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Abstract: El Niño-Southern Oscillation (ENSO) is the most significant global ocean–atmosphere cou-
pled signal in the tropical Pacific Ocean, and it can affect the stratosphere. However, the ENSO-related
dynamical processes that influence the ozone valley during summer are still not well understood and
are under-investigated. In this study, we used the ERA5 and MERRA-2 reanalysis data from 1979 to
2021 combined with numerical simulations to analyze the mechanisms through which ENSO affects
the ozone valley over the Tibetan Plateau in the upper troposphere and the lower stratosphere (UTLS)
in summer. The results showed that the two cores of the ozone valley in UTLS were more evident in
the summer following La Niña than in the summer following El Niño. At low latitudes, negative
O3 anomalies in UTLS were observed in the summer following El Niño and positive O3 anomalies
were observed in the summer following La Niña. At middle latitudes, negative O3 anomalies in
UTLS were found near 60◦E in the summer following El Niño, while negative anomalies were found
at 40◦E and 120◦E in the summer following La Niña. The analysis of the flow and vorticity fields
suggested that the field anomalies can cause vertical motion, which in turn leads to the mixing of
different ozone concentrations and affects the ozone valley in UTLS over the Tibetan Plateau. In
particular, the warming of the Indian Ocean sea-surface temperature (SST) in the summer following El
Niño enhances the South Asian High (SAH) through two-stage thermal adaptation, leading to ozone
anomalies at low latitudes in the ozone-valley region. These conclusions were verified by a simulation
using the WACCM4 model, the results of which were consistent with the original observations.

Keywords: ENSO; ozone valley; Tibetan Plateau; WACCM

1. Introduction

The ozone is one of the most important trace components in the atmosphere and can
block the ultraviolet radiation from the sun due to its strong absorption of solar ultraviolet
radiation (0.2~0.29 µm). Furthermore, the ozone in the stratosphere absorbs solar ultraviolet
radiation to warm the stratosphere atmosphere as the main heat source and to change
the thermal and dynamic structure of the stratosphere [1–7], which plays an extremely
important role in the normal survival and reproduction of life on Earth. The ozone is mainly
distributed in the stratosphere atmosphere in the 10–50 km range, with the number-density
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maxima between 20 and 30 km. Only 10% of the ozone is in the troposphere. With the con-
tinuous advancement of observation technology [8–10], it is found that the stratospheric and
tropospheric ozone are connected by the upper troposphere and lower stratosphere (UTLS)
areas, which is important for material exchange [11–15]; changes in ozone concentrations in
this region can affect the global climate [16–18]. Global warming is a widely accepted view
nowadays, and the climate change it causes is of great importance [19,20]. The ozone layer,
due to its energy-absorption and heating characteristics, determines the temperature field
and atmospheric circulation of the stratosphere and plays a very important role in estab-
lishing the atmospheric vertical temperature structure and atmospheric-radiation balance
within the global-warming framework. Therefore, the study of the total atmospheric ozone
has long been a major research focus in Earth sciences.

El Niño–Southern Oscillation (ENSO) is the most significant global-scale ocean–
atmosphere coupled signal in the tropical Pacific Ocean. As a typical tropical Pacific
air–sea system that affects large-scale circulation anomalies, ENSO influences not only the
tropical Pacific climate anomalies but also the atmospheric remote response to tropical and
global climate anomalies [21]. As the strongest interannual climate-anomaly signal, ENSO
can affect the stratosphere [22] by influencing the stratospheric ozone with different time
lags in different regions [23–26]. The ENSO mainly affects the tropical stratospheric ozone
by changing the advection of the tropical upwellings. At mid-to-high latitudes, advection
changes can modify the residual circulation subsidence, and the occurrence of horizontal
mixing is associated with Rossby-wave-breaking and polar-vortex anomalies [27–31].

