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Abstract: Stockpile volume estimation plays a critical role in several industrial/commercial bulk
material management applications. LiDAR systems are commonly used for this task. Thanks to
Global Navigation Satellite System (GNSS) signal availability in outdoor environments, Uncrewed
Aerial Vehicles (UAV) equipped with LiDAR are frequently adopted for the derivation of dense
point clouds, which can be used for stockpile volume estimation. For indoor facilities, static LiDAR
scanners are usually used for the acquisition of point clouds from multiple locations. Acquired
point clouds are then registered to a common reference frame. Registration of such point clouds
can be established through the deployment of registration targets, which is not practical for scalable
implementation. For scans in facilities bounded by planar walls/roofs, features can be automatically
extracted/matched and used for the registration process. However, monitoring stockpiles stored
in dome facilities remains to be a challenging task. This study introduces an image-aided fine
registration strategy of acquired sparse point clouds in dome facilities, where roof and roof stringers
are extracted, matched, and modeled as quadratic surfaces and curves. These features are then used
in a Least Squares Adjustment (LSA) procedure to derive well-aligned LiDAR point clouds. Planar
features, if available, can also be used in the registration process. Registered point clouds can then
be used for accurate volume estimation of stockpiles. The proposed approach is evaluated using
datasets acquired by a recently developed camera-assisted LiDAR mapping platform—Stockpile
Monitoring and Reporting Technology (SMART). Experimental results from three datasets indicate
the capability of the proposed approach in producing well-aligned point clouds acquired inside dome
facilities, with a feature fitting error in the 0.03–0.08 m range.

Keywords: stockpile monitoring; LiDAR; feature extraction; feature matching; sparse point cloud;
registration; quadratic surfaces/curves

1. Introduction

Stockpile volume estimation is quite important for bulk material management. De-
pending on the type of stockpiles (e.g., aggregate, grain, salt), they could be stored either
outdoors or within indoor facilities. Salt, which is quite important for ensuring traffic flow
under winter storm conditions, is usually stored within indoor facilities [1]. As shown in
Figure 1, barn and dome enclosures are the typical indoor salt stockpile storage facilities.
Within the state of Indiana (USA), 60% of the salt storage facilities are domes. In recent years,
stockpile volume estimation has been conducted using photogrammetric and LiDAR-based
approaches [2–7]. Image-based techniques use automatically identified conjugate points in
overlapping images for deriving a 3D model covering the area of interest through Structure
from Motion (SfM) strategies [8]. These approaches might fail when dealing with datasets in
indoor facilities due to unfavorable lighting conditions, as well as the texture-less nature
of stockpiles.
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Figure 1. Samples of salt storage facilities: (a) rectangular barn and (b) dome. 

With recent advancements in LiDAR-based platforms (mobile or static), these sys-
tems have been increasingly adopted for direct derivation of 3D point clouds covering 
stockpiles [9,10]. Mobile LiDAR mapping, e.g., Uncrewed Aerial Vehicles (UAVs), relies 
on the availability of an integrated Global Navigation Satellite System and Inertial Navi-
gation System (GNSS/INS) onboard the platform to determine the position and orienta-
tion (georeferencing parameters) of the ranging sensor. Due to GNSS signal outages, mo-
bile LiDAR cannot be used for mapping indoor stockpiles. Therefore, static LiDAR sys-
tems, such as Terrestrial Laser Scanners (TLS), are usually used for monitoring indoor 
stockpiles [6]. However, due to their high cost and time-consuming data acquisition/pro-
cessing procedures, using TLS for monitoring indoor stockpiles is not scalable. 

As a solution to the abovementioned limitations of imaging and LiDAR mapping 
technologies, a camera-assisted LiDAR mapping platform, denoted as Stockpile Monitoring 
and Reporting Technology (SMART), has been developed [11,12]. The cost-effective design 
of the SMART system allows for fast and simple data collection of salt stockpiles with 
varying sizes and shape complexities. Nevertheless, such hardware design leads to sparse 
LiDAR point clouds with varying point density and a low percentage of overlap between 
captured scans. These characteristics need to be considered in the data processing steps. 

An important data processing step when dealing with static LiDAR data is aligning 
(registering) different point clouds to a common reference frame. The registration process 
aims at estimating the 3D similarity transformation parameters—i.e., three rotation an-
gles, three translations, and a scale factor—between two datasets, denoted as reference and 
source point clouds. For a well-calibrated LiDAR sensor, the laser range provides the true 
scale; thus, the registration parameters reduce to six (scale factor is unity). Registration 
can be conducted using either point- or feature-based strategies. Point-based approaches 
assume that the datasets are roughly aligned. The Iterative Closest Point (ICP) is a com-
mon approach that uses spatial proximity to establish point pairs between the reference 
and source point clouds for the derivation of registration parameters through a Least 
Squares Adjustment (LSA) procedure [13,14]. Establishing point pairs and estimating the 
registration transformation parameters are conducted iteratively until the root mean 
square of distances between conjugate points is smaller than a pre-defined threshold. ICP 
and its variants have been used in several other studies [15–17]. For example, instead of 
identifying direct point-to-point correspondences, Al-Durgham et al. [17] assigned each 
point in the source point cloud to a triangular patch (i.e., closest three points) in the refer-
ence one. Then, the source points are projected onto the respective reference patches to de-
rive point-to-point correspondences, which are then used for the estimation of registration 
parameters. ICP and its variants are widely used in several fields dealing with point cloud 
registration. Cardani et al. [18] utilized ICP to fine-tune the alignment of LiDAR scans 
collected inside historical masonry vaults for survey and shape computation. Glira et al. 
[19] performed strip adjustment of Airborne Laser Scanning (ALS) data while using several 
variants of the ICP algorithm. Although point-based techniques can efficiently conduct 
the registration process, they will fail whenever the initial transformation parameters are 

Figure 1. Samples of salt storage facilities: (a) rectangular barn and (b) dome.

With recent advancements in LiDAR-based platforms (mobile or static), these sys-
tems have been increasingly adopted for direct derivation of 3D point clouds covering
stockpiles [9,10]. Mobile LiDAR mapping, e.g., Uncrewed Aerial Vehicles (UAVs), relies on
the availability of an integrated Global Navigation Satellite System and Inertial Naviga-
tion System (GNSS/INS) onboard the platform to determine the position and orientation
(georeferencing parameters) of the ranging sensor. Due to GNSS signal outages, mobile
LiDAR cannot be used for mapping indoor stockpiles. Therefore, static LiDAR systems,
such as Terrestrial Laser Scanners (TLS), are usually used for monitoring indoor stock-
piles [6]. However, due to their high cost and time-consuming data acquisition/processing
procedures, using TLS for monitoring indoor stockpiles is not scalable.

As a solution to the abovementioned limitations of imaging and LiDAR mapping
technologies, a camera-assisted LiDAR mapping platform, denoted as Stockpile Monitoring
and Reporting Technology (SMART), has been developed [11,12]. The cost-effective design of
the SMART system allows for fast and simple data collection of salt stockpiles with varying
sizes and shape complexities. Nevertheless, such hardware design leads to sparse LiDAR
point clouds with varying point density and a low percentage of overlap between captured
scans. These characteristics need to be considered in the data processing steps.

