
]
=

F(Xra(tm)). The input of the network is Xra(tm), and the outputs are the reconstructed and
separated results

[
g1

re f (tm), g2
re f (tm), · · · , gP

re f (tm)
]
. The reconstruction error in Xra(tm) will

be introduced by the coupling of non-uniform sampling and the target motion, as discussed
in Section 3.1. Mitigating these errors can be considered a denoising process. Owning to its
proficiency in learning feature patterns, the convolutional module is adopted in the proposed
MosReFormer network to mitigate these errors.

The flowchart of the proposed Transformer-based algorithm for multiple moving
targets in staggered SAR imaging is provided in Figure 3. The first task is to preprocess the
echo signal of multiple moving targets and generate the azimuth lines as the network input.
Using the given ideal reference signal, the MosReFormer architecture learns a mapping
from the mixture azimuth signal to the separated azimuth signal. The optimal parameters of
the MosReFormer network are optimized by minimizing the defined SI-SDR loss function.
Subsequently, the trained MosReFormer network is employed to reconstruct and separate
the azimuth signal containing multiple moving targets, so as to achieve superior imaging
performance in staggered SAR. After estimating the Doppler parameters, each target is
refocused via azimuth compression, and the final images are obtained.
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Figure 3. Flowchart of staggered SAR imaging of multiple moving targets based on
MosReFormer network.

4.2. Preprocessing

Preprocessing is utilized to generate a normalized azimuth signal in staggered mode
as the network input. The network deals with the azimuth signal for each range cell.

The model of staggered SAR echoes is established with the sequences of variable
PRIs. After range compression, the spline interpolation is applied to roughly resample the
non-uniform signal onto uniform grids. Note that the effectiveness of the interpolation
is limited since there appears to be reconstruction errors caused by the coupling of the
non-uniform sampling and the target motion. The error can be mitigated with the proposed
reconstruction method based on the MosReFormer network. After that, the azimuth
compression is performed as a stationary scene. The initial imaging results can be obtained
roughly to realize target detection. After target detection, the azimuth lines containing
moving targets are found, and the azimuth signal in the time domain before azimuth
compression is extracted for each range cell, as shown in the yellow box of Figure 3.

It should be noted that the amplitude range of Xra(tm) would be quite extensive,
and the value scale changes across different azimuth lines. The unnormalized input
signal easily causes weird behavior of loss function topology and excessively accentuates
specific parameter gradients, resulting in inadequate training of the network. Therefore,
the magnitudes of the azimuth signal are normalized within the interval [0, 1] via the
min–max normalization strategy. Meanwhile, different from monaural speech separation,
the separation of the multiple moving targets deals with the complex-valued data. In the
reconstruction and separation, preserving phase properties is crucial for subsequent signal
processing. Thus, the network input Xra(tm) is extended into two dimensions, including
the real and the imaginary parts as X.
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4.3. Architecture of MosReFormer Network

Two main issues should be considered in the establishment of the architecture. One
issue is the large number of azimuth samplings. This is because a large Doppler bandwidth
is usually used to obtain a high resolution. Long samplings in azimuth (long input sequence)
prevent the efficiency of elemental interactions, degrading the model performance. The
other is the mitigation of the reconstruction error caused by the coupling of non-uniform
sampling and the target motion.

To meet these two issues, inspired by the dual-path Transformer models [40], the
MosReFormer model is built on the time-domain masking net, which consists of an
encoder–decoder structure and a masking net. In the masking net, a gated single-head
Transformer architecture with convolutional-augmented joint self-attentions is designed.
The joint local and global self-attention is feasible for dealing with the elemental interactions
of long-azimuth samplings. The convolutional module provides great potential to mitigate
the reconstruction error.

The encoder; the masking net, i.e., the reconstruction and separation net; and the
decoder module are detailed in the following.

4.3.1. Encoder

The encoder module transforms the mixture echoes of multiple moving targets into
the respective representations within an intermediate feature space. It is responsible
for extracting features and comprises a one-dimensional convolutional layer (Conv1D)
followed by an optimal nonlinear functionH(·). The input azimuth signal X is encoded as

X′ = H(Conv1D(X)) (25)

where the output is denoted as X
′
. X ∈ RNB×Na×2, X′ ∈ RNB×T×Q. The input X includes

the real part and the imaginary part of Xra(tm). Q is the number of filters. We choose
the rectified linear unit (ReLU) as H(·) to guarantee non-negative representations. K1
denotes the kernel size and the stride is set to half of the kernel size. Thus, we can obtain
T = 2(Na − K1)/K1 + 1.

4.3.2. Estimating the Reconstruction and Separation Masks

The masking net realizes the separation by element-wisely multiplying the input X′0
with each target’s masks, as

Zi = X′0 ⊗ di (26)

where the P vectors (masks) di ∈ RT×Q, i = 1, . . . , P, and P represents the number of
moving targets in azimuth. ⊗ is the Hadamard product.

To accomplish (26), the output of encoder module X
′

is operated via layer normal-
ization, which is suitable for long sequences. Then, positional encoding is carried out
to describe the location of each element in the sequence, ensuring that each position is
assigned a unique representation. Subsequently, a pointwise convolution is applied, ef-
fectively reducing the computational burden. After reshaping, the sequence is directed to
multiple MosReFormer blocks for sequential processing. The details of the MosReformer
block are introduced at the end of this subsection for the sake of consistency.

