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Abstract: The rock strongly affects the surface and subsurface temperature due to its different
thermophysical properties compared to the lunar regolith. The brightness temperature (TB) data
observed by Chang’E-1 (CE-1) and Chang’E-2 (CE-2) microwave radiometers (MRM) give us a chance
to retrieve the lunar subsurface rock abundance (RA). In this paper, a thermal conductivity model with
an undetermined parameter β of the mixture has been employed to estimate the physical temperature
profile of the mixed layer (rock and regolith). Parameter β and the physical temperature profile of
the mixed layer are constrained by the Diviner Channel 7 observations. Then, the subsurface RA on
the 16 large (Diameter > 20 km) Copernican-age craters of the Moon is extracted from the average
nighttime TB of the CE-2 37 GHz channel based on our previous rocky TB model. Two conclusions
can be derived from the results: (1) the subsurface RA values are usually greater than the surface
RA values retrieved from Diviner observations of the studied craters; (2) the spatial distribution
of subsurface RA extracted from CE-2 MRM data is not necessarily consistent with the surface RA
detected by Diviner data. For example, there are similar RA spatial distributions on both the surface
and subsurface in Giordano Bruno, Necho, and Aristarchus craters. However, the distribution of
subsurface RA is obviously different from that of surface RA for Copernicus, Ohm, Sharonov, and
Tycho craters.

Keywords: Chang’e-2 (CE-2); crater; microwave brightness temperature; rock abundance (RA)

1. Introduction

Rocks are one of the predominant microrelief forms of the lunar surface. Understand-
ing the distribution of rock is significant for the following reasons: (1) The rocks on the
lunar surface are potential hazards to the lander or rover [1,2]. Therefore, the knowledge
of the distribution of rock abundance (RA) on the lunar surface can help us to determine
a suitable landing site in the future. (2) The relationship between rocks and craters’ im-
pact melt and ejecta and crater morphology implies that the distribution of the rocks on
the lunar surface may include the potential formation and evolution information of the
lunar crust layer [3–5]. (3) The correlation between RA on the lunar surface and crater
model ages provides a new method for dating young lunar craters [6,7]. (4) The rocks on
the lunar surface and subsurface can provide a good understanding of the lunar thermal
evolution [8,9].

To date, there have been many estimations of lunar rocks using both qualitative and
quantitative methods. A lot of data are used to estimate the lunar rocks in a qualitative way,

Remote Sens. 2023, 15, 4895. https://doi.org/10.3390/rs15204895 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15204895
https://doi.org/10.3390/rs15204895
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-3665-3364
https://doi.org/10.3390/rs15204895
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15204895?type=check_update&version=1


Remote Sens. 2023, 15, 4895 2 of 16

including thermal infrared data [5,8,10,11], optical data [3–5,12,13], and radar data [14,15].
Meanwhile, thermal infrared data [8] and optical data [12] can also be used to quantitatively
constrain the lunar rocks. As far as we know, the first global map of surface RA, with the
meter and larger size, have been made using Diviner infrared thanks to the large thermal
emission differences between lunar regolith and rocks. At present, we know little about the
subsurface RA of the Moon. The microwave TBs of the global Moon, detected by the CE-1
and CE-2 MRMs at four channels: 3, 7.8, 19.35, and 37 GHz [1], give us a good chance to
constrain the subsurface RA due to their longer penetration compared to thermal infrared
data. Using the differences in both the dielectric loss and the thermal properties of the
lunar rocks and regolith, the subsurface RA could be quantitatively constrained by the
microwave TBs [16,17]. Wei et al. [18] recently retrieved the subsurface RA at several craters
from the CE-2 TB data by combing 7.8 GHz and 19.35 GHz channels. In their work, the
same mixture model as that of Hu et al. [17] is used to calculate the mixture’s thermal
physical properties, including density, thermal conductivity, and heat capacity at all depths.

The rocks are proven to have a significant influence on the lunar TBs [9,16,17,19–21].
Our previous rock model, proposed by Hu et al. [17], is employed in this paper, including
the rock effects on both the physical temperature and the dielectric loss of the lunar
subsurface layers. In addition, a thermal conductivity model with an undetermined
parameter β of the mixture was employed to estimate the physical temperature profile
of the mixed layer (rock and regolith). The data applied in this paper are the level 2C
TB data after pre-calibrations collected from CE-2. Their calibration and a discussion of
their accuracy can be found in [22–28]. Recent recalibration works [26,27] suggest that the
pre-calibrated TB data at 37 GHz can well fit both the infrared and TB models and the
correction is smaller than other channels.