An important data processing step when dealing with static LiDAR data is aligning
(registering) different point clouds to a common reference frame. The registration process
aims at estimating the 3D similarity transformation parameters—i.e., three rotation angles,
three translations, and a scale factor—between two datasets, denoted as reference and source
point clouds. For a well-calibrated LiDAR sensor, the laser range provides the true scale;
thus, the registration parameters reduce to six (scale factor is unity). Registration can be
conducted using either point- or feature-based strategies. Point-based approaches assume
that the datasets are roughly aligned. The Iterative Closest Point (ICP) is a common ap-
proach that uses spatial proximity to establish point pairs between the reference and source
point clouds for the derivation of registration parameters through a Least Squares Adjust-
ment (LSA) procedure [13,14]. Establishing point pairs and estimating the registration
transformation parameters are conducted iteratively until the root mean square of distances
between conjugate points is smaller than a pre-defined threshold. ICP and its variants
have been used in several other studies [15–17]. For example, instead of identifying direct
point-to-point correspondences, Al-Durgham et al. [17] assigned each point in the source
point cloud to a triangular patch (i.e., closest three points) in the reference one. Then, the
source points are projected onto the respective reference patches to derive point-to-point
correspondences, which are then used for the estimation of registration parameters. ICP
and its variants are widely used in several fields dealing with point cloud registration.
Cardani et al. [18] utilized ICP to fine-tune the alignment of LiDAR scans collected inside
historical masonry vaults for survey and shape computation. Glira et al. [19] performed
strip adjustment of Airborne Laser Scanning (ALS) data while using several variants of the
ICP algorithm. Although point-based techniques can efficiently conduct the registration
process, they will fail whenever the initial transformation parameters are not of good
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quality and/or there is only a small percentage of overlap between the reference and source
point clouds. Moreover, such methods are sensitive to variations in the point density. For
the SMART system, acquired data from different scans have minimal overlap and exhibit
significant variation in point density (the nature of acquired point clouds will be shown
later in the next section).

Feature-based techniques can reliably estimate the registration parameters while hav-
ing variation in the point density, without the need for a high percentage of overlap between
point clouds, if enough number of conjugate features with a good distribution are identi-
fied [20–22]. These algorithms are based on the fact that conjugate features among different
LiDAR point clouds would fit a single parametric model after refining the transformation
parameters through the LSA strategy. More specifically, the LSA simultaneously solves for
the parameters describing the registration transformation function and parametric models
of used features (e.g., planar, linear, and/or cylindrical features) through the minimization
of the sum of squared normal distances between points belonging to different features
and their respective parametric model. Therefore, identifying points that belong to cor-
responding features is the primary task of these approaches. Some studies conducted
feature-based registration by deploying special targets (e.g., highly reflective checkerboards
and/or spherical targets) in the study site and then identifying them in different point
clouds [23–26]. In order to increase the level of automation, several target-less registration
approaches have been proposed that rely on natural geometric features (e.g., planar patches
or linear features) in the area of interest [27–31]. For instance, Lin et al. [27] extracted
and matched planar, linear, and cylindrical features from point clouds acquired near a
bridge. Extracted conjugate features were then used in a LSA engine for the derivation of
registration and feature parameters. In the previous work dealing with SMART [11,12],
planar features were used for registering point clouds acquired in rectangular salt storage
facilities. However, these geometric features do not exist when dealing with stockpiles
within dome storage facilities.

This study introduces a registration technique that can deal with data collected by the
SMART system inside dome storage facilities. For these facilities, the roof and exposed
stringers are extracted and used as quadratic surface and curves, respectively. Moreover,
a segmentation strategy that uses normalized polar coordinates rather than Cartesian
coordinates of LiDAR points is proposed to handle variations in the point density for
extracting planar features, if available.

The remainder of this paper is organized as follows: the SMART system, data collection
procedure, and study sites are introduced in Section 2; Section 3 illustrates the proposed
data processing framework; experimental results are presented in Section 4; and Section 5
provides the research conclusions and recommendations for future work.

2. SMART System and Datasets Description

This section provides a brief introduction to the SMART system and its data collection
procedure. In addition, datasets used in this study are introduced.

2.1. SMART System Description

The SMART system, as shown in Figure 2, comprises one RGB camera, two LiDAR
units, a computer module, and an optional GNSS unit. The RGB camera is a GoPro Hero 9
that has a 5184× 3888 CMOS array with a 1.4 µm pixel size and a lens with a nominal focal
length of 3 mm. Two Velodyne VLP-16 Puck LiDAR sensors with orthogonal orientation
are installed to increase the LiDAR units’ field of view. Such design allows for a broader
coverage of the area, which facilitates the derivation of required features for point cloud
registration. Each LiDAR unit consists of 16 radially oriented laser beams that are vertically
aligned from−15◦ to +15◦ and capable of rotating 360◦ internally in the horizontal direction.
The VLP-16 Puck has a maximum measurement range of 100 m and a range accuracy of
±3 cm. The computer module is a Raspberry Pi 4b that initiates the LiDAR data acquisition
and stores collected point clouds. The system is equipped with a GNSS antenna/receiver
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for the georeferencing of acquired point clouds when operating in outdoor environments.
As shown in Figure 2, in order to reduce occlusions in the captured data, the SMART system
is deployed in the storage site using either an extendable tripod with a maximum height of
6 m (Figure 2a) or through permanent mounting on the roof (Figure 2b).
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Figure 2. The integrated SMART system used in this study with two configurations: (a) tripod-
mounted and (b) roof-mounted.

A system calibration procedure was conducted as described in [11] to estimate the
individual sensor parameters, as well as the mounting parameters relating different sensors.
Camera Interior Orientation Parameters (IOP) including principal distance (c), principal
point coordinates (xp, yp), and radial/de-centering lens distortions (K1, K2, P1, P2) were
estimated using a test field comprised of several checkerboard targets with known distances
between some of the targets. For the mounting parameters, a pole coordinate system was
first defined to establish the relative position/orientation of onboard sensors, as depicted
in Figure 3. Then, the mounting parameters between individual sensors and the pole
coordinate frame were derived through a LSA process by minimizing discrepancies among
conjugate LiDAR and image features.
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2.2. SMART System Operation

At each instance of data collection, hereafter referred to as a scan, the SMART system
captures a pair of LiDAR point clouds, along with one RGB image, as shown in Figure 4.
As can be seen in this figure, only a portion of the stockpile is covered by the point cloud
captured at one scan. To have as much coverage as possible, system motion is needed
to acquire multiple scans. The SMART system motion is realized by rotating the pole
manually or mechanically around its vertical axis in approximately 30◦ increments, as
illustrated in Figure 5a. Given this rotation angle, a minimum of 7 scans are required to
ensure a 360◦ horizontal field of view by the two LiDAR sensors. In practice, the number
of scans can vary between 7 to 13. The SMART system produces sparse LiDAR scans with
significant variation in point-density due to this simple and cost-effective design and data
acquisition procedure. Additionally, there is insufficient overlap between successive scans,
as shown in Figure 5b.
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sive scans.

2.3. Datasets Description

In this study, three datasets collected within dome salt storage facilities managed by
the Indiana Department of Transportation (INDOT) are used to evaluate the performance
of the proposed registration strategy. These facilities (shown in Figure 6) are located in
Lebanon, Frankfort, and West Lafayette, Indiana, USA. One should note that due to the
excessive amount of salt stockpile in the Frankfort dataset, the SMART system was located
at the entrance of the facility, while in the other two datasets, the system was placed close
to the dome center (see Figure 6). The impact of the SMART location within the dome will
be explained in the methodology and experimental results sections. Table 1 lists the facility
size, number of acquired scans, and location of the SMART system within the facility.
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Figure 6. Locations of the three salt dome facilities used in this study along with a sample aerial view
of each facility (aerial photo adopted from Google Earth Image).

Table 1. Data collection sites, facility size, number of scans, and system location.

Salt Dome Facility
Size (m)

Number of Scans System Location
Radius Height

Lebanon unit 10.0 11.0 9 Inside the facility
Frankfort unit 14.5 17 12 By the entrance

West Lafayette unit 13.5 15.5 13 Inside the facility

3. Methodology

The SMART system delivers a set of point clouds, denoted as a scan, captured by the
two LiDAR units after applying incremental rotation angles. The configuration/specifications
of the LiDAR units and approximate 30◦ incremental rotation result in sparse scans
with minimal overlap and significant variation in point density (as has been shown in
Figures 4 and 5). Such characteristics make the registration problem a challenging one. For
a target-less registration procedure, we have to rely on existing features in the storage facil-
ity. Given the texture-less nature of the salt stockpile surface, physical features constituting
the dome storage facility (roof, roof stringers, entrance walls, as can be seen in Figure 7) are
the only remaining alternatives. In general, SMART would acquire scans with sufficient
points for reasonable representation of the dome roof (i.e., a sparse set of points would
be adequate to represent the quadratic surface of the roof). However, depending on the
amount of salt and SMART mounting configuration (tripod-mounted or roof-mounted),
captured scans might not provide sufficient points to represent the entrance walls and/or
roof stringers. For situations where SMART is set-up close to the center of the dome using
either the tripod or permanent mounts, as shown in Figure 7a,b, acquired scans would
have sufficient points for the extraction and modeling of roof stringers. One can observe
by looking at Figure 7b that the stringers converge towards the dome apex. Alternatively,
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when using a tripod-mounted SMART in an almost full facility, we only have sufficient
points to represent/model the entrance walls, as shown in Figure 7c.
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Figure 7. Demonstration of physical features constituting the dome storage facilities: (a) roof, (b) roof
stringers, and (c) entrance walls (the SMART system is tripod-mounted at the center, roof-mounted
at the center, and tripod-mounted at the entrance in these three examples, respectively).