The output of MosReformer X1
′ ∈ RB×Q×T . After the operations of reshaping and

ReLU, the sequence X2
′ ∈ RNB×T×Q. A pointwise convolution is employed, wherein the

filter number is (P×Q), to expand the sequence’s dimension to (P×Q). The reshaping
transforms the sequence from X3

′ ∈ RNB×T×(Q×P) to X4
′ ∈ R(NB×P)×T×Q. X5

′
and X6

′

are generated by dual pointwise convolutions. The gated linear unit (GLU) [41] is used
as follows:

X7
′
= GLU(X5

′
, X6

′
, W, V, b, c) = σ(X5

′
W + b)⊗ (X6

′
V + c) (27)

where σ denotes the sigmoid function. The GLU output X7
′

is fed into another pointwise
convolution, and, subsequently, it undergoes an ReLU activation function. After that, the
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output of the masking net Zn ∈ RNB×T×Q, n = 1, . . . , P is obtained. The representation of
the echo signal of each moving target is separated.

4.3.3. Decoder

The decoder module reconstructs the signal from the representation of masking as

ĝn
re f (tm) = Transposed_Conv1D(Zn(tm)) (28)

where Transposed_Conv1D(·) denotes a 1D transposed convolutional layer.
ĝn

re f (tm) ∈ RB×Na×2 represents the reconstruction and the separation of the multiple mov-
ing targets’ echoes.

4.3.4. MosReformer Operation

The MosReformer block comprises the convolution modules, a Rotary Position Em-
bedding (RoPE) module, a joint local and global single-head self-attention, and gated units,
as shown in Figure 4. The MosReformer block is established based on a gated attention
unit (GAU), which combines attention and GLU. The GAU-based module presents advan-
tages in handling long sequences. It uses a simpler single-head attention mechanism with
minimal degradation in quality. The convolution module is applied to learn local feature
patterns, so as to further mitigate the reconstruction error. The RoPE module encodes
the relative position of sequences to obtain the queries, the keys for attention. The joint
local and global single-head self-attention allows the model to directly capture elemental
interactions across the entire sequence, thus augmenting the model’s capability. A detailed
description of these modules is provided as follows.

Within the convolution module, the sequence is initially normalized and processed
through a linear layer. This is followed by a Sigmoid-weighted Linear Unit (SiLU) activation
function. Subsequently, it undergoes a 1D depthwise convolution, where each input channel
is convolved with a different kernel. Shortcut connections are employed to connect the
output and the input of the depthwise convolution layer, allowing for feature reuse and
mitigating vanishing gradients. After shaping, the dropout is performed to improve the
generation and reduce overfitting. The operation of the convolution module is denoted
as v(·).

The RoPE module is combined with per-dim scalars and offsets. We assumed that the
output of the convolution module is Y = v(X

′
).

Applying per-dim scalars and offsets to Y, it can be obtained that Q = WY + B. Using
RoPE technology [42], the relative position information can be added to Q and K as follows:

q̂m = f (q, m) =



q0
q1
q2
q3
...

qd−2
qd−1


⊗



cos mθ0
cos mθ0
cos mθ1
cos mθ1

...
cos mθd/2−1
cos mθd/2−1


+



−q1
q0
−q3
q2
...

−qd−1
qd−2


⊗



sin mθ0
sin mθ0
sin mθ1
sin mθ1

...
sin mθd/2−1
sin mθd/2−1


(29)

where θa = 10,000−2(a−1)/d and a ∈ [1, 2, . . . , d/2] are the parameters related to the rotary
matrix. Using (29), we can obtain the keys K, K

′ ∈ RT×d and d� Q and the queries Q and
Q
′ ∈ RT×d. It also provides a method to reduce the size of the attention matrix.
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Figure 4. The architecture of MosReFormer network. It consists of a convolutional encoder-decoder
structure and a masking net with MosReFormer blocks and convolution modules.

The advantage of RoPE is that it encodes the absolute position with a rotation matrix
and, meanwhile, incorporates the explicit relative position dependency in self-attention
formulation. The input of the proposed MosReFormer network is the azimuth line of
each range cell. The spatial information is obtained via range compression. The position
encoding can capture the temporal information of the signal in a certain spatial dimension
(the position of the input). It can evaluate the temporal distance of signal samplings. Fur-
thermore, owing to the relative position encoding, the rotary position embedding supports
the flexibility of signal length. This feature is vital for reconstructing and separating the
moving targets in staggered SAR imaging.