The inversion algorithm is another factor that affects the inversion results. Meng [29]
inverted the thickness of the lunar regolith using the Backpropagation Neural Network
method. However, the training data selection is a difficult problem due as there are few
samples for network training. The Root Mean Square (RMS) algorithm [8,30] is usually used
to solve the retrieved problem. The first map of global surface RA distribution was obtained
using this algorithm. Fa et al. [30] also used this algorithm to estimate the thickness of the
lunar regolith. Therefore, the RMS method is employed in this work.

In this paper, we first analyzed the effects of the parameter β on the surface temperature
and constrained the best fitting value of β using the observed data of the seventh channel
of Diviner. Then, we discussed the effect of RA on surface temperature and microwave TB
based on this best-fitting value of β. Finally, we extracted the subsurface RA values on the
16 large (Diameter > 20 km) Copernican-age craters of the Moon from the CE-2 37 GHz
midnight TB. We also conducted a simple uncertainty analysis.

2. Data Sets

The Diviner experiment is a nadir-pointed, push broom scanning radiometer with
two spectral channels for reflected solar radiation, each from 0.35 to 2.8 µm, and seven
channels for infrared emission, spanning from 7.55 to 400 µm [31]. It is designed to globally
map surface albedo and temperature over the lunar day and year. The rock-free regolith
surface temperature was estimated using the algorithm described by Bandfield et al. [8].
The data were collected from 5 July 2009 to 10 October 2016. Data were restricted to
local times of from 1930 to 0530, with solar incidence angles greater than 90 degrees,
with a spatial resolution of 128 pixels per degree (ppd). The Diviner Lunar Radiometer
Experiment Reduced Data Records (RDR) data at a single channel (T7, 25–50 µm) were
used to constrain the surface boundary condition and determine the parameter β due to its
high signal-to-noise ratio over the full range of equatorial surface temperatures [32].

The Diviner’s measurements were also used to infer surface RA. The global map of
surface RA of meter size and larger was drawn by Bandfield et al. [8] with the Diviner
measurements. The global surface RA data have a spatial resolution of 128 ppd bin size
(~125–250 m/pixel). Most of the average surface RA values within the ±60◦ latitudes are
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smaller than 0.01. In some fresh craters, the average surface RA values are greater than
0.01, such as the Giordano Bruno crater, which has an average surface RA of up to 0.1.

The iron (FeO) and titanium (TiO2) contents on the lunar surface affect the microwave
TB by changing the dielectric loss tangent of the materials in the mixed layers [33]. They
can be obtained from returned samples or remote sensing analysis. They have also been
derived from the gamma-ray wavelength range of the lunar prospector data with a spatial
resolution of 150 km × 150 km [34]. Recently, Sato et al. [35] derived a new TiO2 map
based on the near-global Wide Angle Camera (WAC) aboard the LRO multispectral mosaic.
In this work, the used lunar surface global iron (FeO) and titanium (TiO2) contents map
(100 m/pixel) were derived by Lucey et al. [36–39] from Clementine ultraviolet-visible data.

The level 2C MRM data after pre-calibrations, collected from the CE-1 and CE-2, are
published in the Lunar and Planetary Data Release System. A detailed description of
data accuracy and data calibration can be found in [25–28,40,41]. The average normalized
CE-2’s 37 GHz TBs at midnight (removing the lunar phase effect) is used to constrain the
subsurface RA, which has a spatial resolution of 5 pixels per degree (ppd).

3. Models

Here, we treat each location of the Moon as a discrete vertical column of a mixture
layer consisting of rock and regolith. The microwave TB of each vertical column strongly
depends on its physical temperature profile and dielectric loss characteristics. Physical
temperature is significantly affected by thermal inertia at all depths. Thermal inertia is a
key quantity that is widely used in planetary science because it is related to the intrinsic
physical properties of surface and subsurface materials. In general, the rock has a larger
thermal inertia and loss tangent than the lunar soil (regolith and dust). In this work, we use
“subsurface RA” to express the average volumetric fraction of rocks or rock-like materials
within the column of each location detected by CE-2 MRM data. The subsurface RA
can be extracted from CE-2 MRM data by minimizing the differences between simulated
microwave TB and the observed TB of CE-2 37 GHz. Here, the scattering effect of the meter
size and larger rock fragments could be neglected due to the wavelength (millimeter scale)
of the 37 GHz channel being small [16].