At a high level, the proposed registration procedure aims at automated extraction
and matching of features (i.e., roof, roof stringers, entrance walls, ground) in the acquired
scans. These features are then used to solve for the registration problem by estimating the
transformation parameters that minimize the sum of squared normal distances between
post-aligned points from different scans and the respective parametric model for the
used features. Thus, the unknowns of the LSA optimization include the transformation
parameters for the different scans, as well as the parametric model of the used features. The
registration framework encompasses three processing blocks, as can be seen in Figure 8.
The first block aims at estimating the coarse registration parameters between acquired scans.
Specifically, successive images are used to roughly estimate the incremental rotation angle
between successive scans. The fine registration is achieved through a two-step procedure,
which is represented by the last two blocks in Figure 8. In the first step, as represented by
the second block in Figure 8—partial fine registration, extracted and matched roof segments
in different scans are used to evaluate a subset of the registration transformation parameters
(i.e., shifts in the planimetric and vertical directions and two rotation angles for levelling
the point cloud, which are the rotation angles to align the dome axis along the plumb line).
Due to the axisymmetric configuration of the roof, the rotation around the dome axis cannot
be estimated in this step. This rotation angle is then estimated using extracted/matched
features that belong to roof stringers and/or entrance walls (represented by the third block
in Figure 8—full fine registration). The remainder of this section provides more details
about each of the processing blocks shown in Figure 8.
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3.1. Coarse Registration of LiDAR Scans

This step aims at coarsely aligning the acquired S LiDAR scans with S ranging from
7 to 13 (depending on whether 180◦ or 360◦ rotation of the SMART mount is adopted).
Assuming that the SMART pole coordinate system does not shift when acquiring data,
the coarse registration parameters would only involve the estimation of the rotation angle
between successive scans. Due to the sparsity of the acquired point clouds, as well as
insufficient overlap between successive scans, it is difficult to use LiDAR-based features
for coarse registration. To overcome this challenge, an image-aided coarse registration
approach was developed, as described in [11]. Assuming that the perspective center of the
used camera is spatially close to the SMART rotation axis, automatically established conju-
gate points between successive images are used to sequentially estimate the incremental
rotation angles. To make the process of conjugate point identification more robust, a con-
strained search space for corresponding points is established using the nominal incremental
rotation angle (i.e., 30◦). Together with the camera-to-pole and LiDAR-to-pole mounting
parameters, derived camera rotations are then used to coarsely align successive LiDAR
scans. Figure 9 illustrates the image-based coarse registration process for two scans in the
West Lafayette dataset. In this figure, the before-coarse registration scans are defined using
the nominal incremental rotation angle, while the post-coarse registration scans are defined
using the image-based estimate of the rotation. Interested readers can refer to [11] for more
details about the mathematical details of the quaternion-based approach for estimating the
incremental rotation using identified matches.
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Figure 9. Image-aided coarse registration results for two successive scans in the West Lafayette dataset:
(a) identified conjugate points between captured images in these two scans and (b) comparison of
the before/post coarse registration results through a perspective view (middle) and two vertical
profiles of the facility entrance (orange dotted box on the left) and the facility roof (pink dotted box on
the right).
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3.2. Partial Fine Registration

Given the coarse registration parameters, a feature-based, partial fine registration
procedure is conducted using extracted roof surface in the different scans (Figure 10). For
roof extraction, this study develops a region-growing strategy starting from interactively
selected seed points in the different scans. The roof feature in the different scans are then
used for the partial fine registration of acquired point clouds. The roof surface extraction
and partial fine registration steps are explained below.
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Figure 10. Examples of two successive scans colored by height (for easier illustration, the ground has
been removed).

3.2.1. Roof Extraction

The roof surface is extracted using a region-growing strategy. A traditional region-
growing strategy starts with a seed point, which is used to define a seed region (i.e., a local
neighborhood of the seed point). The seed region is then used to identify the nature of
the parametric model representing that region (e.g., planar or linear local neighborhood).
The parameters of that model are derived through a LSA using the constituent points of
the seed region (i.e., estimating the parameters that minimize the sum of squared normal
distances between the points within the seed region and fitted parametric model). Then,
neighboring points to the seed region that belongs to the parametric model are augmented
into the region. This process is repeated until no more points can be augmented [32].
Neighborhood definition (either for seed region definition or identification of candidate
points to be augmented into the seed/previously segmented region) can be established
through a search radius or nearest K points [33].

In this study, a new segmentation procedure is proposed. For the roof, which would be
eventually represented by a quadratic surface, we cannot define a reliable initial model of
the quadratic function due to the relatively small size of the seed region (i.e., the relatively
low curvature of the roof would lead to the definition of planar rather than quadratic surface
through the seed region). Other factors that would make the region growing process more
challenging include the sparse nature and significant variation in the point density of the
SMART scans. To mitigate these challenges, the proposed roof extraction strategy does
not use a quadratic surface as the parametric model for the seed region definition and
its augmentation. Rather, it starts with identifying a seed region that is relatively planar.
Moreover, a hybrid neighborhood definition strategy, using both neighboring points within
a search radius and nearest K neighbors, is adopted to deal with the sparsity and density
variation within the points constituting the scan.

Figure 11 shows the proposed steps for the roof segmentation strategy. In the first step,
given an interactively selected seed point on the roof, a seed region is derived through a
user-defined search radius, rseed, which is set in a way where the defined seed-region can be
assumed to be planar, e.g., rseed = 1 m. In Figure 11, the seed region is defined by the green
points. Then, a region growing is conducted through a two-stage procedure. First, for each
point in the seed region, we identify the K nearest neighbors, while excluding points that
belong to the seed region. The accumulated neighbors are considered as potential candi-
dates for the augmentation (blue points in step 2 of Figure 11). Then, for each point in the
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potential candidate list, we derive neighboring points, which belong to the seed/previously
segmented region within a search radius rseed. If the normal distance between the potential
candidate point in question and the local plane defined by neighboring points is less than
a predefined threshold, the potential candidate point is augmented to the roof surface
(steps 3 and 4 in Figure 11). The region growing process (steps 2, 3, and 4) is repeated until
no more points can be added to the roof segment. A sample of segmented roof points for a
LiDAR scan is shown in Figure 12. Since there is a single roof, we do not need to conduct a
matching process for extracted roof surfaces in the different scans.
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3.2.2. LSA Using Roof Feature

The fine registration of the individual scans aims at estimating the position, rm
p(k), and

orientation, Rm
p(k), of their local/pole coordinate systems relative to a common mapping

frame (where k is the scan index). The post-registration coordinates of point I in the kth

scan, rm
I , can be derived through Equation (1).

rm
I = rm

p(k) + Rm
p(k)r

p
luj

+ Rm
p(k)R

p
luj

r
luj(k)
I (1)
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where:

• r
luj(k)
I is the coordinates of point I with respect to the jth LiDAR unit coordinate system

at the kth scan;
• rp

luj
, Rp

luj
are the mounting parameters (lever arm and boresight rotation matrix) for

the jth LiDAR unit relative to the pole coordinate system;
• rm

p(k), Rm
p(k) are the translation vector and rotation matrix of the pole coordinate system

at the kth scan relative to the mapping frame.

