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Abstract: Automated building footprint extraction requires the Deep Learning (DL)-based semantic
segmentation of high-resolution Earth observation images. Fully convolutional networks (FCNs)
such as U-Net and ResUNET are widely used for such segmentation. The evolving FCNs suffer
from the inadequate use of multi-scale feature maps in their backbone of convolutional neural
networks (CNNs). Furthermore, the DL methods are not robust in cross-domain settings due to
domain-shift problems. Two scale-robust novel networks, namely MSA-UNET and MSA-ResUNET,
are developed in this study by aggregating the multi-scale feature maps in U-Net and ResUNET with
partial concepts of the feature pyramid network (FPN). Furthermore, supervised domain adaptation
is investigated to minimise the effects of domain-shift between the two datasets. The datasets include
the benchmark WHU Building dataset and a developed dataset with 5× fewer samples, 4× lower
spatial resolution and complex high-rise buildings and skyscrapers. The newly developed networks
are compared to six state-of-the-art FCNs using five metrics: pixel accuracy, adjusted accuracy, F1
score, intersection over union (IoU), and the Matthews Correlation Coefficient (MCC). The proposed
networks outperform the FCNs in the majority of the accuracy measures in both datasets. Compared
to the larger dataset, the network trained on the smaller one shows significantly higher robustness in
terms of adjusted accuracy (by 18%), F1 score (by 31%), IoU (by 27%), and MCC (by 29%) during the
cross-domain validation of MSA-UNET. MSA-ResUNET shows similar improvements, concluding
that the proposed networks when trained using domain adaptation increase the robustness and
minimise the domain-shift between the datasets of different complexity.

Keywords: deep learning; building footprint extraction; multi-scale feature aggregation; supervised
domain adaptation; U-Net; ResUNET

1. Introduction

Urban remote sensing for feature extraction is the data source of spatial information.
The extracted spatial information is used for infrastructure analytics and planning. With the
availability of analysis-ready very-high-resolution (VHR) Earth observation (EO) remote
sensing images, it is possible to retrieve spatial information that is fit for purpose. How-
ever, the retrieved information needs quality assurance in terms of efficiency, robustness,
accuracy and precision. These aspects are addressed to some extent by utilising evolving
intelligent approaches such as DL. CNNs are fundamental to extracting context information
from images for object detection and semantic segmentation. Per-pixel semantic segmenta-
tion is the current state-of-the-art (SOTA) DL method for extracting urban features such
as buildings. The method is evolving and has several known limitations [1]. This paper
focuses on two limitations:

1. Loss of context information at different scales of feature maps in CNNs.
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2. The domain-shift problem due to the difference in training and testing data.

The first limitation is faced by all CNN-based DL networks. The current SOTA
networks for the semantic segmentation of images come from the FCN [2] family [1]. The
widely common FCNs such as U-Net [3], ResUNET [4], and SegNet [5] are symmetrical
networks with an encoder and a decoder. From the explanation of Ronneberger et al.
(2015) [3], an encoder is essentially a CNN that extracts context features at multiple scales of
feature maps. A decoder ensures the precise localisation of the object (building in our focus).
Context refers to information that helps CNNs accurately interpret an object. Both context
information and precise localisation are fundamental for urban feature extraction from
EO images. However, the known problem of CNNs is that the context information is lost
because of the downsampling operations used in them. The operation provides multi-scale
feature information necessary to extract an object. However, at the same time, they reduce
the size of the feature maps, resulting in the loss of context information. The popularity
of U-Net comes from a trade-off between context and precise localisation. Recent studies
have shown that the loss of context can be compensated by the aggregation and fusion
of multi-scale feature maps (also known as features) [6]. FPN [7] is a common example
of multi-scale feature aggregation. In this paper, commonly used U-Net and ResUNET
networks of FCN family are integrated with the partial concepts of an FPN. The proposed
two networks named Multi-Scale Aggregation U-NET (MSA-UNET) and MSA-ResUNET
are developed to investigate whether the multi-scale feature aggregation technique inspired
by FPN can improve the precision and accuracy of U-Net and ResUNET. These multi-scale
features are crucial in extracting size-variant urban building footprints on EO images.