The ozone valley over the Tibetan Plateau is a phenomenon of ozone loss that forms
a low-value center in the UTLS over the Tibetan Plateau. Xiuji Zhou et al. [32] used the total
ozone mapping spectrometer (TOMS) data from 1979 to 1991 to calculate the spatial and
temporal distribution of the average monthly ozone over 13 years, recognizing the ozone
loss over the Tibetan Plateau in summer (June to September), i.e., the ozone valley over
the Tibetan Plateau. Furthermore, micro-ozone holes or very-low-value ozone events also
occur over the Tibetan Plateau in winter [33]. Guo Dong et al. [34] studied the relationship
between the strongest centers of the ozone valley in the UTLS and the South Asian high
(SAH) by using data from the stratospheric aerosol and gas experiment (SAGE) satellite
data. They found a low-value center in the stratosphere and confirmed the two-core
structure of the ozone valley for the first time through microwave limb sounder (MLS)
satellite data. Most researchers believe that the formation of the ozone valley over the
Qinghai–Tibetan Plateau is mainly driven by changes in atmospheric dynamics rather than
chemistry [34–38].

The summer ozone over the Tibetan Plateau is greatly affected by tropical pro-
cesses [39]. Therefore, ENSO, as a strong tropical interannual signal, is expected to have
a strong connection with the ozone valley over the Tibetan Plateau. Previous studies
showed that ENSO can shock the ozone over the Qinghai–Tibetan Plateau, and the impact
can last for about a year [40–43]. In addition, the first main mode of EOF decomposition of
the total-column-ozone-latitude deviation in the UTLS area of the Qinghai–Tibetan Plateau
is closely related to ENSO [44].

Although initial progress has been made in investigating the impact of ENSO on the
ozone valley over the Tibetan Plateau, validation through numerical-simulation experi-
ments in these studies is still lacking. The Whole Atmosphere Community Climate Model
(WACCM), supported by the National Center for Atmospheric Research (NCAR) climate
model, is a relatively sound climate model describing atmospheric physics and chemical
processes. The WACCM is widely applicable to stratosphere processes and can give good
simulation results for ozone changes [45,46]. Version 4 of the WACCM, WACCM4, can
simulate ENSO signals in the atmosphere [47]. To fill in the gap in numerical-simulation
experiments in the study of ENSO affecting the ozone valley over the Tibetan Plateau, this
paper focuses on the connection and physical mechanism by using WACCM4 to simulate
the ozone in the context of ENSO over the Tibetan Plateau.
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The components of this paper are as follows. Section 2 briefly presents the data and
the methods. Section 3 explores the effects of ENSO on the ozone valley of the Tibetan
Plateau. Section 4 explores the possible impact mechanism of ENSO in the ozone valley
through an analysis. The results were verified by the numerical-simulation experiments
reported in Section 5. A discussion and conclusions follow in Section 6.

2. Data and Methods
2.1. Observational Data

This paper uses ozone mass mixing ratio, horizontal wind, vertical velocity, air pressure,
potential height, and sea-surface temperature (SST) data from ERA5 with a horizontal res-
olution of 0.25◦ × 0.25◦ and vertical stratification from 1000 hPa to 1 hPa supported by the
European Center for Medium-Range Weather Forecasts (ECMWF) (https://www.ecmwf.int/
en/forecasts/datasets/reanalysis-datasets/era5, accessed on 4 December 2021). The ozone
mass mixing ratio used was from MERRA-2 (Modern-Era Retrospective Analysis for Research
and Applications, version 2) satellite data from the National Aeronautics and Space Adminis-
tration (NASA) with a horizontal resolution of 0.625◦ × 0.5◦, and the vertical grid of the ozone
mass mixing ratio ranged from 1000 hPa to 0.1 hPa. The Nino 3.4 index data used were from the
Climate Prediction Center (CPC) (https://psl.noaa.gov/data/correlation/nina34.anom.data,
accessed on 4 December 2021). The summer (June–August) data from 1979 to 2021 were
selected for this study.

2.2. WACCM 4 Numerical-Simulation Experiment

The WACCM4 has two operational options. The ‘full interactive chemistry’ turns on the
chemical-radio-dynamic feedback process, while the other, ‘greenhouse gas’, turns it off [48].
The chemical-radio-dynamic feedback of the WACCM4 model refers to the interconnection of
the dynamical module, the chemical module, and the radiation-parameterization scheme in
the model operation, which better reflects the coupling process of dynamics, chemistry, and
radiation in the atmosphere. The dynamical module ensures the conservation of atmospheric
composition and energy, the chemical module takes into account the microscopic processes of
heat and ions generated by chemical reactions, and the radiation-parameterization scheme
takes into account the effects of short and long waves. The coordinates in the vertical direction
of the WACCM4 model have 66 layers, extending from the ground to the pressure level at
4.5 × 10−6 hPa (~about 145 km height). The vertical resolution was 1.1–1.4 km in the top
tropical troposphere (TTL) area and the lower stratosphere (<30 km). All experiments in
this study were performed with a horizontal resolution of 1.9◦ × 2.5◦ using a full chemical-
interaction process.