The module of joint local and global single-head self-attention uses a triple-gating
process in [40,42]. The input of the attention V1, V2 ∈ NB × 2Q× T is obtained after the
convolution module as V1 = v(X

′
) and V2 = v(X

′
). Note that the feature dimensions

are expanded from Q to 2Q. For long sequences with large T, the size of the attention
matrix is T× T, and thus it will be difficult to calculate the attention matrix. The global and
local attention can effectively replace the solution of the attention matrix. Using a low-cost
linearized form, the global attention can be obtained as
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Vglobal
1 = Q′ ·

(
ηK′TV1

)
Vglobal

2 = Q′ ·
(

ηK′TV2

) (30)

where η = 1/T is the scaling factor. The local attention is obtained by

Vlocal
1,h = ReLU2

(
ξQhKT

h V1

)
Vlocal

2,h = ReLU2
(

ξQhKT
h V2

) (31)

where ξ = 1/P. The matrix V1, V2, Q and Q are divided into H chunks without over-
lapping. P is the size of each chunk. After concatenating (31), the finial local attentions
are shown as Vlocal

1 =
[
Vlocal

1,h , . . . , Vlocal
1,H

]
and Vlocal

2 =
[
Vlocal

2,h , . . . , Vlocal
2,H

]
. Thus, the joint

attentions can be given as V1 = Vlocal
1 + Vglobal

1 and V2 = Vlocal
2 + Vglobal

2 . After that, the
output sequence of MosReformer block X

′
1 can be represented by

O′ = φ(V2 �V′1)

O′′ = V′ �V1

X
′
1 = X

′
+ ω(O′ �O′′)

(32)

where φ denotes the activation function. The joint attention can directly model the interac-
tions of the long sequences. The MosReformer block repeats several times to obtain the
final X

′
1.

4.4. SI-SDR Loss Function

The network is trained by minimizing a loss function utilizing large datasets. Inspired
by the objective measure in [43], the scale-invariant signal-to-distortion ratio (SI-SDR) is
adopted. Assume that the output is the azimuth signal of the nth target, gn

re f (tm), and its esti-
mate is denoted by ĝn

re f (tm). The SI-SDR ensures that the residual eres = gn
re f (tm)− ĝn

re f (tm)

is orthogonal to gn
re f (tm), as

SI − SDR = 10log10


∣∣∣αgn

re f (tm)
∣∣∣2∣∣∣αgn

re f (tm)− ĝn
re f (tm)

∣∣∣2
 for α = arg min

α

∣∣∣αgn
re f (tm)− ĝn

re f (tm)
∣∣∣2 (33)

Rescaling gn
re f (tm) in a manner that the residual becomes orthogonal to it.It is equvalent to

identifying the orthogonal projection of ĝn
re f (tm) on the line spanned by gn

re f (tm). Thus, the

optimal scaling factor is equal to α =
[

ĝn
re f (tm)

]T
gn

re f (tm)/
∥∥∥gn

re f (tm)
∥∥∥ 2

. The scale reference
is defined as etar = αgn

re f (tm). The estimate can be decomposed as gn
re f (tm) = etar + eres,

leading to the expanded formula as

SI − SDR = 10log10

(
‖etar‖2

‖eres‖2

)

= 10log10



∥∥∥∥∥
[

ĝn
re f (tm)

]T
gn

re f (tm)∥∥∥gn
re f (tm)

∥∥∥2 gn
re f (tm)

∥∥∥∥∥
2

∥∥∥∥∥
[

ĝn
re f (tm)

]T
gn

re f (tm)∥∥∥gn
re f (tm)

∥∥∥2 gn
re f (tm)− ĝn

re f (tm)

∥∥∥∥∥
2


(34)

It should be noted that the SI-SDR has superior performance in least-squares and the

signal-to-noise ratio (SNR) [44]. SNR = 10log10

( ∥∥∥gn
re f (tm)

∥∥∥2

∥∥∥gn
re f (tm)−ĝn

re f (tm)
∥∥∥2

)
. It is because that the
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residual eres = gn
re f (tm)− ĝn

re f (tm) is not guaranteed to be orthogonal to the signal gn
re f (tm).

For instance, in the objective measure of SNR, consider the orthogonal projection of gn
re f (tm)

onto the line spanned by ĝn
re f (tm). It generates a right-angled triangle with the hypotenuse

gn
re f (tm), i.e., gn

re f (tm) > eres. This also means that the value of SNR is always positive.

5. Experimental Results and Analysis

Section 5.1 provides an overview of the dataset and experimental configuration.
In Sections 5.2–5.4, simulations and experiments on equivalent data in staggered SAR
mode are employed to validate the feasibility of the proposed algorithm.

5.1. Dataset and Experimental Configuration

The azimuth signal in staggered mode and the reference azimuth signal are generated
as data pairs for MosReFormer network training. The preprocessing is implemented to
generate the azimuth signal in the time domain for network input. The reference azimuth
signal is generated by an SAR system without blind ranges sampled uniformly. The constant
PRI is obtained as PRImean =

√
PRIminPRImax. Table 1 lists the simulated parameters of

the staggered SAR system. The illuminate duration is commonly much larger than the
synthetic aperture duration Ta to observe the azimuth ambiguity caused by the non-ideal
antenna pattern. In this paper, the illumination time is 4.5 times Ta. Therefore, the long
sampling in azimuth results in a long input sequence, increasing the complexity of the
reconstruction and separation tasks. However, this challenge can be addressed effectively
with the proposed MosReFormer network.

Table 1. Simulation parameters in staggered SAR system.