The one-dimensional heat conduction model employed to calculate the physical
temperature profile is described in this section. The surface energy flux and albedo affected
the surface temperature are presented. The mixed models of physical properties are also
described. As we do not have precise estimations of the lunar regolith thickness for
Copernican-age craters, the maximum penetration depth d0 of 37 GHz into the mixed layer
is about 0.5 m. This can be estimated from the permittivity of the mixed layer with the

formula d0 = λ
√

ε′mix/ε′′mix, where λ is the wavelength (m), ε′mix and ε′′mix denote the real
and imaginary part of the permittivity in the mixed layers, respectively. Therefore, we can
simply assume the thickness of the mixed layer is about 1 m, which is deep enough to cover
the penetration depth.

The rock TB model proposed by Hu et al. [17] is used to calculate the microwave TB of
each column. In order to avoid repetitive descriptions, the multilayer microwave radiation
transfer model is not described. Here, we only present the loss tangent models of the lunar
regolith and rocks because they are the main model influence on microwave TB calculation.

3.1. Heat Conduction Model

The temperature profile can be obtained using the finite difference method to solve
the 1-D time-dependent heat conduction equation [42–45]:

ρ(x, T)C(x, T)
∂T
∂t

=
∂

∂x

[
K(x, T)

∂T
∂x

]
(1)

where x (m) and t (h) stand for depth and time; ρ(x, T), C(x, T), and K(x, T) stand for the
density (g·cm−3), heat capacity (W·g−1·K−1), and thermal conductivity (W·m−1·K−1) of
the material, respectively. They are the functions of the lunar physical temperature T(K)
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and vertical variable of depth x (m). The upper boundary condition depends on the energy
on the lunar surface, which can be written as:

Ks
∂T
∂x
| x=0 + Qs = εσBT4

s (2)

where Ks(∂T)/(∂x) is the heat energy transmitted from the surface to the subsurface, Ts,
ε = 0.95, and σB(W·m−2·K−4) are the surface temperature, the infrared emissivity of lunar
regolith, and the Stefan–Boltzmann constant, Qs = (1− A)F� is the surface energy flux,
which is equal to the solar heating rate, and F� (W·m−2) is the incident solar flux, which
can be written as [9,17,44,46,47]

F�(t) =
Ssun

4π·R2 (sinφsinδ + cosφcosδcos h) (3)

where Ssun = 3.846 × 1026 W is the solar luminosity [48], φ is latitude, δ is the solar
declination angle, which is usually set as 0 [49], and the hour angle is h = 2πt/P, with P as
the length of the synodic day. R is the distance between Sun and Moon, which varies over
time and has the following form

R = r1·cos
(

2πt
29.53× 12

+ π

)
+ r2 (4)

where r1 = 3.85× 108 m, r2 = 1.496× 1011 m, they are the distance from the Moon and Sun
to Earth, respectively. The dependence between albedo and solar incidence angle θ is given
by [9,19,32]

A(θ) = A0 + a
(

θ

π/4

)3
+ b
(

θ

π/2

)8
(5)

where A0 = 0.12 is the normal bolometric Bond albedo; coefficients a and b have a Hayne’s
value of a = 0.06 and b = 0.25. At the lower boundary d, the condition can be written as:

∂T
∂x
| x=d = − Q

Kd
� 1 (6)

where Q
(
W·m−2) is the internal lunar heat source; Kd and ∂T/∂x | x=d are the thermal

conductivity at x = d, which is sufficiently deep below the subsurface, and the temperature
gradient, respectively.

3.2. Physical Parameters of the Mixed Layer

The relationship between the density ρ, subsurface RA, and depth x can be written
as [17]:

ρmix(x) =
[
ρd − (ρd − ρs)e

−x
H

]
(1− RA) + RA·ρr (7)

where ρmix represents the mixed density, (ρd − (ρd − ρs)e
−x
H ) is the density of regolith at

a depth x m, RA represents the volumetric fraction of rocks at the penetration depth of
CE-2 37 GHz, and H = 0.06 (m) is the average H-parameter. ρs = 1300

(
kg·m−3), ρd =

1800
(
kg·m−3), and ρr = 2940

(
kg·m−3) stand for the density of the lunar surface, balance

depth, and rocks, respectively, which are obtained from Horai et al. [50]. From their
investigation, the heat capacity of rocks can be written as:

Crock = α1 + α2T + α3T2 + α4T3 (8)

where α1 = −154.9, α2 = 4.983, α3 = −8.207× 10−3, α4 = 5.192× 10−6, and Crock is the
average heat capacity of lunar rocks. The depth-dependent heat capacity of the mixed layer
has the following forms:

Cmix =
(

c1 + c2T + c3T2 + c4T3 + c5T4
)
× (1− RA) + Crock × RA (9)
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where Cmix represents the mixed heat capacity of the mixed layer, (c1 + c2T + c3T2 +
c4T3+c5T4) is the heat capacity of lunar regolith, and c1, c2, c3, c4, and c5 are equal to
−3.6125, 2.7431, 2.3616× 10−3, −1.234× 10−5, and 8.9093× 10−9 [9], respectively.

