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Abstract: This paper aims to address the limitations of the distribution number and uniformity of
Continuously Operating Reference Stations (CORS) and their impact on the reliability of inverting
regional groundwater storage (GWS) based on Green’s function method and using global navigation
satellite system (GNSS) data. A fusion method on the inversion of regional GWS changes from GNSS
and the Gravity Recovery and Climate Experiment (GRACE) was proposed in this paper. Taking the
Shaanxi–Gansu–Ningxia (SGN) region as an example, the in situ groundwater level data from ten
CORS stations and eight wells were used for test analyses. In this paper, an atmospheric pressure
model from the European Centre for Medium-Range Weather Forecasts (ECMWF), a global land
data assimilation system (GLDAS), a WaterGAP global hydrology model (WGHM), and mean sea
level anomaly (MSLA) data were used to quantitatively monitor the influence of vertical deformation
caused by non-tidal environmental load. After deducing these loading deformations from the filtered
time series of non-linear monthly geodetic height from the GNSS, the GWS changes in the SGN
region from 2011 to 2014 were inverted. Meanwhile, the change in surface water storage from the
GLDAS and WGHM models were removed from the terrestrial water storage (TWS) changes derived
from GRACE. On this basis, the remove–restore theory in the Earth’s gravity field was introduced to
both fuse the inversion results and obtain the regional GWS changes based on the fusion method.
The results showed the following: (1) The local characteristics from the fusion results were more
prominent than those of GRACE on the spatial scale, such as in the southwest and northeast in the
study area. In addition, the fusion results were more uniform than those from GNSS, especially for
the sparse and missing areas in which CORS stations were located, and the local effect was weakened.
(2) On the time scale, compared with GRACE, the trends in GWS changes obtained from the fusion
method and from GNSS inversion were roughly the same as the in situ groundwater level changes.
(3) For the in situ groundwater wells “6105010031” and “6101260010”, the correlation coefficients of
the fusion result were 0.53 and 0.56, respectively. The accuracy of the fusion method was slightly
higher than that from GNSS, which indicates that the fusion method may be more effective for areas
where CORS stations are missing or sparsely distributed. The methods in this paper can provide
significant reference material for hydrodynamic research, sustainable management of water resources,
and the dynamic maintenance of height data.
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1. Introduction

Groundwater storage (GWS) resources are an important part of the global water
cycle system and are one of the key issues affecting national economic and social devel-
opment. Accurate estimation of GWS changes can serve water resource management and
environmental and disaster-related research. Therefore, it is of great economic and social
significance to pay attention to the trends in GWS changes in China [1]. Conventional
methods for monitoring GWS changes mainly include pressure gauge measurement and
ground network measurement [1,2]. It is difficult to monitor the changes in large-scale
groundwater levels by pressure gauge measurements confined to the coverage point scale.
Depending on the specific yield of the study area, a network of stations can estimate the
dynamic characteristics of GWS changes on the medium-long spatial scale by relying on in
situ water level data. However, this method consumes significant manpower and material
resources in the dynamic maintenance of the network of stations and in the unified measure-
ment of the water level. In addition to the above two observation methods, groundwater
hydrological models can also be used to estimate regional GWS changes, but there are some
limitations in terms of model description and data acquisition [3].

Accurate monitoring for regional GWS changes is an important support task for the
implementation of groundwater tracking and detection, the establishment of databases
on the hydrological environment and the formulation of effective management and early
warning measures for water resources. The emergence of the Gravity Recovery and Climate
Experiment (GRACE) provides a new way to monitor GWS changes [4]. The inversion
methods used in the GRACE and global navigation satellite system (GNSS) techniques have
their own advantages and limitations [5]. For example, the theoretical spatial resolution of
satellite gravity is 330 km [6], lower than the ~50 km resolution of GNSS using intensive
station network data. However, compared with GNSS inversion, inversion in the GRACE
method is not as easily affected by the number and distribution of stations in the network,
which provides it with the advantage of a uniform observation scale [7].