Parameter Notation Value

Carrier frequency fc 9.6 GHz
Orbit height Ht 760 km

Off-nadir angle Θs 23.3°–40.5°
Ground range coverage Wr 333-668 km

Incidence angle Λs 26.3°–46.6°
Range bandwidth Br 180 MHz

Transmitted pulse duration Tp 5 us
Processed Doppler band Ba 2010 Hz

Minimum PRF PRFmin 3300 Hz
Maximum PRF PRFmax 3860 Hz

The number of variable PRIs M 43

Even though the network input is the 1D azimuth signal, we simulate a scene block
of which the size is 22 km × 2 km (azimuth× range) to improve the generation efficiency
of the data pairs. The scene contains multiple moving targets. The number of moving
targets randomly varies between three and six within each scene block. In this paper, the
separation of moving targets is referred to as the multiple targets in azimuth. Thus, each
scene should ensure more than one moving target along the azimuth for some range cells.
The 3D ship models are established using ray tracing. To ensure diversity within the dataset,
a variety of vehicle types are simulated as moving targets in the scene, each exhibiting
different sizes and characteristics. The amplitudes of scattering coefficients obey the
uniform distribution σi ∼ U(0.5, 2). The along-track velocities via ∼ U(−20 m/s, 20 m/s),
and the radial velocities vir ∼ U(−20 m/s, 20 m/s). The MosReFormer network is trained
with 160k training lines and 1k lines are used for testing. The division of the training and
testing set ensures randomness. The data division is operated randomly to prevent bias
in the data distribution that might affect model evaluation. The test data do not contain
information from the training data. Furthermore, the data preprocessing of the training
set and the testing set ensures consistency. The input SNR obeys the uniform distribution,
SNR ∼ U(0 dB, 30 dB).
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The training process was performed on a computer equipped with Intel Xeon Silver
4210R 2.40-GHz CPU, 480-GB RAM, and double NVIDIA GeForce RTX 6000 with 48-GB
hardware capabilities. The MosReFormer network was implemented with Pytorch 2.0 and
CUDA 11.0. Optimization was achieved using the SGD optimizer. The configuration of the
training process of the MosReFormer network is given in Table 2. The batch size is set to 10,
and seven epochs have been run in the experiment. The learning rate undergoes a gradual
warming up for the initial 3k steps, followed by a linear reduction, ultimately diminishing
to 0 after 11k steps. The convergence criterion is to run the test set in every 1k training
steps and select the checkpoint with the lowest loss value as the final model. For the hyper-
parameters, the number of MoReformer blocks is 24 and the dimension of the encoder
output Q is 512. The encode kernel size K1 and stride are set to 16 and 8. The depthwise
convolution kernel size is 17. The chunk size P is 256 and the attention dimension d is set
to 128. The gating activation function is Sigmoid. The training and inference curves are
given in Figure 5. The training loss diminishes with an increase in the number of iterations.
Meanwhile, the inference loss exhibits a gradual decline, eventually converging to a low
value of −25 dB around 110k iterations. A slight discrepancy in performance between the
training and validation sets may be attributed to the characteristics of the dataset.

Table 2. Configuration of the training process of the MosReFormer network.

Setting Up Value Hyper-Parameters Value

Batch Size 10 No.MosReFormer Blocks 24
Learning Rate 0.001 Encoder Output Dimension (Q) 512

Learning Rate Schedule linear Encoder Kernel Size(K1)/Stride 16/8
Warmup 3000 Depthwise Conv Kernel Size (K2) 17

Normalization l2 Chunk Size (P) 256
Gradient Clipping 2 Attention Dimension (d) 128

Dropout 0.1 Gating Activation Function Sigmoid

10 20 30 40 50 60 70 80 90 100 110

−30

−20

−10

Iterations/K

Lo
ss

Training Inference

Figure 5. Loss curves of training and inference.

Furthermore, in the sequence of variable PRIs, the PRI strategy has a linear trend as

PRIm = PRIm−1 − ∆ = PRI0 −m∆ (35)

where ∆ denotes the difference between two adjacent pulses. We adopt the fast linear PRI
variation strategy in the experiments because two consecutive pulses will not be lost for all
slant ranges. In the fast linear PRI sequence, ∆ is obtained as

∆ ≥ ∆min =
2Tp

k∗

k∗ =

⌊
2R0 min

c + PRI0 − 2Tp

PRI0 − Tp

⌋ (36)
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where m = 0, . . . and M− 1, b·c is the floor operation. R0max and R0min denote the max-
imum and minimum slant ranges, respectively. PRI0 = PRImax. M is obtained as [45]

M ≥ Mmin =


(

PRI0 +
∆
2

)
−
√(

PRI0 +
∆
2

)2
− 2∆

(
2R0 max

c + Tp − ∆ +
(

PRI0 +
∆
2

)
k∗ − ∆

2 k∗2
)

∆

 (37)

These parameters’ values are given in Table 1. The PRI trend, the location of blind ranges,
and the percentage of lost pulses are illustrated in Figure 6. It can be observed that there
are no consecutive lost pulses for all slant ranges within the desired swath. The benefit lies
in low sidelobes in the vicinity of the main lobe in azimuth.
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Figure 6. The PRI sequence of fast linear variation strategy. (a) The PRI trend. (b) The location of
blind ranges. (c) The percentage of lost pulses.