The correlation between the lunar regolith thermal conductivity Kreg, depth, x, and
temperature, T can be written as:

Kreg(x) = Kd − (Kd − Ks)e
−x
H + 2.7Ks·(

T(x)
350

)
3

(10)

where Ks = 0.00074 and Kd = 0.0034 are the thermal conductivity of the regolith on the
surface and the bottom, respectively [9]. In the work of [17,18], the same linear mixture
model as used for density and heat capacity was also used to determine the thermal
conductivity of the mixed layer. However, Horai et al. [51] suggested that the mixed
thermal conductivity of two-phase materials is nonlinearly mixed. Here, we simplify the
mixed layer consisting of two-phase material rock and regolith, and the mixing forms can
be expressed as:

Ku = Kr

(
1 +

1− RA
RA
3 − 1/(1− r)

)
(11)

Kl = Kr

(
r +

r× RA
(1− RA)/3 + r

1−r

)
(12)

r =
Kreg

Kr
(13)

where Ku and Kl are the theoretical upper and lower bounds, normalized by Kr, where
Kreg is the thermal conductivity of regolith, Kr = 1.491

(
W·m−1·K−1

)
is the thermal

conductivity of rocks [50]. According to their results, if the two phases are incompletely
randomly admixed, the mixed thermal conductivity depends on the degree of random
admixing. The mixed thermal conductivity can be expressed as follows:

Kmix = Ku × β + Kl × (1− β) (14)

where β is the mixture weight of rocks in a mixed layer.

3.3. Loss Tangent Model

The loss tangent quantifies the transparency of material to electromagnetic radiation.
Low loss tangents indicate very transparent media, while high loss tangents indicate rela-
tively opaque material. Mathematically, the loss tangent is simply a shorthand combination
of real, ε’, and imaginary, ε”, dielectric constants, where tanδ = ε”/ε’. The real dielectric
constant (ε’) controls the speed of the electromagnetic waves through the material, while
the imaginary dielectric constant (ε”) dominates energy attenuation.

The loss tangent of materials has been discussed many times [20,33,47,52]. The dielec-
tric loss tangent models of both the mare and highland lunar regolith employed here are
derived from Siegler et al. [20]:

tanδmare = 10[0.312ρ−2.65+Ti×( f−0.0025−0.958)] (15)

tanδhighlands = 10[0.312ρ−3.79+ f−0.069] (16)

where the value of wt.%TiO2 content, Ti, is taken from Lucey et al. [39]. According to
Siegler, Equation (15)’s fit is only valid at TiO2 values over 2 wt.%; therefore, Equation (16)
is used to calculate the loss tangent at the location with a TiO2 smaller than <2 wt.%. To
distinguish the regolith and rocks, the real parts of the permittivity for regolith and rocks
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are ε′ = 1.871ρ, ε′ = 1.919ρ, respectively. The dielectric loss tangent model of the rock used
here is derived from [33]:

tanδrock = 100.312ρ−3.26+0.038×(Ti+FeO) (17)

where the value of wt.%FeO content, FeO is also taken from Lucey et al. [39]. According to
Hashin et al. [53], the dielectric loss tangent of the mixed layer can be modeled similarly
with Equations (11)–(14), where the thermal conductivity is replaced with the corresponding
loss tangent.

4. Method

In order to extract the subsurface RA from the CE-2 microwave TB data, the effect of
subsurface RA on physical temperature and microwave TB has to be estimated. Before
estimating these effects, we have to confirm the most satisfactory mixture weight β. Two
regions with a lower and higher surface RA are selected to estimate the best-fitting β value.
Then, based on this value, the influence of subsurface RA on physical temperature and
microwave TB is estimated. Finally, the subsurface RA can be obtained by minimizing the
differences between average simulated TB and the observed TB of CE-2.