Post registration, the quadratic surface model of the roof is defined by the coordi-
nates of the dome apex (x0, y0, z0) and coefficients (a, b) of the quadratic surface (refer to
Figure 13). The Z-axis of the mapping frame is defined to be parallel to the dome axis (i.e.,
registered scans would lead to levelled point clouds). Thus, levelling the scans would help
in defining two of the rotation angles relating the coordinate systems for the individual
scans and mapping frame. The quadratic surface is defined by the coefficients (a, b) us-
ing a dome coordinate system parallel to the mapping frame with its origin at the apex
(Figure 13), as shown in Equation (2).

Froo f = zd − ar2 − br = zd − a
(

x2
d + y2

d

)
− b
√

x2
d + y2

d = 0 (2)

where (xd, yd, zd) represent the transformed scan coordinates of the points along the roof
surface after being shifted to the dome coordinate system (i.e., [xd, yd, zd]

T = [xm, ym, zm]
T−

[x0, y0, z0]
T , with (xm, ym, zm) defined by Equation (1)).
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isymmetric characteristic of the roof feature (left) together with a vertical profile through the
roof (right).

Each point on the roof (quadratic surface) provides one constraint of the form in
Equation (2). Considering Equations (1) and (2), one can infer that the constraints for
the roof feature incorporate the parameters describing dome surface (x0, y0, z0, a, b), as
well as registration parameters for the different scans (Rm

p(k) and rm
p(k)). The LSA uses the

constraint equation to solve for the unknown parameters by minimizing the sum of squared
deviations between transformed points and the fitted quadratic surface model. As already
mentioned, due to the axisymmetric dome surface, the third rotation angle around the
Z-axis of the mapping frame cannot be defined. Therefore, in the LSA, the initial value
for this rotation angle, which is derived from the image-based coarse registration, is not
solved for.

3.3. Full Fine Registration

So far, all the fine registration parameters are estimated, except for the ∆κ rotation
angles for the different scans. To determine these rotation angles, we need to incorporate
additional features, such as roof stringers and/or entrance walls. For acquisition scenarios
where the SMART is mounted close to the dome center, roof stringers will be more common
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in captured scans than entrance walls. The latter will only be common for scenarios where
the SMART is mounted close to the dome entrance. The next subsections address the
extraction, matching, and incorporation of these features in the LSA to solve for the full
fine registration parameters.

3.3.1. Extraction and Matching of Roof Stringers

The stringers will be extracted from the previously segmented roof features from the
scans when the SMART system is located close to the center of the facility, e.g., tripod-
mounted in Figure 7a or ceiling-mounted in Figure 7b. The stringers follow the shape of
the dome surface. Therefore, they can be modeled as quadratic curves. However, their
projection onto a horizontal plane defined by the levelled scans, following the partial fine
registration, would define straight lines that converge towards the apex. These characteris-
tics of the stringers are used for their extraction and matching. Specifically, a four-step data
processing workflow is implemented to derive conjugate stringers among acquired scans,
as depicted in Figure 14.
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Step 1 aims at identifying points within the extracted roof surface that belong to
stringers (hereafter, these points will be denoted as edge points). Edge points will be
extracted as those that have considerable negative normal distance when compared to their
local neighborhood, relative to the defined quadratic surface of the dome (one should note
that points below the quadratic surface will have negative normal distance). To initiate
the edge point extraction, we start by deriving the signed normal distance, dr, between
a query point and the quadratic roof surface (estimated in the previous step). Deriving
dr in a 3D space can be reduced to a 2D point-to-quadratic curve distance estimation by
considering a vertical plane that passes through the dome apex and query point, as shown
in Figure 15. Then, the normal distance for the query point (rq, zq) can be estimated through
an optimization procedure that determines its projection (rn, zn) onto the quadratic curve
in Figure 15 (one should note that the quadratic curve of the vertical slice through the
query point and dome quadratic surface will have the same parametric coefficients). The
used function for the minimization process is represented by a third order polynomial
in rn, as per Equation (3). Following the determination of the normal projection of the

query point, the normal distance dr can be derived as
√(

rq − rn
)2

+
(
zq − zn

)2. The signs
of the coordinate differences, (rq − rn) and (zq − zn), are used to determine whether the
query point is above or below the quadratic surface. Edge points are established as those
with significant negative normal distance when compared to their local neighborhoods.
Specifically, given a query point, we define a local neighborhood within a search radius.
The signed normal distances in this local neighborhood are sorted in an ascending order.
A query point that has a normal distance smaller than the 85th percentile of those in the
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local neighborhood will be considered an edge point (i.e., it belongs to a roof stringer). An
example of extracted edge points from the roof feature for one scan is shown in Figure 16.

d2
r =

(
rq − rn

)2
+
(
zq − zn

)2

d2
r =

(
rq − rn

)2
+
(
zq − ar2

n − brn
)2

φ(rn) = ∂d2
r/∂rn =

(
rq − rn

)
+
(
zq − ar2

n − brn
)
(2arn + b) = 0

(3)
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Figure 16. A sample edge point detection result for a roof feature in one scan (left: top view, right:
perspective view).

In Step 2, we aim at clustering edge points that belong to a distinct roof stringer. First,
edge points are projected to a 2D space orthogonal to the defined dome axis by the partial
fine registration procedure, as shown in Figure 17a. A 2D Hough transform is then used
to detect 2D lines [34]. In order to detect roof stringers on both sides of the apex, which
might be collinear, as different 2D lines, the range of the angular line parameter in Hough
space is defined as [0◦, 360◦). Moreover, since we are only looking for linear features that
pass through the apex, we only consider detected lines with zero normal distance from the
origin of the dome coordinate system. A sample line detection result is shown in Figure 17b.
As can be seen in this figure, detected lines include correctly extracted stringers, partially
correct stringers due to some outlier points along the stringer, and fully erroneous stringers
that do not pass through the roof apex (those could be erroneously detected owing to the
cell size of the Hough space accumulator array). Sample stringer detection outliers are
shown in Figure 17c.
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Figure 17. An example of 2D line segment detection results: (a) projected edge points, (b) detected 
2D line segments (colored by id), and (c) point and line-segment outliers. 

In Step 3, existing point and line-segment outliers are removed sequentially. First, 
assuming that for a partially-correct stringer, the majority of the identified edge points are 
inliers, those minor outlier points are detected and removed. To do so, a distance-based 
region growing is conducted for grouping the points using spatial proximity as the group-
ing criterion for each stringer. The group with the maximum number of points is consid-
ered as the main cluster. Remaining clusters that exhibit a large angular deviation from 
the main cluster, e.g., ≥1°, are removed. A sample of identified outlier points is shown in 
Figure 18a. For fully erroneous stringers, detected lines that do not pass through the roof 
apex are identified. In the implemented approach, an exhaustive sample consensus search 
is conducted to derive the best-fitted apex point. Specifically, in each trial, two stringers 
are selected, and an apex point is derived through their intersection. Consensus among 
the remaining stringers is evaluated by identifying lines with small normal distance, e.g., ≤0.05 m, from the derived apex point. Once the exhaustive search is completed, the sam-
ple with the largest consensus set is used to derive the best-fitted apex. Detected segments 
with a large apex-to-line distance are removed as outliers. Figure 18b illustrates sample 
results from the fully-erroneous stringer removal strategy. 
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Figure 18. Examples of removed outliers: (a) point outliers (left: before, right: after) and (b) line-
segment outliers. Line segments are colored by id (left: before, right: after). 

Figure 17. An example of 2D line segment detection results: (a) projected edge points, (b) detected
2D line segments (colored by id), and (c) point and line-segment outliers.