5.2. Results and Analysis of Multiple Moving Point Targets

To verify the feasibility and effectiveness of the proposed method for multiple moving
target imaging in staggered SAR, five moving point targets are simulated. The scene
consists of one central target surrounded by four targets in the vicinity. The central target
is located at a slant range of 935 km. As the network input is a 1D azimuth signal, it is
essential to verify the potential impact of a signal originating from targets located at the
same azimuth cell but different slant ranges on the output performance. Thus, the azimuth
position and motion parameters of the three bottom targets are set to be identical.

The imaging results of the multiple moving point targets are shown in Figure 7 using
different methods, and the zoomed-in versions with a span of 2400 azimuth indexes are
provided in Figure 8. Figure 7a,b are the staggered SAR imaging results using the interpo-
lation reconstruction method. The targets in Figure 7a are displaced and defocused. This
is because the radial velocities lead to azimuth dislocation and the along-track velocities
cause azimuth smearing. After estimating the Doppler center fdc(ϑi) and the Doppler chirp
rate γ(ϑi), the moving targets are refocused, as shown in Figure 7b. For simplicity, we use
DIRIS and IRIS to represent the methods in Figure 7a,b. Even though the interpolation
can resample the non-uniform sampling into uniform grids, the coupling of non-uniform
sampling and target motion causes reconstruction errors as θmov in (11) and αmov in (12).
It results in artifacts and high sidelobes spread along all of the azimuth, aggravating the
azimuth ambiguity and degrading the imaging performance significantly. The amplitudes
are in logarithmic scale, ranging from −70 dB to 0 dB, so as to better visualize the details of
these artifacts.
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Figure 7. Imaging results of multiple point targets in staggered mode. (a) Displaced and defocused
image using interpolation reconstruction and ideal separation (DIRIS). (b) Refocused image using
interpolation reconstruction and ideal separation (IRIS). (c) Reference image with constant PRI and
ideal separation. (d) Refocused image using the proposed MosReFormer network.
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Figure 8. The zoomed-in imaging results of point moving targets in Figure 8. (a) Displaced and
defocused image using interpolation reconstruction and ideal separation (DIRIS). (b) Refocused image
using interpolation reconstruction and ideal separation (IRIS). (c) Reference image with constant PRI
and ideal separation. (d) Refocused image using the proposed MosReFormer network.

Figures 7d and 8d illustrate the imaging results of the proposed algorithm based on
the MosReFormer network. The artifacts and high sidelobes are obviously suppressed and
alleviated in azimuth, not only for the sidelobes in the vicinity of the target but also for
the more distant sidelobes. In particular, for the azimuth indexes spanning from 4000 to
10,000, Figure 7a,b have a lot of high sidelobes which are shown as blue spots, while in
Figure 7c,d, high sidelobes are primarily distributed around the range of 6500 to 7500.
Moreover, the azimuth signal of each range cell can be considered as the superposition of
multiple chirp signal components. However, the azimuth signal and the range signal are
coupled for SAR processing. The network input signal may be potentially influenced by
the range signals originating from targets located at different slant ranges. The results show
the robustness of the MosReFormer network when dealing with multiple targets located at
different slant ranges.

The reference ideal imaging results with constant PRIs are presented in Figures 7c and 8c.
Without the blind ranges and the non-uniform azimuth sampling, the reference results show
ideal imaging performance in terms of azimuth ambiguity. It should be noted that the separa-
tions we used in Figure 7a–c are also ideal in the simulation. The performance of the separation
would be further degraded due to the limited accuracy of the actual separation methods.
Simultaneously, the performance of separation achieved by the MosReFormer network closely
approaches the ideal performance, thus verifying its feasibility and effectiveness.
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To observe more details of the artifacts and sidelobes, the profiles of the azimuth
impulse response of the central moving target are provided in Figure 9. As apparent from
Figure 9a, the moving target is displaced and defocused because of the target motion. In
Figure 9b, even though the target motion is compensated, the coupling of non-uniform and
target motion leads to a lot of high sidelobes and artifacts. Typically, within the azimuth
distance of −5 km to 5 km, the sidelobes are concentrated at −60 dB to −20 dB. Within
the azimuth distance of −3 km to 3 km, the sidelobe exceeds −40 dB and the highest
sidelobe reaches approximately −20 dB. As shown in Figure 9c, these artifacts and high
sidelobes are notably suppressed using the proposed MosReFormer network. Within the
azimuth distance of −2 km to 2 km, the sidelobes are below −60 dB. In the vicinity of the
mainlobe, the sidelobes are nearly below−40 dB, which significantly improves the imaging
performance. Moreover, it should be noted that a pair of higher sidelobes appears 9.18 km
away from the mainlobe, caused by the non-ideal antenna pattern. The antenna power
pattern follows sinc-like window rather than rectangular window. In Figure 9, the blue and
yellow arrows indicate the highest sidelobes generated by the antenna power pattern and
the second-highest sidelobe in their vicinity. The yellow arrow highlights the sidelobe in
the reference result. These pairs of sidelobes in the DIRIS, the IRIRS, and the MosReFormer
appear slightly lower than those in the reference results.
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Figure 9. The profiles of the azimuth impulse response of the central moving target in Figure 7.
(a) The reference and the DIRIS. (b) The reference and the IRIS. (c) The reference and the proposed
MosReFormer. The red and blue arrows indicate the sidelobes resulting from the antenna power
pattern in the reference and other results, respectively. The yellow arrow indicates the second-highest
sidelobe nearby.