4.1. Determination of the Parameter β

To estimate the effect of parameter β on the physical temperature, a vertical uniform RA
distribution is assumed at the lunar center (0◦N, 0◦E) due to its relatively stable geological
background compared to other regions. Here, we suppose a uniform value that is equal
to the average surface RA of 0.0027 obtained from Diviner. Figure 1 shows the influence
of the parameter β on the modeled surface temperature. We can see that the nighttime
surface temperature increases with increasing parameter β, and the surface temperature
variation can reach up to 13 K at midnight (local time 0:00) when β increases from 0
to 0.7. To obtain a satisfactory parameter β, the surface temperatures observed by a
single channel (T7, 25− 41 µm) are selected to constrain due to their high signal-to-noise
ratio [32]. We used observations of T7 at two different regions to determine a general
parameter β. The first region is the lunar center (0± 0.1◦N, 0± 0.1◦E), which has a relatively
smaller average surface RA value (0.0027). The other region is the CE-3 landing site
(44.12± 0.1◦N, 340.5± 0.1◦E), which has a relatively larger surface RA value (0.005).
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Figure 1. The effect of the parameter β on the surface temperature at the lunar center (0◦N, 0◦E),
RA = 0.0027 is the average surface RA obtained from Diviner. The top figure shows the diurnal
variation in surface temperature with β and the bottom figure shows the nighttime variation in
surface temperature with β.
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The RMS method was employed to determine the best-fitting parameter β. We can
calculate the RMS of surface temperature between the average observed and the simulated
by changing parameter β. Figure 2 compares the nighttime surface temperature between
the observed data and the simulated results. We can find that the modeled results matched
very well with the observed data. Parameter β is estimated to be small and contain the
same number of 6.6× 10−5 at two different regions. That means that this value could be
used to simulate the physical temperature at other regions of the Moon. Furthermore, our
simulation shows that the variation in the TB at 37 GHz is far less than 1 K when the β
varies from 0 to 0.7. Therefore, we can take the value β = 6.6× 10−5 to model both the
thermal conductivity and loss tangent of the mixed layer in our research.
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4.2. Effects of Subsurface RA on the Surface Temperature and Microwave TB

Figure 3 shows the effect of the subsurface RA on the surface temperature and 37 GHz
microwave TB. Figure 3a shows that the nighttime surface temperature is sensitive to the
subsurface rocks, while the daytime temperature is not. In Figure 3a, we can see that
the surface temperature increases with increasing subsurface RA, and the variation in
nighttime surface temperature can reach up to 10 K at midnight when the subsurface
RA increases from 0 to 0.2. However, the subsurface RA has a significant influence on
both daytime and nighttime microwave TB. Figure 3b shows the sensitivity of microwave
TB at 37 GHz to the subsurface rocks. We can see that the influence of the subsurface
rocks on 37 GHz microwave TB changes with time. The nighttime TB value decreases
with increasing subsurface RA and the daytime TB value shows the opposite pattern.
In addition, the TB variation can reach up to 38 K at midnight when the subsurface RA
increases from 0 to 0.2, which is larger than the surface temperature variation of 10 K. This
means that the microwave TB is more sensitive to the subsurface rocks compared to the
surface temperature.
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4.3. Subsurface RA Inversion

Since the influence of the subsurface rocks on TB varies over time, we assume that the
midnight effect is equal to the average effect. The microwave TB simulated by the surface
RA at the lunar equator (0◦N, 120◦E) shows that the simulated midnight TB value is greater
than the average observed TB of CE-2 37 GHz. The TB differences between the simulated
and observed CE-2 at midnight can be up to 8 K. From Figure 3b, we can speculate that
the RA value detected by CE-2 37 GHz microwave should be greater than that detected by
Diviner infrared. Therefore, the average midnight TB observed by CE-2 37 GHz is selected
to constrain the best-fit subsurface RA values. The RMS method is employed to estimate
the most appropriate subsurface RA, which has the following forms:

∆TB =

√
1
N ∑N

i=1

(
TBs

i (RA)− TBo
i
)2 (18)

where i indicates the ith channel, and N is the total channel number. Here, N = 1 means
that only the TB of the 37 GHz channel is chosen for comparison between theoretical TBs

and CE-2 observation TBo. The TBo data used here are the average normalized midnight
microwave TB of CE-2. By calculating the RMS TB with changing subsurface RA values,
the best-fit RA can be obtained until the RMS of ∆TB reaches the minimum. The best-fit
subsurface RA value at the lunar equator (0◦N, 120◦E) is 0.0676,and the RMS is 3.3× 10−4 K.