The second limitation, i.e., the domain-shift problem, is a common yet less-studied
limitation of CNN-based DL methods. Domain-shift occurs when the training and test
data are of different settings. A general example of the limitation is that a DL network
trained to extract the buildings from India fails to extract the buildings from Australia. The
limitation not only occurs due to the difference in the architectures of buildings in two
places, but also occurs due to several other factors such as the different types of buildings
(low-rise, mid-rise, and high-rise), the spatial resolution of EO images, time of image
collection, shadows, and other spatial variabilities between train and test environment.
These problems are unavoidable when it comes to using EO images for nationwide building
footprint extraction. Therefore, the domain-shift problem must be reduced to increase the
robustness of the DL network in cross-domain settings. The two proposed networks are
therefore evaluated in two experimental settings: (i) same-domain validation; and (ii) cross-
domain validation. The same-domain validation refers to the setting of having the training
and validation data from the same dataset. Similarly, the cross-domain refers to having
the training and validation data from two different datasets. To tackle the domain-shift
problem in cross-domain settings, a supervised domain adaptation (DA) based on inductive
transfer learning [8] is applied between two datasets: one from Christchurch, New Zealand,
and another from Melbourne, Australia. The first one is a benchmark dataset called the
Wuhan University (WHU) Building dataset [9], and the second one is prepared from the
case study area of the City of Melbourne. Four settings of supervised DA are experimented
to see its effects on different scales of feature maps in the proposed networks.

The major contributions of this study are:

1. Development of MSA-UNET and MSA-ResUNET networks to tackle the loss of
context information at different scales of feature maps in CNNs.

2. Development of a high-resolution dataset for an experimental design within DL
framework.

3. Evaluation of four settings of supervised domain adaptation to tackle the problem of
domain-shift in different datasets.

4. A comprehensive evaluation approach in cross-domain settings.

The rest of the paper is structured as follows: Section 2 presents the related literature;
Section 3 describes the datasets and method; Section 4 presents the experiments and results,
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Section 5 provides critical discussions with more experiments; and Section 6 concludes
the paper.

2. Related Works
2.1. Dl-Based Urban Feature Extraction from VHR EO Imagery

The building footprint extraction falls under a broader research topic of urban feature
extraction, which includes a set of features to extract: impervious surface [10], buildings,
low vegetation [11,12], tree [13], car [14], etc. Building footprints are among the most
prominent features in urban settings [15]. With the availability of VHR imagery, the
research paradigm of urban feature extraction has shifted from object-based image analysis
to pixel-based semantic segmentation [1]. The neural networks developed for medical
image segmentation have been adopted in the segmentation of VHR EO images to gain
from the reduction in pixel size. Some also improved these adopted networks to gain
efficiency in the context of EO-based methods for urban feature extraction [16]. Among
the commonly experimented networks, CNNs [17] such as AlexNet [18], VGGNet [19],
GoogleNet [20], ResNet [21], Xception [22], and RefineNet [23] are frequently used for
urban feature extraction including buildings. However, with the superior performance of
FCNs [2] including encoder–decoder networks such as U-Net or SegNet [5] in semantic
segmentation, CNNs are now used as a feature extractor of encoder–decoder networks. The
evolution of CNNs and FCNs leading towards encoder–decoder architectures that are used
to extract urban building footprints are presented in the next section. The architectures
formulate the proposed networks and the method design of this research.

2.1.1. CNNs and FCNs for Building Footprint Extraction

In one of the earliest studies of building footprint extraction, [24] trained a randomly
initialised Restricted Boltzmann Machine (RBM) to extract the roads on aerial images.
Volodymyr Mnih (2013) [25] later proposed a Massachusetts Buildings Dataset while
studying machine learning (ML) methods including RBM to label buildings and roads on
aerial image patches. Saito et al. (2015) [26] and Saito et al. (2016) [27] improved upon
Mnih’s RBM [25] and propose a five-layered CNN. Vakalopoulou et al. (2015) [28] trained
a CNN to produce a building/not-building binary classification on red–green–blue (RGB)
images. The output is used as a feature vector to train a support vector machine (SVM)
classifier, followed by Random Forest (RF) during post-processing. These early studies
used CNN and post-processing methods assisted by a conventional ML to improve the
final segmentation.