The integrated sidelobe ratio (ISLR), the entropy, and the peak sidelobe ratio (PSLR)
are provided in Table 3 to access the imaging performance quantitatively. The outcomes in
Table 3 demonstrate that the proposed algorithm outperforms its competitors in terms of
entropy, PSLR, and ISLR. The algorithm’s performance closely resembles the results of the
uniform reference, revealing that superior imaging performance is attained.

Table 3. Imaging performance of moving point targets with different methods.

Performance/Methods DIRIS IRIS Ideal Reference MosReFormer-Based Method

ISLR −13.34 −13.25 −18.45 −18.02
PSLR −23.09 −23.40 −35.38 −37.08

Entropy 5.49 4.69 4.37 4.39
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5.3. Results and Analysis of Simulated SAR Data

Simulated staggered SAR data are utilized and analyzed to further demonstrate the
feasibility and effectiveness of the proposed algorithm. In the scene of 22 km×2 km
(azimuth× range), there are five ship targets with different target motions. For simplicity,
the two distant targets on the left are denoted as Target 1 and Target 2. Target 3 is situated
in the middle, and Target 4 and Target 5 are located on the right. The scene center is located
at the slant range of 950 km. Each target is composed of multiple scattering points. The
attitudes and directions of these ships are different to evaluate the method’s robustness.

Figure 10 shows the imaging results of multiple simulated ship targets in staggered
mode, and the zoomed-in versions of the five targets are provided in Figure 11. Figure 10a,
using DIRIS, illustrates the displaced and defocused imaging results along with a lot of
artifacts and high sidelobes. The non-ideal antenna power pattern, the oversampling
rate, the non-uniform sampling, and the target motion are the issues causing the azimuth
ambiguities. The non-ideal antenna pattern results in high sidelobes at fixed positions away
from the targets, specifically at the azimuth indexes around 1500 and 12,500. Compared
with the results in staggered mode, the reference result with a constant PRI in Figure 10d
has higher sidelobes caused by the ideal antenna pattern. A high oversampling rate can
enhance the performance of azimuth ambiguity, but it comes at the expense of an increased
range ambiguity-to-signal ratio (RSAR) and the burden of data volume. The target motion
mainly leads to displaced and smearing images, increasing the sidelobes in the vicinity
of the targets. The non-uniform sampling coupled with the target motion aggravates the
artifacts and the spreading of high sidelobes along all of the azimuth. The multiple moving
targets with different target motions exacerbate the situation even further.
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Figure 10. Imaging results of multiple simulated ship targets in staggered mode. (a) Displaced and
defocused image using interpolation reconstruction and ideal separation (DIRIS). (b) Refocused
image using interpolation reconstruction and ideal separation (IRIS). (c) Refocused image using RID.
(d) Reference image with constant PRI and ideal separation. (e) Refocused image using the proposed
MosReFormer network.
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Figure 11. The zoomed-in imaging results of simulated ship moving targets in Figure 10. (a) Target 1,
(b) Target 2, (c) Target 3, (d) Target 4, (e) Target 5. Columns from left to right are the results using the
DIRIS, the IRIRS, the RID, the ideal reference, and the proposed MosReFormer network.

In Figure 10b, the Doppler parameters are estimated and compensated after inter-
polation reconstruction. There would be reconstruction error caused by the coupling of
non-uniform sampling and motion. Consequently, the targets are replaced and refocused
along with a significant number of high sidelobes, leading to azimuth ambiguity and
degrading the imaging performance. Moreover, as shown in the zoomed-in versions in the
left two columns of Figure 11, the artifacts are aliased onto another actual target, which
subsequently affects the image interpretation. Additionally, Figures 10c and 11 provide the
imaging results using the Range-Instantaneous-Doppler (RID) method for comparison. The
RID method is based on the hybrid SAR/ISAR technique [46], which is designed for refo-
cusing a moving target. SAR processing is to compensate for the movement of the satellite,
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and ISAR processing is to compensate for the movement of the moving target. Smoothed
pseudo Wigner–Ville distribution (SPWVD) is adopted in the RID method, which can deal
with the complex motion of targets. The high sidelobes near the targets are suppressed
effectively, as shown in the third column of Figure 11. However, the sidelobes away from
the targets cannot be suppressed in staggered mode, as shown by the azimuth indexes
from 4000 to 8000 in Figure 10c. This is because the hybrid SAR/ISAR method is operated
on the image domain, and the sub-image selection limits the scope. Each sub-image we
selected only includes the target. Moreover, the displaced position of the image caused by
the radial velocity cannot be solved. As a result, the position of the target is displaced, as in
Figure 10a.