5. Results

The subsurface RA of the 16 large Copernican-aged craters was extracted from the
average midnight microwave TBs of the CE-2 37 GHz. Figure 4 presents the locations of
all the selected craters. The background mosaic map is the surface RA, retrieved from the
Diviner. Table 1 presents the latitude and longitude, diameter, mean surface RA retrieved
from Diviner, the inverted average subsurface RA, and the mean RMS values of 16 craters.
It can be seen from Table 1 that the maximum average RMS value between simulated
and observed TB is 0.027 on the Byrgius A crater, which is small enough compared to the
radiometric sensitivity of 0.5 K of CE-2 MRMs. Therefore, we think that the estimated
results are reliable. From Table 1, we can also see that the average RA value of the subsurface
layer of the crater is greater than the average RA value of the surface at the corresponding
location. The Giordano Bruno (GB) crater has a maximum average subsurface RA of 0.2636,
and the Sharonov (SH) crater has a minimum average subsurface RA of 0.0274; and the
average RMS values at these two craters are 0.001 and 0.008, respectively.
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Figure 4. Locations of all the studied craters. The background mosaic map is the surface RA retrieved
from Diviner. The markers are abbreviations for the selected craters, whose descriptions are shown
in Table 1.

Table 1. The characteristics of the selected craters.

Crater Names Latitude (◦N) Longitude (◦E) Diameter
(km)

Subsurface
RA (Mean)

Surface RA
(Mean) RMS (K)

Aristarchus (A) 23.7 312.6 40 0.0929 0.032 0.001
Burg (B) 45 28.2 40 0.0556 0.0085 0.003

Byrgius A (BA) −24.5 296.3 19 0.0636 0.0307 0.027
Copernicus (CP) 9.62 340 93 0.0747 0.0113 0.013

Crookes (CK) −10.4 194.9 49 0.0668 0.018 0.002
Giordano Bruno (GB) 36 102.89 22 0.2636 0.0959 0.001

Glushko (G) 8.11 282.33 40 0.0835 0.0231 0.004
Jackson (J) 22.05 196.68 71 0.1119 0.0257 0.005
King (K) 4.96 120.49 76 0.1423 0.0151 0.025

Moore F (M) 37.4 185 24 0.1192 0.0327 0.001
Necho (N) −5.25 123.24 30 0.1885 0.034 0.001
Ohm (O) 18.4 246.5 64 0.0398 0.0171 0.001

Sharonov (SH) 12.4 173.3 74 0.0274 0.0057 0.008
Stevinus (ST) −32.5 54.2 75 0.0532 0.0067 0.007

Tycho (T) −43.3 348.62 85 0.0757 0.0489 0.006
Vavilov (V) −0.8 222.1 98 0.0446 0.0092 0.012

Figure 5 shows the distribution of the subsurface RA of the selected craters. All of the
images are the inverse distance weight (IDW) interpolation results produced by ArcMap.
The background mosaic images are from the LRO wide-angle camera (WAC). The red color
represents the higher subsurface RA, and the green color is the smaller subsurface RA.
It can be seen from Figure 5 that the elevated subsurface RA is usually present over the
crater’s rims, walls, and floors. In comparison with the distribution of surface RA and
subsurface RA between the studied craters, we can see that the abundance distribution of
surface rocks is not necessarily the same as that of subsurface rocks. For example, at the
Giordano Bruno, Necho, and Aristarchus craters, there are similar RA distributions on both
the surface and subsurface. However, there are obviously different distributions of RA
at both the surface and subsurface at the Copernicus, Ohm, Sharonov, and Tycho craters.
The surface RA at the central peak and the wall corner of Copernicus is larger than that at
other places, but the subsurface RA at the south wall is larger than that at other places. The
surface RA at the central peak, the north and east wall corner of Ohm is larger than that
at other places, but the subsurface RA at the west wall is larger than that at other places.
The surface RA at the northeast wall of Sharonov is larger than that at other places, but the
subsurface RA at the south and west wall is larger than that at other places; the subsurface
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RA at the central peak and east wall of Tycho is larger than that at other places, but the
subsurface RA at the north wall is larger than that at other places.
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camera (WAC).

According to the analysis of the influence of rocks on the variation trends of surface
temperature (Figure 3a) and microwave TB (Figure 3b), theoretically, the surface tempera-
ture and microwave TB at night show change conversely with the increase in subsurface
RA. This is the reason that the abnormal “hot spots” [54] during a total eclipse on the lunar
surface, revealed by infrared scanning images, turned out to be the “cold spots” on the
nighttime microwave TB distribution observed by CE-1 and CE-2 MRM [11,55]. Upon
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inspection of the data distribution of Diviner infrared and CE-2 37 GHz TB of the studied
craters, we found that when the “hot spots” in infrared coincide with the “cold spots” in
the microwave, and the distribution of RA both on the surface and subsurface is consistent;
otherwise, the distribution is inconsistent.