In contrast to the patch-based segmentation using CNN, FCNs perform building extrac-
tion at the per-pixel level. Several studies at the time concluded that the pre-trained FCNs
such as FCN-2s, FCN-4s, and FCN-8s when fine-tuned over new building and roads dataset
provide higher performance over CNNs [29,30]. With the ongoing investigation over find-
ing the superiority of CNNs and FCNs, a dual-stream CNN (VGG-Net and AlexNet) trained
simultaneously over smaller and larger patch-size was proposed by Marcu et al. (2017) [31]
to outperform the existing CNNs [25,26]. Zhao et al. (2018) [32] extracted buildings us-
ing a combination of Mask R-CNN (with the ResNet-101 feature extractor and a head
of Faster R-CNN) and building boundary regularisation with a combination of Douglas–
Peucker algorithm, set of hypothesis, and Minimum Description Length (MDL) framework.
Yang et al. (2018) [33] compared nine CNNs, an FCN, a CRF as Recurrent Neural Network
(CRFasRNN), and a SegNet for building segmentation across 78 locations to conclude
the superior performance of SegNet. Griffiths et al. (2019) [34] trained Mask R-CNN and
RetinaNet on two sets of labels that are improved using morphological operations. After
the continuous improvement of CNNs and FCNs, the encoder–decoder networks such
as SegNet and U-Net changed the SOTA in building footprint extraction. The structural
configuration is presented in the next section.
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2.1.2. Encoder–Decoder Network Architectures

The architecture of encoder–decoder networks consists of an encoder and a decoder.
An encoder is a feature extractor CNN that turns the input image space into the depth of
feature maps. A decoder then maps the low-resolution feature maps from the encoder to the
high-resolution feature maps of input size for pixel-wise classification. For example, SegNet
consists of an encoder that is similar to a 13-layer VGG-16 CNN, and a corresponding
decoder that upsamples the encoder’s lower-resolution input feature maps. U-Net consists
of the encoder and decoder with the addition of “skip connections”. These connections
pass the low-level information from the encoder to the decoder. This makes the utmost
use of the encoder–decoder structure. Unlike CNNs, encoder–decoder networks, therefore,
utilise both low- and high-resolution features, conserving the spatial integrity of objects
that is crucial in the semantic segmentation of features in EO data. However, the maximum
potential of these multi-scale features is still being explored in recent studies [35,36].

With the success of U-Net in medical image segmentation, it is also adopted for
EO-based building footprint extraction. U-Net has seen several re-iterations such as Re-
sUNET, U-Net++ [37], and U-Net3+ [38]. Xu et al. (2018) [39] trained ResUNET on
multi-modal images obtained from hand-crafted features such as NDVI, digital surface
model (DSM), normalised DSM (nDSM), and principal component analysis (PCA). They
pre-processed the hand-crafted features using edge enhancement to reduce noise and
pre-process the output of ResUNET using guided filters. Liu et al. (2019) [40] trained a
U-Net on a multi-channel image stack of red, red-edge, coastal, blue, and green image
bands of WorldView-3 satellite images and labels from Google maps, OSM, and MapWorld.
The final segmented feature map is binarised with a threshold of 0.5 to obtain building
polygon vectors. Yi et al. (2019) [41] proposed DeepResUNET for effective urban building
segmentation on ultra-high resolution (UHR) images of 0.075 m and compare to FCN-8s,
SegNet, DeconvNet, U-Net, ResUNET, and DeepUNet. Bischke et al. [42] modified Seg-
Net by adding layers to predict the distance to the border of buildings and introduce a
multi-task loss to address the boundary segmentation problem. Qin et al. (2019) [43] tested
the efficacy of Gaofen-2 imagery for the semantic segmentation of building roofs in dense
urban environments using an FCN with a VGG-16 backbone. Abdollahi et al. (2020) [44]
combined SegNet and U-Net to form Seg-Unet. Pan et al. (2020) [45] trained a U-Net to
classify four types of buildings. Sariturk et al. [46] compared SegNet and FCN. Ayala et al.
(2021) [47] fused synthetic aperture radar (SAR) image from Sentinel-1 and multi-spectral
image (RGB-NIR-NDVI at 10 m) of Sentinel-2 together with OSM label vectors to train
a modified U-Net with ResNet-34 as an encoder. It can be seen over the years that the
complexity of experimental data has changed from sparse building environments to dense
urban environments, and the FCNs and encoder–decoder networks are evolving to tackle
several problems associated with DL-based semantic segmentation.