In general, moving target imaging processing should focus on addressing two main
problems: mitigating the reconstruction error to suppress the high sidelobes in azimuth, and
separating the echoes of multiple targets accurately to improve the imaging performance.
These two problems can be effectively alleviated based on the proposed MosReFormer
network. As shown in Figure 10d, the artifacts and the high sidelobes are suppressed along
the azimuth. It also indicates that the echoes of multiple moving targets with different
attitudes and motion parameters are separated accurately. Meanwhile, as apparent from
Figure 11, there is a subtle difference between the zoomed-in results of the MosReFormer
network (the last column) and the ideal reference results (the third column). Despite
the targets being focused almost identically, there exist minor artifacts dispersed around
the targets. Even though the focusing performance of the targets is almost the same,
there are some slight artifacts dispersed near the targets. These artifacts stem from the
ambiguities introduced by other adjacent targets in azimuth. This becomes more evident
when comparing Target 3 in Figure 11c, which has fewer artifacts due to the absence of
adjacent targets in azimuth.

In order to intuitively illustrate the effectiveness of the MosReFormer network in
reconstruction and separation, the examples of the input azimuth signal, the ideal reference
azimuth signal, and the output azimuth signal by the MosReFormer network are provided
in Figure 12. Figure 12a shows the azimuth signal of Target 1 and Target 2 at the 70th range
index. The amplitude of the input signal, represented by the yellow line, is modulated by
the sinc-like antenna pattern. The input signal is the composite of the theoretical azimuth
signal of Target 1 and the theoretical azimuth signal of Target 2. In signal processing, the
azimuth signal of Target 1 and Target 2 are aliased together and cannot be separated. Direct
azimuth compression would result in defocused and displaced images. In the upper right
part of the subfigure, the zoomed-in version is given. The pulse loss causes the gaps in
the azimuth signal, which can be clearly in the zoomed-in version. The ideal reference
azimuth signal of Target 1 and Target 2 is shown in the middle of Figure 12a. The output
azimuth signal using the MosReFormer network is illustrated on the right of Figure 12a.
The signals of Target 1 and Target 2 are separated, and the gaps are eliminated. Figure 12b
shows the azimuth signal of Target 3. The result of MosReFormer is close to the ideal
reference, indicating that the MosReFormer network is also well-suited for a single target.
The examples of the azimuth signals of Target 5 and Target 6 at the 466th range index
are provided in Figure 12c, showing that it is effective for azimuth signals at different
slant ranges.
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Figure 12. The examples of the azimuth signal for (a) Target 1 and Target 2, (b) Target 3, and (c) Target
4 and Target 5. Columns from left to right are azimuth signal of the input, azimuth signal of the ideal
reference, and azimuth signal of the MosReFormer network output.

The entropies of the five targets and the entire scene using different methods are
provided in Table 4. The value of image entropy can be utilized to quantify the spatial
disorder of an image. The SAR images of ship targets that exhibit clearer structures and
better-focused scatterers tend to have smaller entropy values. The entropy of an image
|I(g, h)|2 [47] can be defined by

E = ∑
g

∑
h
− |I(g, h)|2

∑
g

∑
h
|I(g, h)|2

ln
|I(g, h)|2

∑
g

∑
h
|I(g, h)|2

(38)

where g and h denote pixel numbers in the azimuth and slant range. The defocused images
using DIRIS have the largest entropies. Although the RID method can refocus moving
targets effectively, the high sidelobes along all of the azimuth increase the entropies. The
entropies of the MosReFormer are close to those of the ideal reference, and they are much
lower than those of the DIRIS and IRIRS methods. This indicates that the MosReFormer
network achieves better imaging quality and more accurate target separation, leading to
superior focused staggered SAR images of multiple moving targets.

Table 4. Imaging performance of simulated moving targets with different methods.

Entropy DIRIS IRIS RID Ideal Reference MosReFormer-Based Method

Target1 7.04 6.36 6.55 6.24 6.25
Target2 7.43 6.35 7.01 6.31 6.32
Target3 7.48 6.31 6.92 6.28 6.28
Target4 6.72 6.05 6.33 6.01 6.02
Target5 7.22 6.33 7.20 6.30 6.31

All scene 9.11 8.19 8.82 7.86 7.88
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5.4. Experiment on Spaceborne SAR Data

To validate the effectiveness of the reconstruction and the separation, Gaofen-3 data
are utilized to generate artificially equivalent data in staggered mode. The real spaceborne
data were acquired by the GF-3 satellite over the city of Dalian in China. The large scene is
situated along the coastline and comprises hills, villages, a small island, and the sea surface.
The echoes of ship targets are simulated using ray tracing and added to the echoes of the
spaceborne data. The generation of staggered equivalent data was proposed and analyzed
in reference [45]. According to variable PRIs, the uniform signal is sampled using two-point
interpolation, and blind ranges are considered after range compression. The reconstruction
of the stationary scene is obtained via spline interpolation. The moving targets are detected
and processed as in Figure 3. Note that the azimuth signal should be normalized in the
preprocessing before inputting the network. To maintain the consistency of the magnitude,
the normalized magnitude has to be reversed in the azimuth of each range cell.