Figure 6 presents the relative distribution of nighttime regolith temperature obtained
from the Diviner and nighttime microwave TB of CE-2 37 GHz at the craters where the
RA distribution on the surface and subsurface is inconsistent. From Figure 6, we can see
that the “hot spots” in the infrared are located at the central peak and wall corner of the
Copernicus crater, at the north and east wall corners of the Ohm crater, at the northeast wall
corner of the Sharonov crarer, and at the central peak and east wall corners of the Tycho
crater. However, the “cold spots” in the microwave are located at the south, southwest,
southwest, and north of the Copernicus, Ohm, Sharonov, and Tycho craters, respectively.
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rocks is much smaller than that of the Diviner infrared data. That is, the subsurface RA in 
our research not only includes the exposed surface rocks at a meter or larger scale detected 
by Diviner data but also the exposed surface rocks at centimeter scale and buried rocks at 
a centimeter or larger scale. This indicates that the differences between surface and sub-
surface RA are mostly caused by the different detection abilities of Diviner and CE MRMs. 
This conclusion is consistent with that of Ghent et al. [56], that the Diviner RA signature 
and radar signature are not necessarily consistent. For example, the Diviner RA signature 
correlates with the radar signature for the Giordano Bruno crater, while it is not correlated 
with the Copernicus crater. 

Figure 6. The relative distribution of nighttime regolith temperature obtained from Diviner and
nighttime microwave TB of CE-2 37 GH. (a) The relative distribution of nighttime regolith temperature
required from Diviner at the Copernicus, Ohm, Sharonov, and Tycho craters. (b) The relative
distribution of nighttime microwave TB of CE-2 37 GHz at the Copernicus, Ohm, Sharonov, and Tycho
craters. The red color represents higher temperature, and the blue color represents lower temperature.

The surface RA detected by Diviner is defined by the areal percentage of rock slab
in each pixel. According to Wei et al. [18], the sensitivity of the MRM data to the size of
the rocks is much smaller than that of the Diviner infrared data. That is, the subsurface
RA in our research not only includes the exposed surface rocks at a meter or larger scale
detected by Diviner data but also the exposed surface rocks at centimeter scale and buried
rocks at a centimeter or larger scale. This indicates that the differences between surface
and subsurface RA are mostly caused by the different detection abilities of Diviner and
CE MRMs. This conclusion is consistent with that of Ghent et al. [56], that the Diviner RA
signature and radar signature are not necessarily consistent. For example, the Diviner RA
signature correlates with the radar signature for the Giordano Bruno crater, while it is not
correlated with the Copernicus crater.

From Figure 5, we can see that the subsurface RA detected by CE-2 37 GHz MRM data
is usually clustered on one side of the impact craters. This distribution trend can also be
found in Diviner RA for certain craters, including Giordano Bruno, Necho, and Jackson.
In fact, there are two main sources of subsurface rocks detected by CE MRM data in the
impact crater: the bedrock that is exposed or buried in situ, and the ejecta deposits sourced
from other places. Therefore, this distinct asymmetry spatial distribution of subsurface RA
can provide information about rocky ejecta and impact direction [56]. The ejecta reflected
by subsurface RA suggest that the impact direction is from the northwest, southwest, and
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northeast for the Giordano Bruno, Necho, and Jackson craters, respectively. However, the
Diviner RA is not consistent with this distribution trend in some craters. For example,
the Diviner RA is almost evenly distributed around the floor bounds of Copernicus. In
addition, the higher subsurface RA values are located in the south of the crater where the
surface RA is relatively smaller. This discrepancy indicates that most of the rocks that lead
to a decline in the low microwave TB values in the subsurface are covered by a sufficient
depth of insulating regolith to hide them from Diviner’s view [8,56].

6. Discussion

Quantitative maps of subsurface RA at 16 large Copernican-aged craters were gener-
ated. Although the RMS between the theoretical and observed TB is small enough, there
are still some parameters that affected the inversion results. For example, the measurement
uncertainties, CE-2 MRM data, Diviner infrared data, TiO2 and FeO contents, and Apollo
sample’s thermal properties, constrain the inversion results. In this section, we will analyze
the uncertainties generated by two factors: the H-parameter and the rock’s loss tangent.