The proposed networks in this study start with an encoder–decoder architecture of
U-Net and ResUNET, upon which multi-scale feature aggregation (MSA) with a partial
concept of FPN is added. The related works on the aggregation and fusion of multi-scale
features on encoder–decoder networks are presented in the next section.

2.1.3. Multi-Scale Feature Aggregation on Encoder–Decoder Networks

The fusion of feature maps is an advancing work [48]. The aggregation and fusion of
the multi-scale features in encoder–decoder networks such as U-Net is a trending approach
to exploit the multi-scale features in recent years [49–51]. Liu et al. (2018) [52] proposed
a self-cascaded network (ScasNet) that aggregates the multi-scale feature maps of image
size obtained from its encoder to extract global-to-local contexts. The coarse feature maps
are then refined using the fine-structure object refinement method. Yang et al. (2018) [53]
proposed a dense-attention network (DAN) to utilise the multi-level features for building
segmentation. DAN consists of an encoder of light DenseNets as a feature extractor and
decoder with a spatial attention fusion module to utilise both low- and high-level feature
maps. Ji et al. (2018) [9] proposed a Simamese U-Net that learns from the original image
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as well as downsampled image patch, and one input in one of two branches of the U-Net
with shared weights. This allows learning multi-scale and multi-source information. The
outputs of the branches are then concatenated for the final output. They also prepared the
WHU building dataset of 0.3 m resolution. Wu et al. (2018) [54] proposed a multi-constraint
FCN (MC–FCN) that adopts the basic structure of U–Net and adds three extra multi-scale
constraints between upsampled layers and their corresponding ground truths. Chen et al.
(2018) [55] automated the mapping of buildings through roof segmentation and compared
three networks with ResNet-101 backbone: FPN, FPN with multi-scale feature fusion
(MSFF), and pyramid scene parsing network (PSPNet). The PSPNet shows the highest
performance. Wei et al. (2019) [6] proposed a multi-scale aggregation FCN (MA-FCN),
which is a combination of a VGG-16 encoder as a feature extractor, a corresponding decoder,
and an FPN that aggregates the multi-scale feature outputs from the decoder. Two post-
processing methods are introduced to refine the final segmentation map, and overlapping
tiles are used to remove incorrect predictions at the edges of image tiles. The network is
trained on the WHU dataset and is compared to SiU-Net [9], U-Net, DeepLabv3+, and Mask
R-CNN. Ji et al. (2019) [56] used Atrous convolutions, multi-scale aggregation, combined
data augmentation, and relative radiometric calibration method for multi-source building
extraction. They compared their method to Deeplabv3+ [57], C-Unet (MC-FCN from [54]),
U-Net, FCN-8s and a 2-scale FCN [30]. The proposed aggregation of multi-scale feature
maps in this study comes from a partial concept of FPN. Unlike in FPN, the aggregation
utilises both higher- and lower-resolution feature maps as both are crucial to preserving
the spatial relationship among the features in EO images.

After integrating the multi-scale feature aggregation in the proposed networks, super-
vised DA techniques are investigated to minimise the effects of the domain-shift problem.
The related works on the problem and the solution of DA are presented in the next section.

2.2. The Domain-Shift Problem, Transfer Learning, and Domain Adaptation

The domain-shift problem is a common problem in DL methods. The problem occurs
when there exists a difference in training (source domain) and test (target domain) data. In
VHR EO data, the shift is generally caused by the difference in imaging sensors, spatial
resolution, complexity, and class representation. Transfer learning (TL) [8,58] is a common
method to reduce the impact of domain-shift and increase the performance of a DL network
with fewer training samples and less computational power. It allows the knowledge gained
from solving one problem to be transferred and used for similar problems, making it
popular in studies that lack enough training samples [59]. Pan et al. (2009) [8] categorised
the TL into three settings: inductive TL, transductive TL, and unsupervised TL. According
to their definition, a transductive TL setting is called DA when the label samples are only
available in the source domain and the task is the same in both the source and target
domain. However, over the years, the definition of DA has changed. DA can be of three
types [60,61]: supervised, unsupervised, and semi-supervised. The transductive TL setting
where only the source data are labelled is now called unsupervised DA. Conversely, DA is
supervised if both the source and target domain are labelled. Finally, a semi-supervised
DA has labelled data in the source and both labelled and unlabelled data in the target.