2.3. Methods

The low-value center of latitudinal deviation of the total column ozone (TCO*) was
used to characterize the ozone valley. The definition of TCO* and the calculation method
of the height integration were described by Chang [44]: TCO∗ = O3 − O3, where O3 is
the total column ozone in the selected height range, and O3 is the zonal average of total
column ozone in the selected height range. In this paper, we use the height range of the
UTLS (about 50–300 hPa).

In this paper, the El Niño (La Niña) event is defined by the five-month moving average
Nino 3.4 index > 0.5 ◦C (<0.5 ◦C). A total of 43 years of El Niño and La Niña were selected
by the Nino 3.4 index standardized-time-series map (Figure 1). The El Niño years are 1982,
1983, 1987, 1992, 1994, 1997, 1998, 2002, 2004, 2009, 2015, 2016, and 2019. The La Niña years
are 1980, 1981, 1984, 1985, 1988, 1989, 1990, 1999, 2000, 2007, 2008, 2010, 2011, 2020, and
2021. In addition, since the years with a weak or a less strong phenomenon were excluded,
only the typical El Niño and La Niña years were selected.

We also simulated the ozone, wind, and relative vorticity in ENSO years to investigate
the influence of ENSO on the ozone valley over the Tibetan Plateau and its mechanism.

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://psl.noaa.gov/data/correlation/nina34.anom.data
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Figure 1. Time series of the Nino 3.4 index in 1979−2021.

3. Connection between ENSO and the Ozone Valley over the Tibetan Plateau
3.1. Spatiotemporal-Distribution Characteristics of the Ozone Valley over the Tibetan Plateau

The ozone valley over the Tibetan Plateau is mainly distributed in the UTLS [34].
Figure 2 gives an intuitive understanding of the ozone valley over the Tibetan Plateau in
the UTLS and shows the spatial distribution of the time-averaged TCO* from 1979 to 2021.
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Figure 2. Climatological TCO* in summer (a) ERA−5 (b) MERRA−2 (unit: DU).

The average-distribution map of TCO* obtained from the two satellite reanalysis
datasets shows the ozone valley over the Tibetan Plateau, with the ozone-loss center mainly
located at 35◦–110◦E and 30◦–45◦N (in the red box of Figure 2). On the distribution map
obtained using the ERA5 data, the lowest TCO* in the center of the ozone valley is about
−1.8 DU (Figure 2a). On the distribution map obtained using the MERRA-2 ozone-mass-
mixing-ratio data, the lowest TCO* in the center of the ozone valley reaches −4.3 DU,
and the surrounding areas reach −3.4 DU to −4.0 DU (Figure 2b). Although the values
are different, both maps show the same average latitude deviation of negative ozone
over the Tibetan Plateau, reflecting the total ozone loss over the Tibetan Plateau and the
low-ozone-value center.
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3.2. Relationship of ENSO with the Ozone over the Tibetan Plateau

To understand the connection between ENSO and the ozone over the Tibetan Plateau,
the correlation coefficient between the Nino 3.4 index and the TCO* in the main UTLS region
(35◦–110◦E, 30◦–45◦N over the Tibetan Plateau) was calculated. Chang et al. illustrated
the relationship between the Nino 3.4 index and the TCO* index (TCOI) of the ozone in
the UTLS of the Tibetan Plateau, indicating that the Nino 3.4 index has a 6-month lead
with respect to TCO* [49]. Thus, ENSO is ahead of the ozone in the UTLS over the Tibetan
Plateau and is in the same phase.

According to this hypothesis, we expected ENSO to affect the ozone in the UTLS
over the Tibetan Plateau in the following summer. To verify this, we analyzed the average
distribution of TCO* in UTLS in the year following El Niño and La Niña.