6.1. Uncertainty Generated by H-Parameter

The average H-parameter of 0.06 m was used in our simulation, which was obtained
from Hayne et al. [9]. According to their research, the H-parameter has a significant influ-
ence on the physical temperature. In addition, the H-parameter between nine Copernican-
aged impact craters (King, Copernicus, Aristarchus, Jackson, Tycho, Necho, Byrigus A,
Moore F, and Giordano Bruno) varies from 0.036 m to 0.063 m, as calculated by H = H0t0.1

Ma,
with best-fit parameters H0 = 0.032 m, where the crater age tMa is given in millions of
years. Here, we selected the King crater (5◦N, 120.5◦E) as a case study to discuss the
uncertainty generated by the H-parameter. To highlight the effect of the H-parameter on
microwave TB and subsurface RA, we calculated the microwave TB and subsurface RA
within H = 0.06± 0.024 m.

Figure 7 shows the effect of three different H-parameters on a nighttime microwave
TB of 37 GHz, and the inverted subsurface RA varies with an increase in H-parameter. It
can be seen from Figure 7 that the midnight microwave TB variation values can reach up
to 3 K when the H-parameter varies from 0.036 to 0.084 m, and the nighttime microwave
TB increases with increasing H-parameter. In addition, the estimated subsurface RA also
increases with increasing H-parameter. Moreover, we can find that when H-parameter varies
from 0.036 to 0.084 m, and the inversion subsurface RA has an uncertainty of −0.02/ +0.01.
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6.2. Uncertainty Generated by Loss Tangent of Rocks

Parameters such as the density, heat capacity, thermal conductivity, and loss tangent
of rocks used in our study were obtained from the Apollo samples experiments. However,
according to the spectral analysis of the lunar impact basins [57], the plagioclase and
orthopyroxene abundance in some regions are different from those at the Apollo landing
site regions. Although the relative dielectric permittivity was proven to be a function of
density but not of chemistry, the loss tangent is a function of density and chemistry [33]. In
addition, in Carrier III et al.’s [33] research, the loss tangent shows three theoretical fits with
the data: the equivalent BHS formula, the two-dimensional regression to the power-law
formula, and the three-dimensional regression of variance as a function of density and
selected values of % (Ti + FeO). The loss tangent values calculated by the three fittings at
the King crater (5◦N, 120.5◦E) are about 0.0035, 0.008, and 0.0224, respectively.

Figure 8 shows a comparison of the nighttime microwave TB of 37 GHz at three
different loss tangent values and presents the effect of the rock’s loss tangent on inverted
subsurface RA. It is worth noting that when we calculate the microwave TB for different
rock loss tangents, the subsurface RA is set to 0.15. In Figure 8, the microwave TB variation
values can reach up to −9 K at midnight when the rock loss tangent varies from 0.0035
to 0.0224, and the estimated subsurface RA decreases with increasing rock loss tangent.
The uncertainty of the inversion subsurface RA generated by the different loss tangents of
different rocks is about 0.04/−0.05.
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7. Conclusions

Rocks are one of the basic materials that make up the Moon, which usually has more
thermal inertia and a greater loss tangent than the lunar regolith. The rock TB model
proposed by Hu et al. [17] was used to calculate the microwave TB of each vertical column.
In this work, a new mixed model of two-phase thermal conductivity, consisting of rock and
regolith, is used to replace the mixed thermal conductivity model of Hu et al. [17]. Then, by
calculating the RMS TB with changing subsurface RA values, the best-fit subsurface RA can
be obtained until the RMS of TB reaches the minimum. Finally, we inverted the subsurface
RA on 16 large Copernican-aged craters of the Moon. The maximum average RMS value of
these craters was about 0.027. This demonstrated that our inversion results are reliable.
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In a comparison of the inversion subsurface RA values and surface RA values retrieved
from Diviner, the results show that the average RA values in the subsurface are usually
larger than those on the surface at the corresponding locations. Also, the spatial distribution
of subsurface RA is not necessarily the same as that of surface RA. In addition, the subsur-
face rocks are usually clustered on one side of the impact craters. This distribution trend
can also be found in the surface RA for certain craters, including Giordano Bruno, Necho,
and Jackson. This distinct asymmetry spatial distribution of subsurface RA can provide
information about rocky ejecta and impact direction [56]. However, in some craters, such
as Tycho, the rock ejecta direction revealed by subsurface RA differs from that revealed
by surface RA. This could indicate the different formation and evolution information of
surface rocks and subsurface rocks; an interpretation will be presented in future work.
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