Solid earth produces an elastic deformation response under the load of water, snow, ice
and the atmosphere. This geophysical response can be obtained by Green’s load function
integration method [8]. According to the dynamic equation of Earth’s load deformation,
the change in regional terrestrial water storage (TWS) or GWS can be inverted based on
vertical displacement data from the GNSS combined with environmental loading data. At
present, most studies on water storage changes are based on data derived from the vertical
displacement of the GNSS, and environmental loading data are adopted to construct the
observation of the inversion model. The Tikhonov regularization and ridge estimation are
used to solve the ill-posed problem depending on Green’s function method and obtain
regional TWS changes [9–11]. Meanwhile, the corresponding spatiotemporal variation in
GWS can be quantitatively estimated by the GRACE spherical harmonic method combined
with surface hydrological models, such as GLDAS, CPC, CLM4.0, or CLM4.5. For over-
exploited groundwater areas, such as northern India, the Central Valley of California,
Pakistan, and the North China Plain, GRACE technology can monitor the changes in
GWS. The monitoring results can be compared with conventional monitoring methods and
groundwater hydrological models, which are in good agreement with each other [3,12,13].

The elastic loading deformation of the Earth’s surface is produced when the load of
a GWS change acts on solid earth [14,15]. Loading deformation is caused by changes in
surface mass, mainly in the horizontal and vertical directions. The magnitude of vertical
load deformation as a result of GWS changes is about 2~3 times that of load deformation
in the horizontal direction [8,15]. At present, most research focuses mainly on inverting
the regional water storage variation using the GNSS technique, which depends on the
residual time series of geodetic height that removes some of these loading effects [16–19].
In addition, some scholars have combined GRACE and GNSS data to monitor regional
groundwater storage changes [20–22]. However, such studies do not fuse the two types
of data and analyze the results of this fusion. The reliability of the inversion results from
the GNSS mainly depends on the accuracy of the observation data and the density of the
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station network. The denser the stations’ distribution, the higher the spatial resolution
will be, and the higher the accuracy of observation data, the more accurate the inversion
results. Therefore, GRACE data are introduced into GNSS inversion for fusion processing,
especially for areas with sparsely distributed stations, which is of great value for improving
the accuracy and reliability of inversion results.

In this paper, a fusion method for inverting regional GWS changes by integrating
GNSS and GRACE data is proposed. Combined with multi-source data, including geodetic
height data from GNSS, MSLA changes, atmospheric pressure models, WGHM and GLDAS
models, and in situ groundwater level data, and taking the SGN region as an example, the
impact of the non-tidal environment’s loading deformation is comprehensively calculated.
Regional GWS changes are inverted by using Green’s loading function method and the
spherical harmonic function method, which use GNSS and GRACE data, respectively. On
this basis, the remove–restore theory in Earth’s gravity field is introduced to fuse the two
results from GNSS and GRACE, thus obtaining more reliable spatiotemporal changes in
regional GWS in the SGN.

2. Data and Fusion Method
2.1. Data
2.1.1. GNSS Data

We adopted geodetic height data from 10 CORS stations, resulting from continuous
GNSS observations in the SGN region from 2011 to 2014. Data processing was carried
out via GAMIT/GLOBK software 10.7 version [23]. Single-day region relaxation solutions
for station and satellite orbits were obtained using each GNSS station’s daily data. Based
on the GAMIT-derived baseline solutions, GLOBK was employed in joint adjustment to
obtain time series of station coordinate changes under the ITRF2014 framework [24]. Solid
tides, ocean tidal signals and atmospheric tidal signals were removed using the IERS 2010
protocol. Limited by the acquired station data, only 10 CORS data of relatively good quality
can be used for experimental research. An SSA method combined with a 3 times standard
deviation criterion was adopted to detect and eliminate outliers in the geodetic height
time series from GNSS [25]. For shifts in these time series, a fitting method based on a
GNSS coordinate time series function model was used to remove the linear trend and
step terms and reduce the influence of tectonic movement, earthquakes and instrument
replacements [13]. The SSA algorithm [26] was used for interpolation compensation for
missing data. The locations of the Continuously Operating Reference Stations (CORS) in
the SGN region are shown in red in Figure 1, and the locations of wells for monitoring
groundwater level are shown in green. In addition, the main parameters used in the GAMIT
calculation are given in Table 1.

Figure 1. Location of CORS stations and wells for monitoring groundwater level in the SGN region.
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Table 1. The main parameters used in the GAMIT calculation [26,27].

Parameter Processing Mode

Tropospheric model Saastamoinen + GPT2w + estimation
Ionosphere delay model LC_AUTCLN

Ambiguity resolution LAMBDA method
Satellite cut-off elevation angle (◦) 10

Sampling interval data 15 s
Solid tide model IERS2010

Ocean tide model FES2004 (otl_FES2004.grid)
Atmospheric mapping function VMF1
Solar radiation pressure model ECOMC model

PCO/PCV IGS14 atx
Framework of prior coordinates ITRF2014

Inertial framework J2000

2.1.2. GRACE Data and Post-Processing

The GSM solutions from the GRACE mission were used in this paper, as downloaded
from the Center for Space Research (CSR, the University of Texas at Austin). A level-2
(RL06) monthly gravity field model GSM was regularized by the SH coefficient, which
deducts the effects of solid tides, ocean tides, solid polar tides, non-tidal atmospheres, and
oceanic influences, as well as gravity disturbances caused by other entities, such as the sun
and the moon.