As shown in Figure 3, both the TCO* distribution maps obtained using the ERA5 data
or the MERRA-2 data show the TCO* low-value center over the Tibetan Plateau in the UTLS
with a two-core-structure ozone valley in the summer following a typical El Niño. Figure 3a
shows that the low TCO* center reached −1.8 DU, and the lowest negative TCO* latitudinal
deviation in Figure 3b reached −4.2 DU. In the following summer, when a typical La Niña
occurred, the TCO* depletion or the influencing area strengthened. Figure 3c shows that the
low TCO* area extended to the west and even rose north from the Caspian Sea to connect
with the Arctic Circle. Figure 3d exhibits a more obvious TCO* depletion of up to −4.0 DU
and a larger low-value area compared to Figure 3c.
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Figure 3e,f shows the results obtained in the summer following El Niño minus the
summer following La Niña, which shows the difference in the distribution of the TCO* in
the two phases of ENSO. The two datasets showed a consistent distribution, with positive
values mainly in the Caspian Sea and its northwestern part, the Tibetan Plateau and its
northeastern part, located near the two cores of the ozone valley, reaching maxima of 1 DU
(ERA5) and 1.9 DU (MERRA-2). The negative values were mainly located in the middle of
the two positive areas, reaching −0.7 DU (ERA5) and −1.5 DU (MERRA-2). These caused
the ozone valley to be more pronounced in the summer following La Niña compared
to El Niño.

Overall, the low TCO* distribution in the UTLS in the year following La Niña was
wider with more pronounced TCO* depletion than that in the year following El Niño.

To further reveal the impact of ENSO on the ozone over the Tibetan Plateau in the
UTLS, we started with anomaly distributions to find the relationship between ENSO and
the total O3.

The O3-anomaly distributions in the UTLS in the summers following El Niño and La
Niña are shown in Figure 4. The results based on ERA5 and MERRA-2 were generally
consistent. In the south of the ozone-valley region, the summer O3 anomalies following El
Niño and La Niña were opposite to each other. The O3 anomalies were around −0.2 DU to
−0.4 DU in the summer following El Niño (Figure 5a) but were mostly positive, around
0.15 DU, in the summer following La Niña (Figure 5b). Due to the asymmetry of ENSO, the
distribution of its effects did not correspond exactly. The range of negative O3 anomalies
in the summer following El Niño was larger than the range of positive anomalies in the
summer following La Niña, with one positive anomaly in the north of the Tibetan Plateau.
In addition, in the northern region, the summer following El Niño and La Niña showed
mostly negative anomalies, located near 60◦E following El Niño and near 40◦E and 120◦E
following La Niña. All these results suggest that El Niño leads to a decrease in O3 in most
of the ozone-valley area in the following summer, while La Niña causes an increase in O3
in the south but a decrease in O3 in the north of the ozone valley.
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In conclusion, the El Niño climate plays a crucial role in ozone depletion and the
formation of ozone low-value centers in the study area, especially in the Tibetan Plateau.
The following section explores how ENSO affects the ozone over the Tibetan Plateau
in the UTLS.

4. Analysis of the Effect of ENSO on the Ozone Valley over the Tibetan Plateau

The dynamics are important factors affecting the ozone valley over the Tibetan Plateau
in the UTLS, and we can study the effects of ENSO by analyzing the circulation field.

Figure 5 shows the upper- and lower-atmosphere circulation and SST anomalies in the
summers following El Niño or La Niña. The level of 200 hPa is more representative of the
UTLS. Figure 5a shows scattered negative vorticity in the south of the ozone valley in the
200-hectopascal altitude layer, representing a weak anticyclonic circulation combined with
the wind field in the summer following El Niño. This anticyclonic circulation can pump the
low-concentration ozone to a higher level, reducing the ozone concentration in the UTLS,
which also corresponds to the negative anomalies of O3 in the south in Figure 4. In the
north of the ozone-valley region, at heights of both 200 hPa and 850 hPa, an anticyclonic
circulation to the west and a cyclonic circulation to the east are observed.

In the summer following La Niña, cyclonic circulation in the west and anticyclonic
circulation in the east of the 200-hectopascal ozone valley occurred, as shown in Figure 5c.
This pumped down the higher ozone concentration in the west and pumped up the low
ozone concentration in the east, corresponding to the opposite O3 anomalies in the east and
west in Figure 4b.