In Step 3, existing point and line-segment outliers are removed sequentially. First,
assuming that for a partially-correct stringer, the majority of the identified edge points
are inliers, those minor outlier points are detected and removed. To do so, a distance-
based region growing is conducted for grouping the points using spatial proximity as the
grouping criterion for each stringer. The group with the maximum number of points is
considered as the main cluster. Remaining clusters that exhibit a large angular deviation
from the main cluster, e.g.,≥1◦, are removed. A sample of identified outlier points is shown
in Figure 18a. For fully erroneous stringers, detected lines that do not pass through the roof
apex are identified. In the implemented approach, an exhaustive sample consensus search
is conducted to derive the best-fitted apex point. Specifically, in each trial, two stringers
are selected, and an apex point is derived through their intersection. Consensus among
the remaining stringers is evaluated by identifying lines with small normal distance, e.g.,
≤0.05 m, from the derived apex point. Once the exhaustive search is completed, the sample
with the largest consensus set is used to derive the best-fitted apex. Detected segments
with a large apex-to-line distance are removed as outliers. Figure 18b illustrates sample
results from the fully-erroneous stringer removal strategy.
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Finally, in Step 4, a feature matching procedure is conducted to identify conjugate
stringers among different scans. Based on the proposed extraction strategy, derived
stringers and their 2D projection intersect at a single point (i.e., roof apex). Thus, the
azimuth of detected stringers relative to a reference direction following the coarse and
partial fine registration of the individual scans can be used as the matching criterion (as
shown in Figure 19a). Due to the sequential nature of the image-based coarse registration
(which is the only available information for establishing the rotation around the dome
axis), the azimuth evaluation for the stringers in the different scans will exhibit an error
propagation that will increase as we move away from the first, reference scan. In other
words, the azimuth-based stringer matching will only be reliable when considering two
successive scans. To avoid the impact of error propagation when matching stringers in
non-successive scans, we use matched stringers in successive scans to redefine the stringers’
azimuth relative to a new reference direction for the last considered scan (this concept is
illustrated in Figure 19b). One should note that the stringer extraction and matching is
conducted in 2D, which can be traced backward to the respective ones in 3D. Figure 20
shows established conjugate stringers for the West Lafayette dataset. A summary of the
stringer extraction steps is provided in Figure 21 (steps 1–4 in Figure 14).
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yette dataset (all sub-images are shown in top view). 

3.3.2. Extraction and Matching of Planar Features 
The SMART system might sometimes be placed at the entrance of the dome facility 

(or even outside) due to the high volume of the stored stockpile (as can be seen in Figure 
22a). In this case, we might not have enough points to identify stringers (edge points) 
along the dome surface. For those situations, planar features, i.e., vertical walls and 
ground, located by the facility’s entrance can be used for refining the registration param-
eters. An example of these features is shown in Figure 22b. It should be noted that alt-
hough ground features do no provide control for refining the rotation angle around the 
dome axis, they can be used to ensure accurate parameter estimates for levelling the scans, 
as well estimating the shift among the scans in the vertical direction. 
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Figure 22. Demonstration of planar features near the entrance of a salt dome facility: (a) tripod-
mounted SMART system stationed near the entrance and (b) wall/ground features. 

For planar feature extraction from the individual scans, a region growing-based seg-
mentation strategy, which can handle the sparsity and point density variation, is devel-
oped. The developed strategy is a modified version of the multi-class simultaneous seg-
mentation (MCSS) approach developed by Habib and Lin [32]. In the MCSS, seed points 
are first randomly generated in a scan. Then, seed regions are established using neighbors 
of the seed points. Principle component analysis (PCA) [35] is then carried out to identify 
seed regions that are planar. Next, a distance-based region growing is conducted to aug-
ment coplanar neighboring points to the feature in question. The MCSS modification starts 
by representing the LiDAR points’ neighbors using their normalized polar coordinates 

Figure 21. A review of the procedures involved in generating conjugate stringers for the West Lafayette
dataset (all sub-images are shown in top view).

3.3.2. Extraction and Matching of Planar Features

The SMART system might sometimes be placed at the entrance of the dome facility (or
even outside) due to the high volume of the stored stockpile (as can be seen in Figure 22a).
In this case, we might not have enough points to identify stringers (edge points) along the
dome surface. For those situations, planar features, i.e., vertical walls and ground, located
by the facility’s entrance can be used for refining the registration parameters. An example
of these features is shown in Figure 22b. It should be noted that although ground features
do no provide control for refining the rotation angle around the dome axis, they can be
used to ensure accurate parameter estimates for levelling the scans, as well estimating the
shift among the scans in the vertical direction.
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Figure 22. Demonstration of planar features near the entrance of a salt dome facility: (a) tripod-
mounted SMART system stationed near the entrance and (b) wall/ground features.

For planar feature extraction from the individual scans, a region growing-based seg-
mentation strategy, which can handle the sparsity and point density variation, is developed.
The developed strategy is a modified version of the multi-class simultaneous segmentation
(MCSS) approach developed by Habib and Lin [32]. In the MCSS, seed points are first
randomly generated in a scan. Then, seed regions are established using neighbors of the
seed points. Principle component analysis (PCA) [35] is then carried out to identify seed
regions that are planar. Next, a distance-based region growing is conducted to augment
coplanar neighboring points to the feature in question. The MCSS modification starts by
representing the LiDAR points’ neighbors using their normalized polar coordinates rather
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than Cartesian ones. Normalized polar coordinates will help in defining more meaningful
neighborhoods that are robust to variations in point density. Figure 23 depicts a scan using
the Cartesian and normalized polar coordinates of its constituent points. The segmentation
results for this scan using these two coordinates are shown in Figure 24. In this figure,
one can see that the segmentation result using the normalized polar coordinates has better
quality extracted features, especially when the feature has large point density variation
(which is the case for the ground feature—refer to Figure 24b). For features with almost
uniform point density (e.g., entrance walls), both approaches yield similar results—refer
to Figure 24c. Given the available partial fine registration parameters, a feature matching
using surface normal orientation and spatial proximity criteria is conducted to derive
conjugate planes among scans.
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3.3.3. LSA Using Roof, Stringer, and Wall/Ground Features

In this last step, we perform the full fine registration procedure using all available
features (i.e., roof, stringers, and planar walls/ground). This section is dedicated for
showing the constraint equations used in the LSA optimization procedure. As the constraint
equations for the dome surface have been already introduced (Equation (2)), the stringer
and planar feature constraints will be introduced below.

The parametric model for the stringer includes the position of its apex (X0, Y0, Z0),
coefficients of the quadratic curve (a, b), and an angular parameter (αs) that describes the
location of the stringer along the dome surface. One should note that the first two sets of
parameters are the same as those for the roof surface. The angular stringer parameter is
schematically illustrated in Figure 25. As shown in this figure, a stringer-specific coordinate
system (Xs, Ys, Zs) is defined through a clockwise rotation of the dome coordinate system
(Xd, Yd, Zd), with an αs rotation angle around the Zd axis until the stringer in question
resides within the rotated XdZd plane (i.e., the XsZs plane). The coordinates of the edge
point relative to the stringer-specific coordinate systems is given by Equation (4). Edge
points along a stringer must satisfy the constraint in Equation (5). Since all the stringer’s
edge points are coplanar (i.e., they should be in the XsZs plane), each edge point must
also satisfy the constraint in Equation (6). Considering Equations (4)–(6), one can observe
that the stringer feature constraints incorporate feature parameters, as well as registration
parameters Rm

p(k) and rm
p(k), which are embedded in rm

I . It is important to note that with the
introduction of stringers, the k rotation angle of the source scans can be solved for.

rs
I = Rs

drd
I = Rs

d

(
rm

I − rm
apex

)
(4)

where:

• rs
I is the coordinates of an edge point in the stringer-specific coordinate system

(xs, ys, zs);
• Rs

d is the rotation matrix around the Zd axis, defined by αs to transform (xd, yd, zd) into
(xs, ys, zs);

• rm
apex is the coordinates of the roof apex in the mapping frame (x0, y0, z0);

• rm
I is the coordinates of an edge point in the mapping coordinate system (xm, ym, zm);

refer to Equation (1) in Section 3.2.2.