We used GRACE CSR RL06 data (up to a degree and order of 60) to invert regional
TWS, according to Equation (2) [28]. The noise of high-degree and high-order coefficients
was filtered by fan filtering with a smooth radius of 300 km [29,30]. The correlation error
was removed via P3M15 decorrelation filtering [31]. The coefficients of the first degree were
replaced by the satellite laser ranging (SLR) estimates [32]. In addition, we replaced the C20
coefficients of GSM with GRACE Technique Note 14 [33]. For missing monthly data, the
spherical harmonic (SH) coefficients were filled in by averaging the values from the two
adjacent months [34,35].

2.1.3. Atmospheric Pressure Data

The monthly global atmospheric pressure model was derived from European Centre
for Medium-Range Weather Forecasts (ECMWF)’s reanalyzed ERA-Interim surface pres-
sure product data, with a spatial resolution of 0.25◦ × 0.25◦ (https://www.ecmwf.int/
(accessed on 1 February 2022)) [36]. The time period of the data was from January 2011 to
December 2014, the same as GNSS data. Using these data, we calculated the crustal vertical
displacement from atmospheric loading changes, which included non-tidal atmospheric
pressure changes as well as the tidal component [37].

2.1.4. MSLA Data

Merged monthly sea level anomalies (MSLA) grid data provided by AVISO (Archiv-
ing Validation and Interpretation of Satellite Oceanography) with 0.25◦ × 0.25◦ spatial
resolution (https://www.aviso.altimetry.fr/ (accessed on 5 January 2022)) were used in
this paper. These data were calculated from observations of multiple satellite altimeters
(TOPEX/Poseidon, Jason-1/2 and Envisat) covering the period from January 2011 to De-
cember 2014. Necessary geophysical corrections, such as tidal corrections and inverse
barometer corrections, were applied by AVISO [38]. In addition, we used MSLA data
from the AVISO website to calculate the crustal vertical displacement driven by non-tidal
ocean load.

2.1.5. GLDAS Noah Hydrological Model

The monthly global land data assimilation system (GLDAS) hydrological model
was constructed by NASA (National Aeronautics and Space Administration) and the

https://www.ecmwf.int/
https://www.aviso.altimetry.fr/
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National Centers for Environmental Prediction (NCEP), reflecting monthly changes in
soil water, ice and snow, and vegetation water content on the Earth’s surface (https://
mirador.gsfc.nasa.gov/ (accessed on 6 January 2022)), incorporating four terrestrial surface
modes—NOAH, VIC, CLM and MOSAIC. Among several land surface models from
GLDAS, the NOAH model is the most commonly used for hydrological applications [39,40].
We used the monthly GLDAS NOAH 2.1 hydrology model with a spatial resolution of
0.25◦ × 0.25◦ in this paper [30]. Observations from the GLDAS model are available from
January 1979 until present. The TWS estimates from GLDAS NOAH included three main
compartments, namely CAN, SM, and SN. In the GLDAS NOAH model, no ice sheet
flow and mass balance were included; Antarctica and Greenland were thus excluded
from computations. Moreover, GLDAS types of hydrology loading do not include surface
water and groundwater compartments. Therefore, the total vertical surface displacement
caused by changes in the load from soil water, ice and snow, and vegetation water could
be calculated.

2.1.6. WGHM Hydrological Model

We made use of the WaterGAP global hydrology model (WGHM) developed at the
University of Frankfurt [41]. The WGHM version adopted in this paper was model Wa-
terGAP v2.2d. Irrigation accounts for 60~70% of global water withdrawal uses [41]. The
WaterGAP model contains information on CAN, SN, SM, GW, and SW parameters [29].
The model was implemented to provide information on ground and surface waters and
the exchange of water between them. Five different uncertainty sources were identified
in WaterGAP: climate forcing, land cover, model structure, human water use, and data
calibration concerning observed water discharge. WaterGAP 2.2 had a 0.5◦ × 0.5◦ spatial
resolution and spanned the time period from January 2011 to December 2014, which was
almost the same as the GRACE observation period.