Previous studies showed that abnormal SAH pressure is one of the important factors
that affect the ozone [34,50]. Figure 5 shows that the SAH position corresponded to the
anticyclonic circulation in the southern part of the ozone-valley region, and that the SAH
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was enhanced in the summer following El Niño. This enhancement was caused by the
positive sea-surface-temperature anomalies (SSTA) in the Indian Ocean in the following
summer (Figure 6), through the second level of thermal adaptation in the two-stage thermal
adaptation in the atmosphere [51]. The theory of the two-stage thermal adaptation proposes
that the sensible heat generated by the warm SSTA in the Indian Ocean makes the eastern
side of the Indian Ocean produce southerly winds, which bring the abundant water vapor
from the ocean to the land and produce rainfall. The latent heating, which is located in the
mid-troposphere, decreases with increasing height, resulting in anticyclonic anomalies in
the upper layers and the strengthening of the SAH. This further leads to the strengthening of
the westward extension of the West Pacific subtropical high and the abnormal enhancement
of the SAH, corresponding to the anticyclone-circulation anomalies in the lower layer in the
northwest-Pacific region in Figure 5b and the anticyclone-circulation anomalies in southern
Asia in Figure 5a.
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5. Simulated ENSO Effects on the Ozone over the Tibetan Plateau

The relationship between and influence mechanism underlying ENSO and the ozone in
the UTLS over the Tibetan Plateau were discussed in the previous sections. The simulation
results using the WACCM4 model are illustrated here to further strengthen our hypothesis.

For the external forcing of the WACCM4-model experiment, the SSTA time series from
Figure 1 were used. The composite SSTAs are shown by the thick red lines in Figure 7.
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Figure 7. The SSTAs in the 5◦S−5◦N, 190◦E−240◦E region from the selected ENSO events. (a) El
Niño, (b) La Niña. Thin lines represent the ENSO events, and thick lines represent the composite
SSTA obtained by averaging the SSTAs.

This experiment added the El Niño (La Niña) event SSTAs in the 5◦S–5◦N region to
simulate the response of the UTLS ozone to ENSO events for the 1955–2005 period (Table 1).
For model balance, the first 5 years with normal SSTAs were used as the spin-up time. For
the following 2 years, the composite SSTA of El Niño (La Niña) in Figure 7 were used to
impose forcing. The duration of the composite SSTA of El Niño (La Niña) in Figure 7 is two
years, that is, 24 months. The months in which the SSTAs were less (or more) than 0.5 ◦C
were replaced with the normal SSTAs, after which the modified SSTAs were used to impose
forcing. The SSTA forcing of a 2-year El Niño (La Niña) was applied every 3 years, and the
normal SSTAs were used in the remaining years. For comparison, this study also simulated
the SSTAs of normal years by adding the last 20 years as the climate state in normal years
for 33 consecutive years.
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Table 1. Simulation experiment design.

Trial Simulation Period Simulation Process

E1 1955–2005

The SSTA force was applied at 5◦S–5◦N, 190◦E–120◦W.
The normal-year SSTAs are given for the first 5 years as the

spin-up. Next, the SSTA of the composite El Niño events was
added for every five years. For the composite El Niño

covering 5 years, we used the monthly SSTAs to predict the
months with SSTA > 0.5 ◦C (<0.5 ◦C), and the monthly SSTAs
for other months were synthesized in the normal years for the

first 2 years. For the last 3 years, normal SSTA forcing was
used. A total of nine observations of the composite El Niño

events were added to the SSTA.

E2 1955–2005 Similar to E1, with the addition of the observed composite
SSTA of La Niña events.

Figure 8 shows the distribution of the O3 anomalies in the UTLS for the conditions in
the summers following El Niño and La Niña. The O3 anomalies showed a reverse change in
the summers following El Niño and La Niña at low latitudes. They were negative, around
−0.3 DU, following El Niño and positive, around 0.3 DU–0.44 DU, following La Niña. At
middle latitudes, there were significant positive anomalies in the range of 90◦E–120◦E and
insignificant negative anomalies in the range of 50◦E–90◦E in the summer following El
Niño. Negative anomalies were present in the range of 30◦E–50◦E and 70◦E–100◦E in the
summer following La Niña. The simulation results and the observed results (Figure 4)
were in good agreement at low latitudes, with negative anomalies in the summer following
El Niño and positive anomalies in the summer following La Niña. At middle latitudes,
there were other signals in the real atmosphere in addition to ENSO, and the observed
results deviated from the simulation results, reflecting the influence of ENSO on O3. The
comparison shows that the negative anomalies were roughly in the range of 40◦E–80◦E
and that the positive anomalies are in the range of 80◦E–120◦E at middle latitudes, and
the positive anomalies were more significant in the simulation results. By contrast, the
two simulated negative-anomaly regions at middle latitudes in the summer following La
Niña will have been more westward than those that were observed.