The unsupervised and supervised DA is found in the recent literature on building
footprint extraction. The instance transfer is a DA (whether supervised or unsupervised)
that is performed to re-weight some labelled data from the source domain to be used in
the target domain. Panboonyuen et al. (2019) [62] performed a domain-specific TL to
transfer the knowledge of a graph convolution network (GCN) trained on VHR satellite
images to a GCN trained on medium-resolution images. They perform instance transfer to
re-label weights from the source domain to the target domain utilising the backpropagation
algorithm to improve the target learning task. In a similar work, Wurm et al. (2019) [63]
used TL for their DL networks trained on training samples created from different sensors
(QuickBird, Sentinel-2, and TerraSAR-X) with varying spatial resolution. Some methods
based on the training and fine-tuning of FCNs [29,30] were already presented in the
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previous section. Some have used TL in their experiments for the ablation study [9,56]. In
most studies, the most common TL approach is to transfer the weights of an off-the-shelf
pre-trained CNN such as ResNet, VGGNet, Xception, Inception, etc., as a feature extractor
that is previously trained on a generic dataset such as Visual Object Classes (VOCs) [64]
and the ImageNet [65] dataset. The prior studies performed supervised DA. Liu et al.
(2020) [66] proposed a bispace alignment network (BSANet) that uses two branches of
modified U-Nets for unsupervised DA, automated labelling, and minimising the domain-
shift problem. They used BSANet as a generator in a generative adversarial network (GAN)
of two discriminators to minimise the discrepancy between the source and target domains.

The supervised DA in this research is similar to our previous study on Neupane et al.
(2022) [67]. In this work, the knowledge from the MSA-UNET and MSA-ResUNET trained
on larger and higher-resolution aerial images of 0.3 m is transferred to smaller and lower-
resolution aerial images of 1.2 m. The DA involves a target domain of large and higher-
resolution samples and a source domain of small and lower-resolution complex samples.
DA from a large to a small dataset is useful to obtain higher precision with a low number
of training samples in the target dataset [68]. Similarly, DA from higher to lower-resolution
data is useful to make the model trained on the target low-resolution data apply the
knowledge from the high-resolution data. A similar method demonstrated an improved
extraction of building footprints in EO imagery [9,56] and in the studies of other domains
[69]. The overall data preparation and method design is explained in the next section.

3. Method
3.1. Data Preparation

Two datasets are used for the experiments: (i) the WHU Building dataset and (ii) a
new dataset that was developed: the Melbourne Building dataset. The WHU Building
dataset (abbr. TR1) includes the satellite images of Christchurch, New Zealand, with a
spatial resolution of 0.3 m as generated by Ji et al. in [9]. To maintain the uniform image size
between the two datasets that were experimented on, the 512 × 512 sized-image samples
of the WHU dataset are tiled into 256 × 256. The training and validation samples of 23,088
and 9664 tiles are prepared for TR1. Figure 1 shows the study area and the sample training
images of TR1.

Figure 1. Aerial imagery of the WHU Building dataset set in Christchurch, New Zealand, and sample
training images of 0.3 m spatial resolution with low-rise building structures (adopted from [9]).

The second dataset that is developed (label, image) was named the Melbourne Building
dataset (abbr. TR2). The labels were developed by masking and tiling the building roof
samples collected from the publicly available “2018 Building Footprints” data provided
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by the City of Melbourne. The corresponding image tiles of 1.2 m spatial resolution of the
labels were collected from Nearmap’s API service. The training and validation samples
were then separated using the boundary of Census of Land Use and Employment (CLUE)
areas. Carlton suburb with 16.5% roof samples was taken as the validation area, and the
remaining as the training area. A total of 4889 and 435 tiles were prepared for training and
validation image tiles with an overlap of 50% between the adjacent tiles. Figure 2 shows
the study area and the sample training images of TR2.

Figure 2. Study area of the City of Melbourne and sample training images of 1.2 m spatial resolution
with high-rise building structures.