The imaging results of the large scene are displayed in Figure 13. The zoomed-
in versions of the ship targets of offshore and inshore scenes are provided in
Figure 14 and Figure 15, respectively. As apparent from Figure 13a,b, spline interpolation
can achieve acceptable performance for a stationary scene. For the moving targets, the
image qualities are degraded due to the reconstruction error. The presence of high sidelobes
and artifacts aggravates the azimuth ambiguity, leading to an increased probability of false
alarms for targets. This adversely affects the accuracy and reliability of target detection in
SAR imaging. In Figures 14c and 15c, the RID method can compensate for the movement
of the moving target, but the sidelobes along all of the azimuth cannot be suppressed. The
moving targets are also displaced due to the radial velocities, and the positions are the
same as those in Figure 15a. In Figures 14d and 15d, the proposed MosReFormer network
alleviates the error caused by the coupling of non-uniform sampling and the target motion.
Additionally, it accurately separates the echoes of multiple moving targets in azimuth,
closely resembling ideal separated results. The reference imaging result in Figure 13c
has superior imaging performance with a constant PRI and without blind ranges. Even
though there is a slight difference between the results of the proposed method and the ideal
reference, the artifacts and high sidelobes are significantly suppressed compared with the
DIRIS and IRIRS methods.

The imaging results of the inshore scene have the artifacts of the static scene on
the coastline, as apparent from the bottom of Figure 15. The proposed algorithm can
effectively focus on moving targets in both the inshore scene and the offshore scene and
can significantly suppress sidelobes in the azimuth dimension. In the meantime, it can
be observed that for the inshore scene, the background clutter is complex and there are
artifacts caused by stationary scenes. These factors would have some slight impact on the
separation and reconstruction of echoes. In order to provide more details about including
both inshore and offshore scenes to compare the effectiveness of the methods, the zoomed-
in versions of the moving target in the bottom right of Figure 14 and the moving target in
the bottom left of Figure 15 are shown in Figure 16. The entropies of the imaging results
using different methods are also provided in Table 5. The proposed MosReFormer network
has smaller entropies compared with its rivals. This demonstrates the method’s robustness
and capability in the reconstruction and separation of multiple moving targets in staggered
SAR mode.
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Figure 13. Imaging results of the scene in staggered mode. (a) Interpolation reconstruction and
defocused moving targets using DIRIS. (b) Interpolation reconstruction and refocused moving targets
using IRIS. (c) Refocused image using RID. (d) Reference image with constant PRI and ideal separation
of moving targets. (e) Refocused image using the proposed MosReFormer network.
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Figure 14. The zoomed-in imaging results of offshore scene in Figure 13. (a) Interpolation recon-
struction and defocused moving targets using DIRIS. (b) Interpolation reconstruction and refocused
moving targets using IRIS. (c) Refocused image using RID. (d) Reference image with constant PRI and
ideal separation of moving targets. (e) Refocused image using the proposed MosReFormer network.
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Figure 15. The zoomed-in imaging results of inshore scene in Figure 13. (a) Interpolation recon-
struction and defocused moving targets using DIRIS. (b) Interpolation reconstruction and refocused
moving targets using IRIS. (c) Refocused image using RID. (d) Reference image with constant PRI and
ideal separation of moving targets. (e) Refocused image using the proposed MosReFormer network.
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Figure 16. The zoomed-in versions of (a) the moving target in the bottom right of Figure 14. (b) The
moving target in the bottom left of Figure 15.

Table 5. Imaging performance of the spaceborne SAR data with different methods.

Performance DIRIS IRIS RID Ideal Reference MosReFormer-Based Method

Entropy 7.58 7.26 7.31 6.96 6.99

6. Conclusions

In this article, we verify the feasibility of employing deep learning to moving target
imaging in staggered SAR and propose the MosReFormer network to reconstruct and
separate the multiple moving targets simultaneously. The proposed MosReFormer frame-
work employs a convolutional encoder–decoder structure to mitigate the reconstruction
error caused by the coupling of the non-uniform sampling and the target motion. The
joint local and global self-attention are utilized to deal with the elemental interactions of
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long-azimuth samplings. The SI-SDR loss function is defined to ensure the performance
of the MosReFormer network. Compared with other algorithms, the artifacts and high
sidelobes can be suppressed, leading to significant alleviation of ambiguities in azimuth.
The echoes of multiple moving targets in azimuth can be separated in the time domain.
Consequently, the reconstruction error can be mitigated, and the multiple moving targets
can be accurately refocused and imaged. Simulations and experiments on equivalent GF-3
data in the staggered SAR system verify the reliability of the proposed imaging method for
multiple moving targets based on the MosReFormer network.

One potential future extension of our work is to modify the MosReFormer network to
adapt to moving targets with complex motion patterns, especially maritime targets with
3D rotation. In this case, the echo signal in staggered mode is no longer in the form of
linear frequency modulation, but a translational component of higher order and its own
rotation component, along with non-uniform sampling. Conventional SAR technology
can attain precise compensation for higher-order translational terms, yet its influence on
rotational components remains limited. The MosReFormer network is conceived upon the
architecture employed in source separation and speech enhancement, thereby endowing it
with the capacity for generalization to deal with complex signal forms. Furthermore, the
current method supports the elaborated linear PRI sequence. In future work, the robustness
can be enhanced to align with diverse PRI variation strategies. Additionally, we plan to
incorporate the detection of moving targets into the MosReFormer architecture, aiming to
achieve the integration of detection, separation, and refocusing of multiple moving targets
in staggered SAR.
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