Figure 9 shows the simulated distribution of the horizontal winds and relative-vorticity
anomalies at 200 hPa and 850 hPa in the summers following El Niño and La Niña. In the
summer following El Niño, the upper-atmosphere circulation was characterized by anticy-
clonic circulation with negative-vorticity anomalies at low latitudes and in the northern
ozone valley, and cyclonic circulation with positive-vorticity anomalies in the northeast
of the Tibetan Plateau. In the summer following La Niña, strong cyclonic-circulation
anomalies were present between the Iranian plateau and the Tibetan Plateau for the upper-
atmosphere circulation, while anticyclonic circulation occurred over the Tibetan Plateau.
The lower-atmosphere circulation was characterized by anticyclonic-circulation anoma-
lies at low latitudes. The circulation-anomaly and vorticity-anomaly regions correspond
to the O3-anomaly region in Figure 8. These circulation dynamics directly caused the
ozone changes. The simulated results roughly agreed with the observations in terms of
distribution. In the summer following El Niño, anticyclonic-circulation anomalies and
negative-vorticity anomalies in the upper level were present at low latitudes and near 70◦E
at middle latitudes, and cyclonic-circulation anomalies were present in the northwest of
the Tibetan Plateau. For the summer following La Niña, a cyclonic-circulation anomaly
and an anticyclonic-circulation anomaly in the upper level near 30◦N corresponded well
with the observations.
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Overall, the simulation results were consistent with observations. The ozone and
circulation simulations at low latitudes were more accurate because they revealed the
negative anomalies in the summer following El Niño and the positive anomalies in the
summer following La Niña. The simulation results for the O3 at different latitudes also
showed similar distributions, but at high latitudes some differences were noted due to
other signal influences in addition to ENSO.

6. Conclusions and Discussion

This study used the ozone-mixing ratios of ERA5 and MERRA-2 in the summers of
43 years (1979–2021) to investigate the ozone over the Tibetan Plateau in the UTLS by
analyzing the TCO*- and O3-anomaly distributions. Based on the comparative analysis of
the spatial- and temporal-distribution and intensity variations in the ozone in the summers
following El Niño and La Niña, and combined with the SAH, we discussed the average
SSTA field and wind field and the mechanism of ENSO’s influence on the ozone valley
over the Tibetan Plateau. Our hypothesis was further verified through model simulations.
We can draw the following conclusions:

(1) The two cores of the ozone valley in the UTLS in the summer following La Niña are
more obvious than those in the summer following El Niño. At low latitudes, negative O3
anomalies in the UTLS were observed in the summer following El Niño, and positive O3
anomalies were observed in the summer following La Niña. At middle latitudes, a negative
O3 anomaly was present in the UTLS near 60◦E in the summer following El Niño, and
negative anomalies at 40◦E and 120◦E occurred in the summer following La Niña.

(2) The analysis of the flow and vorticity fields suggested that the anomalies in these
fields cause vertical motion, which in turn leads to the mixing of different concentrations
of ozone and affects the ozone valley in the UTLS over the Tibetan Plateau. Anticyclonic
(or cyclonic)-circulation anomalies transport low (or high) concentrations of ozone from
lower (or higher) layers to higher (or lower) layers with higher (or lower) concentrations
of ozone, leading to lower (or increased) ozone concentrations at higher (or lower) layers.
The warming of the Indian Ocean SST in the summer following El Niño enhances the SAH
through two-level thermal adaptation, leading to ozone anomalies at lower latitudes in the
ozone-valley region.

(3) The simulation-experiment results using the WACCM4 model were basically
consistent with the observation results. The simulation results better reflect the influence of
ENSO because the observation data contain other signals in addition ENSO.

Through this study, we can further understand the effect of ENSO on the ozone valley
over the Tibetan Plateau and provide additional information on ozone formation.
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