2.1.7. In Situ Data of Groundwater Level

The in situ groundwater level data were obtained from the groundwater level year-
book of Shaanxi Province. The data comprised the groundwater depth observed by eight
monitoring wells in the Guanzhong area. The observation time resolution was five days
and its unit was meters. To compare the GNSS, GRACE, and fusion inversion results
quantitatively, the in situ groundwater level data were averaged and the monthly variation
data were obtained.

2.2. Fusion Method
2.2.1. The Inversion from GNSS Data

The goal of this paper was to study the spatiotemporal changes in GWS in the SGN
region. Because the number of regional stations was significantly lower than that of the
spatial grid points, the constructed normal equation had rank deficiency. Therefore, the
Laplace prior matrix and regularization method are introduced in this paper to solve
the ill-posed problem of the algorithm equation [42,43]. Based on Green’s load function
deformation theory, the inversion model using the residual vertical displacement from
GNSS is constructed as

((Aux− yu)/σu)
2 + αui

2(L(x))2 → min (1)

where σu is the vector standard deviation of vertical displacement observations; Au is
Green’s radial function coefficient matrix; x is the equivalent water height of parameters to
be solved corresponding to grid points in study area; yu is the residual vertical displacement
observation from GNSS; αu is the corresponding regularization parameters; and L(x) is the
Laplacian matrix [43].

https://mirador.gsfc.nasa.gov/
https://mirador.gsfc.nasa.gov/
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2.2.2. The Estimation from GRACE Data

Aliasing stripe errors in GRACE data should be filtered to improve the signal-to-noise
ratio of the inversion results. Due to the limitations of single filtering, fan and decorrelation
filtering are combined in this paper to reduce the influence of high-degree noise in the
time-variable gravity field model. The calculation model of the combined filtering method
is as follows [44,45]:

∆hw(ϕ, λ) =
Rρe

3ρw
∑N

n=0 Wn∑n
m=0

2n + 1
1 + k′n

[∆Cnm cos mλ+∆Snm sin mλ]·Wm·Pnm(cos ϕ) (2)

where (ϕ, λ) are the geocentric colatitude and longitude of ground points; (∆Cnm, ∆Snm)
are variations in the normalized potential coefficient with degree n and order m; Pnm(·) is
the normalized associative Legendre functions; kn is the load LOVE number with degree
n [46]; ρw ≈ 103kg/m3 is the density of water; ρe ≈ 5.5× 103kg/m3 is the average density
of solid earth; R is the radius of the Earth; and Wn, Wm are filter kernel functions with
degree n and order m. In the current calculation of surface mass change derived from
GRACE, the kn load Love number used is based on the preliminary reference Earth model
(PREM), and its order is as high as 40,000. Only the numerical results of the first 10 orders
of the kn load Love number are given in this paper. The results from order 0 to order 10
are 0.0000, −0.3057, −0.1963, −0.1339, −0.1049, −0.9050, −0.8223, −0.7671, −0.7260 and
−0.6930 [46].

2.2.3. Fusion Method Based on GNSS and GRACE Data

The specific process by which the fusion of GNSS and GRACE data was achieved
to invert regional GWS variation was based on remove–restore theory, which can be
summarized as follows: (1) The SSA algorithm is used to decompose and reconstruct
the post-processed geodetic height time series from GNSS, and the corresponding time
series of multiple principal components are obtained. The weighted correlation analysis
method is used to calculate the correlation coefficient between each principal component to
determine the degree of separation, effectively extracting the nonlinear deformation signals.
The influence of deformation caused by environmental load changes is comprehensively
calculated, and the residual displacement observation in the GNSS inversion model is
obtained by deducting the load influence. (2) Based on Green’s function method, the
residual displacement observation from GNSS is used to invert regional GWS changes at a
spatial resolution of 0.5◦ × 0.5◦, and the independent inversion result derived from GNSS
is recorded as GWS_GNSS. It should be noted that GNSS inversion involves the rank defect
of the normal equation, and the regularization method is used in this paper to solve this
problem. (3) GRACE gravity data are post-processed, and the reference frame is unified to
further invert the regional GWS changes with the same spatial resolution. This is named
GWS_GRACE. (4) By introducing the remove–restore theory, the GWS changes observed
by GRACE are removed from the time series of GWS changes derived from GNSS at the
CORS stations, and the residual time series from ten CORS stations are obtained. (5) The
kriging interpolation method is used to interpolate the residual series from ten stations into
a regional grid of residual GWS changes with a spatial resolution of 0.5◦ × 0.5◦, which is
recorded as GWS_Residual. (6) The “GWS_Residual” residual grid value is added back to
the “GWS_GRACE” grid to obtain the regional GWS change based on the fusion method,
which is recorded as “GWS_Fusion”.