FStringer1 = zs − ax2
s − bxs = 0 (5)

FStringer2 = ys = 0 (6)
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For planar feature constraints, we start by introducing the representation scheme for
these features. Based on the main orientation of the normal vector, a planar feature has three
normal representation alternatives, i.e.,

[
wx, wy, 1

]
, [wx, 1, wz], and

[
1, wy, wz

]
, for planes

with main normal orientation in the Z, Y, and X axis, respectively, as shown in Figure 26. A
planar feature has three unknowns: two components for the normal vector—either (wx, wy),
(wx, wz), or (wy, wz)—and one position component, (D). Each planar point provides one
constraint in the LSA, as presented by Equation (7) for a planar feature with its normal
vector mainly oriented along the Z axis. Considering Equations (1) and (7), it is evident
that the planar feature constraint equation incorporates the feature parameters, as well as
the registration parameters Rm

p(k) and rm
p(k).

Fplane = wxxm + wyym + D− zm = 0 (7)
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4. Experimental Results

This section evaluates the capability of the proposed feature-based registration frame-
work for generating well-aligned point clouds from the SMART system at dome facilities.
The conducted experiments address two objectives, namely, (i) evaluate the ability of the
roof feature in realizing partial fine registration and (ii) evaluate the comparative perfor-
mance of different feature combinations (e.g., roof, roof stringers, ground, and/or walls) in
achieving full fine registration.

Before presenting the experimental results, the availability of different features for
each dataset is presented in Table 2, which shows that the roof feature can be identified in
all datasets, regardless of the SMART system mounting configuration (i.e., tripod or roof
mounted) or its location within the facility (i.e., close to the dome’s center or entrance). In
contrast, planar features can be reliably identified only when the SMART system is located
close to the facility’s entrance (e.g., the Frankfort dataset). While the roof feature is visible in
the Frankfort dataset, the stringers are not clearly visible due to the uneven point density
distribution. For the Lebanon and West Lafayette datasets, the stringers are visible.

Table 2. Availability of registration features(shown in red) in the Lebanon, Frankfort, and West
Lafayette datasets.

Salt Dome Facility Lebanon Frankfort West Lafayette

SMART System Information
Mount Location Mount Location Mount Location

Roof Center Tripod Entrance Tripod Center

Feature
availability

Roof Visible Visible Visible
Stringers Visible Not clearly visible Visible
Ground Not visible Visible Visible in most scans

Walls Not visible Visible Visible in most scans
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4.1. Partial Fine Registration

To evaluate the capability of the roof feature in realizing the partial fine registration,
we present the LSA results for the three datasets. The partial fine registration results are
qualitatively evaluated using vertical slices through the dome roof and heat maps showing
the normal distances between the roof feature points and the fitted quadratic surface. Then,
quantitative evaluation is conducted by analyzing the quality of fit for the roof and ground
features, if available, before/after the partial fine registration (one should note that the
partial fine registration is only conducted using the roof feature).

The extracted roof feature from the combined scans of the three datasets is shown in
Figure 27, with the point clouds colored by the scan ID. While a uniform point distribution
can be observed over the entire roof for the Lebanon and West Lafayette datasets, a portion of
the roof is not visible in the Frankfort dataset. The partial visibility of the roof for the latter
is expected given the SMART system location near the entrance and the occlusions caused
by stored salt. Such partial visibility and sparse point clouds at the dome apex make the
stringers not clearly visible in the captured scans within the Frankfort dataset.
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Extracted vertical profiles from the three datasets before and after the partial fine
registration using the roof feature are illustrated in Figures 28–30. As can be seen in these
figures, the alignment among scans using the proposed quadratic, surface-based, partial fine
registration has been improved compared to that after the image-based coarse registration
(e.g., refer to the zoomed-in windows of the profiles for the roof, salt surface, and ground).
A closer inspection of these figures reveals that the alignment of the salt surface is slightly
worse than the roof and ground. This is attributed to the unsolved κ rotation angle, whose
impact would only be visible for the salt surface. For further qualitative evaluation, we
show heat maps, together with corresponding box plots representing the normal distances
between roof feature points and the fitted quadratic surface for these datasets before/after
partial fine registration in Figures 31–33. As can be seen in these figures, the quality of fit
for the quadratic surface is enhanced after the partial fine registration.
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entrance walls and (b) profile parallel to the entrance walls.

To quantitatively assess the alignment quality for the point clouds, the Root Mean
Square (RMS) of normal distances between the points and their respective best-fitted
feature—fitting error—before and after partial fine registration are reported in Table 3.
The RMS of the fitting error for the ground feature, if available, is also listed in Table 3
(the ground feature cannot be extracted from the Lebanon dataset, as previously reported
in Table 2). Compared to the number of points for the ground feature, the large number
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of roof points in Table 3 indicates that the roof feature can be reliably identified in the
acquired scans. It is evident that the RMS of the fitting error after the image-based course
registration is reduced for the three datasets. Given the ±3 cm range noise of the used
scanners, the 4-to-6 cm RMS of the fitting error for the roof feature in Table 3 is an indication
of the validity of the proposed partial fine registration procedure (i.e., especially when
considering the propagation of errors in the pointing direction of the different laser beams,
as well as errors introduced by slight deviation of the actual roof feature from a perfect
quadratic surface [36]). The slightly higher RMS fitting error for the ground feature (i.e., in
the 5-to-7 cm range) is attributed to the facts that it is not used in the partial fine registration
and deviation is expected from the planarity of the ground in the dome facility. A close
inspection of the roof quality of fit for the Lebanon dataset in Table 3 reveals that the roof-
mounted SMART system provides better image-based coarse registration results than the
other two datasets. Such performance is attributed to the better feature distribution in the
captured imagery caused by the smaller SMART-to-object distance for this facility.

Remote Sens. 2023, 15, 504 22 of 35 
 

 

 

 
(a) 

 
(b) 

Figure 29. Extracted vertical profiles (width: 0.2 m) from the Frankfort dataset before/after partial 
fine registration (the arrows indicate the direction of the measured distance): (a) profile orthogonal 
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Figure 29. Extracted vertical profiles (width: 0.2 m) from the Frankfort dataset before/after partial
fine registration (the arrows indicate the direction of the measured distance): (a) profile orthogonal to
the entrance walls and (b) profile parallel to the entrance walls.
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Table 3. RMS of the fitting error for the roof and ground features following the coarse/partial
fine registration.

Roof Quality of Fit (Utilized in LSA)

Dataset Number of Points
RMS of Normal Distance (m)

Coarse Partial

Lebanon 339,648 0.046 0.044
Frankfort 276,769 0.095 0.051

West Lafayette 415,896 0.085 0.067

Ground Quality of Fit (not Utilized in LSA)

Dataset Number of Points
RMS of Normal Distance (m)

Coarse Partial

Lebanon - - -
Frankfort 181,846 0.229 0.071

West Lafayette 115,867 0.154 0.053
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4.2. Full Fine Registration

This subsection aims at addressing two related objectives, namely, (1) evaluating the
capability of using either roof stringers or vertical walls to solve for the κ rotation angles of
the different scans and (2) assessing the comparative performance of using different feature
combinations (e.g., roof/stringer vs. roof/stringer/ground/wall features). For the first objective,
we use the Lebanon and Frankfort datasets. In the Lebanon datasets, roof stringers are used.
For the Frankfort dataset, on the contrary, vertical walls are used. For the second objective,
we conduct a comparative test using the West Lafayette, where the full fine registration is
achieved using the roof/stringers and roof/stringers/ground/walls as the registration features.
For all the tests, the registration results are qualitatively evaluated using vertical slices
through the salt stockpile. Then, a quantitative evaluation is conducted by analyzing the
RMS of the fitting error for the utilized features before/after the full fine registration. For
the second objective, the salt pile volume for the West Lafayette dataset is computed for the
different feature primitives.

4.2.1. Lebanon Dataset

As mentioned earlier, the Lebanon dataset is collected with a roof-mounted SMART
system at the center of the dome. This mounting configuration, together with the relatively
full facility, would not allow for scanning the entrance walls and ground. This omission
renders the roof and its stringers as the only features for solving the full fine registration.
Figure 34 illustrates vertical profiles through the salt surface before and after the full fine
registration. As can be seen in this figure, the point cloud alignment at the salt surface
has improved after introducing the stringer features for solving the κ rotation angles. For
an easier-to-interpret visualization, top views of extracted edge points representing the
stringers in the scans before and after the full fine registration are shown in Figure 35. The
improvement can be seen in the zoom-in windows in this figure (one should note that the
stringer width in this facility is approximately 0.1 m).
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Figure 35. Extracted edge points from all scans of the Lebanon dataset (a) before and (b) after full
fine registration.