TR2 is five times smaller in size and has four times the lower spatial resolution
compared to TR1 and includes a high number of high-rise buildings that are tedious to
distinguish. TR2 includes 753 high-rise buildings and 67 skyscrapers above 150 m in height
from the City of Melbourne. On the other hand, TR1 includes the building footprints
of Christchurch, New Zealand, which contains just three high-rise buildings with the
highest one of 86.5 m, and mostly the short commercial and residential buildings. The
high-rises and skyscrapers increase the complexity of TR2 due to the shadows and the
angle of inclination of the camera sensors. With these differences, TR2 is a smaller and
more complex dataset and there exists a major shift in the domain between TR1 and TR2,
resulting in poor accuracy from the DL models trained on TR1 when validated against TR2.
Supervised DA is performed to tackle this problem.

3.2. MSA-UNET

The development of MSA-UNET was inspired by U-Net and FPN network architec-
tures. A specific focus is on an aggregation of multi-scale features that are derived from
a symmetrical FCN that preserves both contextual and spatial information. MSA-UNET
first starts with a U-Net architecture with encoder blocks Xn

En, bottleneck X5
En, and the

corresponding decoder blocks Xn
De, where n ∈ [1, 4]. The network architecture is illustrated

in the left part of Figure 3. Providing a brief explanation to U-Net, the encoder (contracting
path) consists of recurring unpadded 3 × 3 convolutions, rectified linear unit (ReLU), and a
2 × 2 max pooling with a stride of 2 for downsampling. The number of feature channels is
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doubled in each downsampling step of the encoder. The decoder (expansive path) upsam-
ples the low-resolution feature maps of the encoder using 2 × 2 “up-convolution” layers
that halve the number of feature channels. In addition, the feature map of the correspond-
ing encoder layer is concatenated to the output of up-convolution using skip connections.
This is followed by two 3 × 3 convolutions, each followed by a ReLU. A 1 × 1 convolution
in the final layer maps the 64-component feature vectors to the number of classes.

Figure 3. Network architecture of U-Net (left) and the proposed MSA-UNET (right). The MSA-block
of the proposed MSA-UNET inherits the multi-scale features from the last layer of each (among four)
decoder block of U-Net, and applies 3 × 3 convolutions with ReLU activation function and a 1 × 1
convolution with sigmoid function to produce a segmented map. The maps of all four scales are then
aggregated by (i) re-sizing them to input image size, (ii) concatenating together, and (iii) applying a
1 × 1 convolution with a sigmoid activation function to obtain the final prediction.

From the explanation of U-Net, its encoder is essentially a CNN. The CNN extracts
the features of an image without losing its characteristics. This extraction increases feature
resolution while decreasing image resolution. This process converts an image into a vector
while learning from the feature maps. In the decoder of the U-Net, the same feature maps
are used to convert the vectors back to segmented image output by concatenating the
high-resolution features coming from the encoder through skip connections to the spatially
high-resolution image in the decoder. The symmetrical nature of the architecture, therefore,
helps preserve the structural integrity and spatial relationship of the features in the image.
To preserve and exploit the multi-scale feature information, MSA-UNET aggregates them
using a multi-scale feature aggregation (abbr. MSA) inspired by FPN. The FPN proposed
by Lin et al. (2017) [7] only uses the feature map of the highest spatial resolution and
disregards the low-resolution feature maps. Unlike FPN, the added MSA collects the
features maps of four scales from the last layer of each decoder blocks Xn

De of U-Net and
applies 3 × 3 convolutions with 32 filters and a 1 × 1 convolution activated by a sigmoid
function. This is illustrated in the right part of Figure 3, where the layers of U-Net are also
illustrated in detail. The collected four sets of feature maps from U-Net are then aggregated
by first re-sizing into the same scale of 256 × 256 (image size) and concatenating them
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together. A 1 × 1 convolution is finally applied to the concatenated feature map with a
sigmoid activation function to obtain the final prediction. This aggregation of low-resolution
and high-resolution feature information is crucial to extracting urban features such as the
building footprint from EO images. MA-FCN [6] follows a similar combination of an FCN
and FPN, where they rely on an FCN with a VGG-16 encoder and its corresponding decoder.