Because the study area of this paper was the Shaanxi–Gansu–Ningxia region, the
selected latitude and longitude range was 102◦~111◦E, 31◦~40◦N. To solve the problem
of border areas without stations, we increased the integral radius of Green’s function. Of
course, in areas where there are no stations, the reliability of the GNSS inversion results is
limited, which is why we added GRACE data for fusion inversion. The specific process is
shown in Figure 2.
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Figure 2. Method flow of regional GWS variation derived from the fusion of GNSS and GRACE data.

3. Fusion Results and Analysis
3.1. GNSS Data Extraction and Environmental Loading Deformation Calculation

In order to improve the accuracy of GWS changes derived from GNSS, the SSA
method was used to carry out gross error detection, step term correction, filtering, and
noise reduction on the original geodetic height time series of the ten CORS stations. In
addition, monthly averaging is adopted, and the monthly variation in geodetic height
is obtained, as shown by the red curve in Figure 3. The blue curve represents the time
series after gross error detection and step term correction without filtering and monthly
average processing.

Figure 3. Daily and monthly variation time series of geodetic height at 10 CORS stations.
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In this paper, the vertical deformations from CORS stations caused by different en-
vironmental loads were comprehensively calculated, such as loads from atmospheric
pressure, non-tidal ocean, soil water, ice and snow, vegetation, and water from rivers, lakes,
and reservoirs. Deducting the same time benchmarks of all monthly averages, the monthly
deformation sequence was obtained. These load deformation effects are shown in Figure 4.

Figure 4. The influence of various environmental loads on the vertical deformation of ten
CORS stations.

To obtain the residual deformation observations in the GNSS inversion model, it was
necessary to deduct the total load influence shown in Figure 4 from the processed time
series from GNSS. The time series of residual geodetic height was obtained as shown in
Figure 5.

Figure 5. The monthly variation in geodetic height at ten CORS stations and the residual geodetic
height change after deducting the total load influence.
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3.2. Regional GWS Variation Derived from GNSS

Based on the residual time series of geodetic height from GNSS, the Green’s function
integral method was adopted to construct the GNSS inversion model, and the regularization
method was adopted to solve the regional GWS variations with the resolution of 0.5◦ ×
0.5◦. The integral radius was set to 1 degree. The spatial grid of regional GWS changes
inverted by GNSS is shown in Figure 6. To intuitively show the seasonal characteristics of
the inversion results, the spatial distribution of the inversion results from February, May,
August, and November from 2011 to 2014 are given in this paper. The x-axis represents the
longitude range (102◦~111◦E), the y-axis represents the latitude range (31◦~40◦N), and the
z-axis represents the actual numerical results of GWS variations.

Figure 6. Spatiotemporal variation in GWS in the SGN region from 2011 to 2014 derived from
GNSS data.
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It can be seen that the results derived from GNSS better reflect the spatiotemporal
distribution characteristics of the regional GWS from 2011 to 2014. However, signals with
large amplitudes were generally distributed close to the stations, and the local effects
were obvious. In areas where stations were missing or sparsely distributed, such as the
southwest and northeast of study area, the signal strength was relatively weak. In addition,
there may have been greater uncertainty, and the reliability of the inversion results was
therefore constrained.

On this basis, the spatial grid of regional GWS independently derived from GNSS
was interpolated to the CORS stations via the Kriging interpolation method, and the time
series of GWS changes at the ten CORS stations were obtained, as shown in Figure 7. At
this time, the linear terms of the results were derived from GNSS. It can be observed from
Figure 7 that the time series of GWS changes in each station derived from GNSS fluctuated
obviously, and while there were amplitude changes of different degrees, the overall trend
was consistent.

Figure 7. Time series of GWS changes at ten CORS stations derived from GNSS data.

3.3. Regional GWS Changes Derived from GRACE

In this paper, the monthly gravity field model of GRACE from January 2011 to Decem-
ber 2014 was used to invert regional TWS changes with the same resolution. The relative
variation in the monthly gravity field could be acquired after deducting the multi-year
average [45]. The glacial isostatic adjustment (GIA) effect was subtracted depending on the
crustal equilibrium model from Paulson [47]. Furthermore, a single-scale factor k = 1.21 [48]
was used to redu ce leakage errors caused by filtering.