To quantitatively evaluate the impact of adding roof stringers for refining the ∆κ
rotation angle, the RMS of the fitting error before and after the full fine registration, along
with the number of points in each feature, are presented in Table 4 (the stringer IDs are
shown in Figure 36). For the roof feature, we can see that the fitting error remained almost
the same before and after the full fine registration. This should be expected because the
unresolved ∆κ rotation angle would not impact the fitting error of the roof feature due to
its axisymmetric nature. As for the stringers, one can see that their fitting errors reduced
from the 9–15 cm range to 7–12 cm. One should note that the fitting error for the stringers
is quite acceptable given that the width of the stringer is approximately 10 cm.

Table 4. RMS of the fitting error for the registration primitives (roof and stringers) in the Lebanon
dataset following the partial/full fine registration.

Roof Quality of Fit

Number of Points
RMS of Normal Distance (m)

Partial Full

316,155 0.038 0.040

Stringer Quality of Fit

Stringer ID Number of points
RMS of Normal Distance (m)

Partial Full

1 1505 0.117 0.105
2 1440 0.121 0.109
3 1286 0.122 0.110
4 1123 0.129 0.112
5 1096 0.130 0.114
6 1075 0.146 0.109
7 1030 0.113 0.081
8 867 0.098 0.070
9 682 0.093 0.069
10 852 0.115 0.089
11 487 0.124 0.112
12 1485 0.134 0.124
13 1464 0.121 0.113
14 1346 0.111 0.102
15 1478 0.106 0.098
16 1536 0.102 0.093
17 1322 0.092 0.082
18 1194 0.090 0.081
19 995 0.096 0.085
20 1245 0.108 0.096
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4.2.2. Frankfort Dataset

The Frankfort dataset is collected with a tripod-mounted SMART system stationed
near the entrance of the facility. For this dataset, the roof/ground/wall features are visi-
ble in all the scans, while the stringer features are not clearly visible. It should be noted
that the configuration of the wall features (i.e., parallel entrance walls) do not provide
control for evaluating the planimetric shift in the direction parallel to their planes. There-
fore, for the ground/wall-based registration, we only solve for one of the planimetric shift
components among the scans in the registration process (i.e., for the un-resolved planimet-
ric shift component, we rely on that derived from the images-based coarse registration).
Therefore, the registration using wall/ground features is denoted as another partial fine
registration approach (partial 2). Only after adding the roof feature can we conduct the full
fine registration. Figure 37 shows extracted vertical profiles along the salt surface before
and after the partial (using either roof or ground/wall features) and full fine registration
using roof/ground/wall features. A close inspection of the zoomed-in regions in that figure
reveals the improvement in the registration after including the roof feature. For another
qualitative assessment, top views of extracted edge points in all the scans are shown in
Figures 38 and 39, with the former highlighting the alignment in the direction normal to
the stringers—tangential direction—while the latter shows the alignment in the radial di-
rection. These figures show significant improvement in the tangential and radial directions
following the addition of the roof features.

Table 5 reports the RMS of the fitting errors after partial fine registration using the roof
feature, partial fine registration using the ground/wall features, and full fine registration
using the roof/ground/wall features. By inspecting the numerical values for the roof feature in
this table, one can see that the partial fine registration and full fine registration using the roof
and roof/ground/wall features show similar alignment quality (roughly 5 cm). The partial fine
registration using the ground/wall features, on the contrary, produces more misalignment
in the range of 9 cm. This should be expected, as the ground/wall features do not provide
control for removing misalignment in the direction parallel to the entrance walls. For the
ground and wall features, both the partial fine registration using ground/wall features and
full fine registration using roof/ground/wall features produce comparable alignment quality,
which is also expected.
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Figure 37. Extracted vertical profiles (width: 0.2 m) from the salt surface of the Frankfort dataset after 
the partial fine registration using the roof feature, partial fine registration using the ground/wall fea-
tures, and full fine registration using the roof/ground/wall features (the arrows indicate the direction 
of the measured distance): (a) profile orthogonal to the entrance walls and (b) profile parallel to the 
entrance walls. 

Figure 37. Extracted vertical profiles (width: 0.2 m) from the salt surface of the Frankfort dataset
after the partial fine registration using the roof feature, partial fine registration using the ground/wall
features, and full fine registration using the roof/ground/wall features (the arrows indicate the direction
of the measured distance): (a) profile orthogonal to the entrance walls and (b) profile parallel to the
entrance walls.
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Figure 38. Extracted edge points from the scans in the Frankfort dataset showing the tangential align-
ment of the radial stringers after the: (a) partial fine registration using the roof feature, (b) partial 
fine registration using the ground/wall features, and (c) full fine registration using the roof/ground/wall 
features. 
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Figure 39. Extracted edge points from the scans in the Frankfort dataset showing the radial alignment 
of the stringer rings after the: (a) partial fine registration using the roof feature, (b) partial fine regis-
tration using the ground/wall features, and (c) full fine registration using the roof/ground/wall features. 
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Figure 38. Extracted edge points from the scans in the Frankfort dataset showing the tangential alignment
of the radial stringers after the: (a) partial fine registration using the roof feature, (b) partial fine registration
using the ground/wall features, and (c) full fine registration using the roof/ground/wall features.
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Figure 38. Extracted edge points from the scans in the Frankfort dataset showing the tangential align-
ment of the radial stringers after the: (a) partial fine registration using the roof feature, (b) partial 
fine registration using the ground/wall features, and (c) full fine registration using the roof/ground/wall 
features. 
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Figure 39. Extracted edge points from the scans in the Frankfort dataset showing the radial alignment 
of the stringer rings after the: (a) partial fine registration using the roof feature, (b) partial fine regis-
tration using the ground/wall features, and (c) full fine registration using the roof/ground/wall features. 
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alignment quality, which is also expected. 
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Figure 39. Extracted edge points from the scans in the Frankfort dataset showing the radial alignment of
the stringer rings after the: (a) partial fine registration using the roof feature, (b) partial fine registration
using the ground/wall features, and (c) full fine registration using the roof/ground/wall features.

Table 5. RMS of the fitting error for the registration primitives in the Frankfort dataset after partial fine
registration using the roof feature (partial 1), partial fine registration using the ground/wall (partial 2)
features, and full fine registration using the roof/ground/wall features.

Roof Quality of Fit

Number of Points
RMS of Normal Distance (m)

Partial 1 Partial 2 Full

276,769 0.051 0.086 0.052

Ground Quality of Fit

Number of Points
RMS of Normal Distance (m)

Partial 1 Partial 2 Full

181,846 0.071 0.033 0.033

Vertical Walls Quality of Fit

Left Right

Number of
Points

RMS of Normal Distance (m)
Number of Points

RMS of Normal Distance (m)

Partial 1 Partial 2 Full Partial 1 Partial 2 Full

34,951 0.190 0.046 0.047 26,688 0.220 0.047 0.048

4.2.3. West Lafayette Dataset

The West Lafayette dataset is collected with the tripod-mounted SMART system located
somewhere between the center of the facility and its entrance. As a result, the vertical
walls at the entrance are visible in the majority of the captured scans. The relatively small
amount of salt stored in this facility allowed for the acquisition of point clouds covering the
ground. Considering the availability of various features (i.e., roof/stringers/ground/walls), a
comparative test is conducted to investigate whether the roof/stringer features are sufficient
for conducting the full fine registration. More specifically, this dataset is processed with
the following feature combinations: roof/stringers and roof/stringers/ground/walls. Figure 40
illustrates extracted vertical profiles along the salt surface before and after the full fine
registration. Through this figure, one can see an improvement in the salt surface alignment
using either feature combinations, with the roof/stringers/ground/walls features showing
slightly better quality compared to that using the roof/stringer features. As a further qualita-
tive evaluation, top views of extracted edge points from all scans before and after the full
fine registration are shown in Figure 41, which shows a similar pattern of improvement
when using either the roof/stringer or roof/stringer/ground/wall features.
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Figure 40. Extracted vertical profiles (width: 0.2 m) along the salt surface of the West Lafayette dataset 
before/after the full fine registration (the arrows indicate the direction of the measured distance): (a) 
profile orthogonal to the entrance walls and (b) profile parallel to the entrance walls. 