To obtain the change in GWS in the study area, it was necessary to deduct the soil
water, ice and snow, vegetation water content, and the water storage of rivers, lakes, and
reservoirs from TWS changes derived from GRACE. The surface water storage changes
with a resolution of 0.5◦ × 0.5◦ (including soil water, ice and snow, and vegetation) in the
study area were obtained by the GLDAS model. The water storage changes in rivers, lakes,
and reservoir were extracted from the WGHM model. In this paper, taking July in 2011 as
an example, the spatial distributions of the water storage of soil water, snow, rivers, lakes,
and reservoirs are shown in Figure 8.
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Figure 8. Spatial distribution of water storage in surface water, rivers, lakes, and reservoirs.

The spatial distribution of the TWS changes derived from GRACE after recovering the
leakage signal are shown in Figure 9. Taking 2011 as an example, the spatial changes in
TWS from GRACE in February, May, August, and November are given in the figure.

Figure 9. Spatial distribution of regional TWS variations derived from GRACE.

As can be seen from Figure 9, taking 2011 as an example, the change in TWS from
GRACE has obvious spatiotemporal heterogeneity. In May 2011 and November 2011,
the signal intensity in the SGN region showed a decreasing trend from east to west, and
the change in water storage near Xi’an showed an obvious loss in May and a surplus in
November. In February and August of the same year, there was no abnormal change in
water storage, and the spatial distribution was more consistent.

To be consistent with the process for GRACE data, SH expansion, combined filtering,
and scale factor correction were performed on the GLDAS model in this paper to further
invert changes in soil water and snow and vegetation water content, which were deducted
from the GRACE-corrected results. The obtained spatiotemporal distribution of the GWS
in the SGN area is shown in Figure 10.

It can be observed from Figure 10 that the GWS changes derived from GRACE showed
obvious spatial inhomogeneity within individual months. In winter and autumn, the
GWS in most areas increased to varying degrees. In 2011 and February 2014, the GWS
in Yinchuan and Xi’an increased most significantly. From 2011 to 2013, the loss of GWS
in spring was serious. This strong loss signal appeared in the Xi’an area in May 2012
and August 2013. In May 2012 and August 2013, the GWS derived from GRACE in Xi’an
showed a serious loss, and this loss signal may have been related to the impact of leakage
in the signal from adjacent areas caused by GRACE filtering [49].

In addition, we estimated TWS changes by GPS station location using GRACE data in
spherical harmonic form to further obtain the single-point time series of GRACE estimation
results, rather than interpolate the GRACE results grid into the CORS station positions, as
shown in Figure 11.
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Figure 10. Spatiotemporal distribution of regional GWS derived from GRACE from 2011 to 2014.

Figure 11. Time series of GWS changes at CORS stations derived from GRACE.
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From Figures 10 and 11, we can see that the spatial characteristics of regional GWS
changes derived from GRACE were not refined, and the local characteristics were difficult
to highlight. The fluctuation in the temporal distribution was more obvious. The overall
time series trend of GWS from GRACE was consistent among stations, but the amplitude
was slightly different.

3.4. Regional GWS Changes Based on the Fusion Method

GNSS inversion mainly reflects the local signal characteristics and their short-wave
signals, whereas GRACE results are mainly reflected in the mid-long wave signal. In this
paper, based on the “remove and restore” method of local gravity field approximation, the
residual signal after removing the long-wave signal was obtained by deducting the GRACE
single-point results from the single-point time series of GNSS inversion at the position
of CORS stations. The regional residual signal grid was then obtained by interpolation.
On this basis, re-adding the mid-long wave signal of the GRACE result grid through the
“remove-restore” step, the final full-wave band results of the groundwater storage change
grid were obtained.

According to the fusion concept presented earlier in Figure 2, this paper needed to fuse
the time series of regional GWS changes derived from GNSS and GRACE at the location
of the CORS stations. Deducting the GRACE result in Figure 11 from the GNSS inversion
result in Figure 7, the residual time series between them at the station location was obtained,
as shown in Figure 12.

Figure 12. The residual time series between GWS changes at CORS stations derived from GNSS
and GRACE.

On this basis, Kriging interpolation was performed on the residual time series at
the positions of ten CORS stations to obtain the residual grid value in the region. Taking
February, May, August, and November in 2011 year as examples, the spatial distribution
maps of the residual GWS variation grid after Kriging interpolation are given in Figure 13.
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Figure 13. Residual grid map of regional GWS variations obtained by Kriging interpolation method.

Figure 13 mainly reflects the residual signals after deducting the long-wave signals in
GRACE from the short-wave signals retrieved by GNSS. Taking 2011 as an example, the
residual signal had obvious spatial inhomogeneity, and the local signal characteristics were
obvious, especially in the northwest and southwest regions of the study area.

Based on the above results, the spatiotemporal grid maps of regional GWS changes
derived from GRACE in Figure 10 are added to the residual value grid map in Figure 13.
The obtained spatiotemporal distribution of the fusion inversion results are shown in
Figure 14.

It can be seen from Figure 14 that the spatial resolution of the regional GWS changes
derived from the fusion method based on GNSS and GRACE data is improved compared
with that from GRACE in Figure 10, and the detailed features are more prominent. For
example, the GWS in southern Lanzhou showed a slight loss in May 2012; meanwhile, the
GWS rebounded slightly in southeastern Lanzhou and eastern Yinchuan in August 2012.
From February to August 2013, the GWS in the Lanzhou area was in a state of continuous
loss, with the largest decrease occurring in May 2013. In February 2013, a slight decrease
in the GWS in northeastern Yinchuan occurred, and the magnitude of loss in GWS in
southwestern Yinchuan increased slightly in August 2013. In February 2014, the loss signal
of GWS was particularly significant in the northeastern part of study area. In May 2014,
the loss signal of GWS in southern Lanzhou and Xi’an was still strong. In August 2014,
the loss in GWS in southern Xi’an was alleviated, and there was an obvious surplus in the
regional water storage in November of the same year. However, the largest increase signal
in regional GWS was particularly significant in southeastern Lanzhou in November 2014.

It can be seen that compared with the results derived from GRACE, the fusion in-
version results also better captured the detailed characteristics of regional GWS changes,
despite sparse and missing areas for CORS stations, such as the southwest and northeast in
the study area.
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Figure 14. Spatiotemporal distribution of regional GWS change from 2011 to 2014 derived from the
fusion method depending on GNSS and GRACE data.

To verify the reliability of the fusion method based on GNSS and GRACE data, the
three kinds of spatial grid results derived from the GNSS, GRACE, and fusion methods
were interpolated to the location of eight groundwater level monitoring wells in the study
area, and the in situ groundwater level data were adopted for verification and analysis. The
corresponding results derived from GNSS and GRACE are shown in Figure 15. It should
be noted that gross error elimination and monthly average processing were carried out for
the in situ groundwater level data.

We collected the measured groundwater level data for gross error detection and
elimination and monthly average processing. At the same time, the change water level data
were multiplied by the coefficient of “−1” and then compared with the GNSS/GRACE
results. It should be noted that because the local soil porosity data were not collected, the
measured groundwater level data were not multiplied by soil porosity. Therefore, this
paper focuses on the comparison of phase correlation and the comprehensive analysis of
the overall trend.

It can be seen from Figure 15 that both the results derived from the fusion method and
GNSS were consistent with the overall trend of the in situ groundwater level. In the second
halves of 2011 and 2014, when the groundwater level increased significantly, both the results
from GNSS and the fusion method all showed a significant increase in GWS. From June
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2012 to June 2013, the groundwater level of most monitoring wells decreased significantly,
and the GWS derived from GNSS and fusion method also showed obvious losses.

Figure 15. Comparison of three kinds of inversion results with in situ groundwater level data.

To quantitatively analyze the effect of the fusion method, the correlation coefficient
between the results derived from GNSS, GRACE, the fusion method, and the in situ
groundwater level data were calculated in this paper, as shown in Table 2. It can be seen
from the GWS change trend in Figure 15 and the correlation coefficients in Table 2 that
the results derived from GNSS were closer to the in situ groundwater level changes than
those derived from GRACE. However, due to the small number and uneven distribution
of CORS stations in the study area, the local effect on the inversion results from GNSS
was significant. The GRACE data were thus added to improve the imbalance in the
spatial signals of the GNSS results. From the perspective of individual stations, especially
groundwater level monitoring stations 6105010031 and 6101260010, which were located
in areas where CORS stations were missing, the accuracy of the fusion results was higher
than that of the single inversion method. The accuracy of the fusion results from the four
stations 6103220018, 6103020016, 6101120007, and 6104040002 was not as good as that of the
GNSS inversion results. It may be that these four hydrological stations were located near
the CORS station, which was mainly reflected in the GNSS inversion signals. The fusion
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method proposed in this paper is more suitable for areas where CORS stations are missing
or sparsely distributed. In addition, the comparison results of only four hydrological
stations cannot effectively show that GNSS inversion is more accurate than fusion results.
It is necessary to further strengthen the comparative study in the missing area for CORS
stations in future research.