Figure 40. Extracted vertical profiles (width: 0.2 m) along the salt surface of the West Lafayette dataset
before/after the full fine registration (the arrows indicate the direction of the measured distance):
(a) profile orthogonal to the entrance walls and (b) profile parallel to the entrance walls.
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Figure 41. Extracted edge points from the scans in the West Lafayette dataset before/after the full fine 
registration: (a) partial fine registered edge points, (b) full fine registered edge points using 
roof/stringer features, and (c) full fine registered edge points using the roof/stringer/ground/wall fea-
tures. 
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much closer to each other, with an average angular separation of ~3°, than those for the 
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ground/wall features in Table 6 show good feature alignments in both full fine registration 
results, while the second combination provide better alignment (this is expected due to 
the explicit use of such features in the full fine registration). Finally, a volume estimation 
is conducted using the derived point clouds from the two feature combinations. The cal-
culated volumes for the roof/stringer and roof/stringer/ground/wall feature combinations are 
1194.069 mଷ and 1209.101 mଷ, respectively, with a difference percentage of 1.24% that 
can be considered insignificant. In summary, qualitative and quantitative evaluations in-
dicate that the roof and stringer features are sufficient for conducting the full fine regis-
tration. The ability to use these features is quite beneficial for situations where ground/wall 
features are not visible due to the SMART mounting/location within the facility, as well 
as due to a relatively large amount of salt. 
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Figure 41. Extracted edge points from the scans in the West Lafayette dataset before/after the full
fine registration: (a) partial fine registered edge points, (b) full fine registered edge points using
roof/stringer features, and (c) full fine registered edge points using the roof/stringer/ground/wall features.

The initial/final RMS of the fitting errors for the roof/stringer and roof/stringer/ground/wall
features are presented in Table 6. While a total of 69 stringers were detected/used for the
full fine registration process, the fitting errors for only 20 stringers are listed in Table 6
(refer to Figure 42). In general, the fitting quality for the stringers has improved after the
full fine registration for both feature combinations, while showing similar improvement
magnitude. Some abnormally high fitting errors can be seen in Table 6 (shown in red). The
large fitting errors for these stringers are mainly caused by some outliers. As can be seen in
Figure 42, the stringer features in the West Lafayette dataset are much closer to each other,
with an average angular separation of ~3◦, than those for the Lebanon dataset. In spite of
some outliers, the large number of inlier stringers would still ensure the alignment quality
of the final point cloud. The reported values for the ground/wall features in Table 6 show
good feature alignments in both full fine registration results, while the second combination
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provide better alignment (this is expected due to the explicit use of such features in the
full fine registration). Finally, a volume estimation is conducted using the derived point
clouds from the two feature combinations. The calculated volumes for the roof/stringer and
roof/stringer/ground/wall feature combinations are 1194.069 m3 and 1209.101 m3, respectively,
with a difference percentage of 1.24% that can be considered insignificant. In summary,
qualitative and quantitative evaluations indicate that the roof and stringer features are
sufficient for conducting the full fine registration. The ability to use these features is
quite beneficial for situations where ground/wall features are not visible due to the SMART
mounting/location within the facility, as well as due to a relatively large amount of salt.

Table 6. RMS of the fitting error of the registration primitives in the West Lafayette dataset after partial
fine registration using the roof feature, full fine registration using the roof/stringer features (Full 1),
and full fine registration using the roof/stringer/ground/wall features (Full 2).

Roof Quality of Fit

Number of
Points

RMS of Normal Distance (m)

Partial Full 1 Full 2

403,158 0.066 0.067 0.072

Stringer Quality of Fit

StringerID Number of
Points

RMS of Normal Distance (m)

Partial Full 1 Full 2

1 314 0.145 0.094 0.100
2 350 0.148 0.103 0.117
3 302 0.165 0.133 0.143
4 288 0.188 0.143 0.156
5 323 0.209 0.188 0.191
6 212 0.208 0.195 0.210
7 80 0.124 0.115 0.118
8 189 0.094 0.089 0.069
9 350 0.122 0.075 0.055
10 248 0.108 0.091 0.062
11 204 0.108 0.079 0.062
12 254 0.149 0.082 0.079
13 324 0.139 0.096 0.094
14 303 0.202 0.156 0.135
15 611 0.202 0.182 0.195
16 615 0.190 0.182 0.185
17 526 0.144 0.105 0.116
18 471 0.078 0.057 0.070
19 644 0.084 0.053 0.065
20 524 0.128 0.073 0.077

Ground Quality of Fit

Number of
Points

RMS of Normal Distance (m)

Partial Full 1 Full 2

115,867 0.053 0.050 0.029

Vertical Walls Quality of Fit

Left Right

Number of
Points

RMS of Normal Distance (m) Number of
Points

RMS of Normal Distance (m)

Partial Full 1 Full 2 Partial Full 1 Full 2

- - - - 915 0.126 0.031 0.013
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Figure 41. Extracted edge points from the scans in the West Lafayette dataset before/after the full fine 
registration: (a) partial fine registered edge points, (b) full fine registered edge points using 
roof/stringer features, and (c) full fine registered edge points using the roof/stringer/ground/wall fea-
tures. 
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5. Conclusions and Recommendations for Future Work

In this study, a feature-based point cloud registration framework has been proposed
for deriving well-aligned LiDAR scans acquired inside dome facilities using Stockpile
Monitoring and Reporting Technology (SMART). Such a development is motivated by the need
to produce well-aligned point clouds under challenging conditions, i.e., sparse LiDAR point
clouds, signification variation in point density, insufficient overlap among neighboring
scans, and unavailability of sufficient planar/linear features. The proposed framework
comprises three main steps: image-based coarse registration, partial fine registration using
the roof feature, and full fine registration using some or all of roof/stringer/ground/wall feature
combinations. The main contributions of this study can be summarized as follows:

• Two new geometric primitives (roof and stringers in dome facilities) are investigated
as potential features for the registration of collected scans inside dome facilities;

• A semi-automated approach has been developed for the extraction of roof and
stringer features;

• A reliable neighborhood definition approach is developed for extracting planar fea-
tures from point clouds exhibiting significant variation in point density;

• A general registration framework for processing collected LiDAR data by the SMART
system within dome facilities is proposed, while providing the flexibility of including
different feature primitives (e.g., roof, stringers, ground, and walls);

• The feasibility of the proposed framework is illustrated using real datasets acquired in
three dome facilities.

The results show that the roof feature, together with its stringers, is sufficient for
full fine registration of acquired LiDAR scans inside dome facilities. Using the roof and
stringer features can mitigate the absence of other features (e.g., ground and walls) due to
the mounting/location of the SMART system and/or amount of stored salt. In general, the
full fine registration (using more registration primitives) always produces better overall
point cloud alignment than partial fine registration (using fewer registration primitives).
However, it is worth mentioning that when introducing more registration primitives, the
fitting quality for a specific feature might decrease due to the weight reduction of this
feature in the registration procedure.

The proposed framework does not incorporate a point-based registration technique
due to the low overlap percentage among acquired LiDAR scans. For point clouds collected
in storage facilities, a large portion of the point cloud covers the salt surface. This portion is
not utilized in the developed procedure. Therefore, future work will augment the developed
framework with a point-based registration approach to take advantage of collected points
along the stockpile surface. More specifically, overlapping areas along the salt surface
among the scans will be investigated to improve the registration quality. In terms of the
hardware design, a permanent rail could be installed on the roof for domes with large size
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to provide better acquisition of registration primitives, together with sufficient coverage of
the salt stockpiles.
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