Table 2. Correlation coefficients between results from GNSS/GRACE, fusion method and in situ
groundwater level data.

IDS of Water Level
Monitoring Station

Correlation Coefficients
(GNSS/GRACE/Fusion)

IDS of Water Level
Monitoring Station

Correlation Coefficients
(GNSS/GRACE/Fusion)

6103220018 0.35/−0.02/0.20 6103020012 0.30/−0.18/0.32
6103020016 0.60/−0.06/0.40 6101120007 0.17/−0.06/0.07
6104040002 0.21/−0.11/0.05 6105010031 0.41/−0.02/0.53
6105280034 −0.06/0.15/−0.04 6101260010 0.49/0.21/0.56

4. Discussions on the Fusion Method

This paper focuses on testing and validating the reliability of the proposed fusion
method for monitoring regional GWS changes based on GNSS and GRACE data. Fur-
thermore, the corresponding implementation process is given. It can be seen from the
verification and analysis for in situ groundwater level that the results from the fusion
method can overcome the local effect caused by inversion from GNSS well. Moreover, the
uncertainty of the corresponding regional inversion results caused by sparsely distributed
or missing stations may be reduced. Compared with the results from GRACE, the spatial
details are more prominent in the fusion results.

In our paper, we found that there was a large difference between results from regions
such as Xi’an and Lanzhou derived by the fusion method and GRACE. Li [23] also found
that obvious differences in spatial distributions still existed in some major cities from the
SGN region when comparing total surface mass changes derived from GPS to GRACE/GFO
SH solutions and mascon solutions.

Therefore, in future research, several factors need to be considered and improved,
including phase difference correction, weight setting, and finer processing for in situ
groundwater level data. In fact, there was a time delay between the results from both
GNSS and GRACE, and phase difference correction should thus be performed. In view
of the different sensitivities of GNSS and GRACE to regional GWS changes, the weight
ratio for GNSS and GRACE data should be considered in the actual fusion inversion. The
optimal weight ratio can be determined by the variance component estimation method.
Strictly speaking, the in situ groundwater level data obtained from monitoring wells is
derived from water level changes contained in the soil pores of underground aquifers. If
equivalent water height data for GWS changes derived from the inversion method are
being quantitatively compared with in situ groundwater level from wells data, the in situ
groundwater level data should be multiplied by the corresponding soil porosity.

In addition, as the data collected in this paper were limited by the distribution density
of CORS stations and the length of the time series, the accuracy of the inversion results
may have been affected. Meanwhile, when comparing results of the fusion method with
those from GNSS, more in situ groundwater level data should be added for areas where
CORS stations are missing or scarce to help to enhance the contrast and credibility. Further-
more, because the spatial resolutions of the GNSS and GRACE monitoring methods were
obviously different, taking the Amazon Basin as an example, Zhang and Sun [50] found
that the load displacements obtained by GRACE and GNSS were significantly different in
both spatial averages and single points. The fusion method proposed in this paper involves
the process of inverting GWS data using the two techniques on a single point, which also
increases the uncertainty of the results obtained by the fusion method. These factors will
ultimately affect the accuracy of the fusion inversion results, which will be further studied
in future research.
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5. Conclusions

Considering that the reliability of applying Green’s function method to GNSS data to
invert regional GWS changes is limited by the number and distribution of CORS stations,
a new method for inverting regional GWS changes by fusing GNSS and GRACE data
was proposed in this paper. Here, we took the SGN region as an example, and ten CORS
stations and eight groundwater level monitoring wells were used for testing and analysis.
Compared with the results from GRACE, the spatial signal from the fusion method was
more detailed. Compared with that in GNSS, the local signal effect was weakened. In
addition, the spatial distribution of the results derived from the fusion method was more
uniform, especially in the southwest and northeast area, where CORS stations were missing
or sparsely distributed. In addition, the results from the fusion method and GNSS were
more consistent with the change trend of the in situ groundwater level. More specifically,
in the wells “6105010031” and “6101260010” located in the area where CORS stations
were missing, the accuracy of the fusion results from the two stations was higher than the
accuracy of GNSS or GRACE. Therefore, it is reasonable to conclude that the fusion method
can compensate for the shortcomings of independent inversion from GRACE. In addition,
the fusion method may be more effective for areas where CORS stations are missing or
sparsely distributed. In the follow-up work, it is necessary to deeply analyze the factors
affecting the accuracy of fusion inversion and effectively correct them.
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