3.3. MSA-ResUNET

MSA-ResUNET follows a similar architecture as the MSA-UNET, except this time, the
MSA block is added to a ResUNET. ResUNET is a network first proposed by Zhang et al.
(2018) [4] that uses residual blocks to build a deeper network. The residual block and
the rich skip connections in the network minimise the vanishing and exploding gradient
problem faced by the U-Net, providing an easier flow of gradients during backpropagation.
ResUNET replaces the two 3 × 3 convolutions activated by the ReLU activation function
with a pre-activated residual block in the encoder and the bottleneck. The decoder blocks
then consist of a 2 × 2 upsampling layer that doubles the spatial dimension of the feature
maps. These feature maps are concatenated to the features that are brought by the skip
connection from the corresponding encoder block. These concatenated feature maps are
then fed to the pre-activated residual block. In MSA-ResUNET, the feature maps of four
scales from the last layer of each decoder block of ResUet are collected for multi-scale
feature aggregation using the concept of MSA proposed in the previous section. The
collected feature maps from each decoder block are then applied a 3 × 3 convolution with
32 filters, a ReLU, and a 1× 1 convolution activated by a sigmoid function. The output of this
process results in four feature maps of different scales. These maps are concatenated and
apply a 1 × 1 convolution with a sigmoid activation function to obtain the final segmented
output. The network architecture of MSA-ResUNET is illustrated in Figure 4.

3.4. Training and Supervised Domain Adaptation of MSA-UNET

MSA-UNET and MSA-ResUNET are trained in two steps, as shown in Figure 5. First,
they are trained on TR1 to prepare a base model (M1) with a larger knowledge base.
Secondly, supervised DA is performed on TR2 to produce M2. During the DA, the weights
are initialised from M1 using transfer learning. The overall architecture, hyper-parameters,
and augmentation steps are kept the same as before, but this time the encoder is frozen
without affecting the knowledge gained from TR1. This allows a surgical fine-tuning of M1
such that the domain-adapted model M2 can leverage the knowledge from both TR1 and
TR2. By leveraging the knowledge learnt from an existing large dataset into M2 trained
on a smaller dataset, the overall method tackles the problem of domain-shift and also
reduces the requirement of a large training dataset on a case study. Moreover, the DA from
the higher-resolution source domain (TR1) to the lower-resolution target domain (TR2)
is performed to make the model trained on TR2 use the knowledge from TR1 to make
predictions on TR2.

To maximise the dice coefficient (also known as F1-score) and minimise the possible
imbalance between the number of “background” and “building pixels”, the dice loss [70]
is used as the loss function for binary classification. This loss calculates the measure of
overlap to assess the performance of segmentation when a ground truth (GT) is available.
Dice loss is denoted by Equation (1).

DL(y, p̂) = 1− 2yp̂ + 1
y + p̂ + 1

(1)

where y and p̂ represent the GT and prediction, respectively. The smooth value of 1 is
added in the numerator and denominator to make sure that the function is defined in the
case of y = p̂ = 0, which is called an edge case scenario. In the dice loss, the product of
y and p̂ represents the intersection between GT and the prediction. In other words, dice
loss is the negative of the dice coefficient that is used as one of the accuracy measures in
the experiments.



Remote Sens. 2023, 15, 488 10 of 22

Figure 4. Network architecture of the proposed MSA-ResUNET. The encoder, bottleneck, and skip
connections bring the knowledge derived from rich multi-scale feature maps to the decoder of the
ResUNET [4]. The MSA-block of the proposed MSA-ResUNET inherits these multi-scale features
from all four decoder blocks and applies 3 × 3 convolutions with ReLU activation function followed
by a 1 × 1 convolution with sigmoid function to produce a segmented map. The maps of all four
scales are then aggregated by (i) re-sizing them to input image size; (ii) concatenating together; and
(iii) applying a 1 × 1 convolution with a sigmoid activation function to obtain the final prediction.
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Figure 5. Overall workflow of training and supervised DA of MSA-UNET and MSA-ResUNET.

4. Experiments and Results

In the experimental design, MSA-UNET and MSA-ResUNET are evaluated against the
U-Net-like symmetrical encoder–decoder networks: MA-FCN [6], U-Net [3], ResUNET [4],
SegNet [5], U-Net++ [37], and U-Net3+ [38] using the two datasets TR1 and TR2. Further-
more, a cross-domain validation is performed to see the effects of domain-shift between
the two experimental datasets.

4.1. Evaluation Metrics

The evaluation of the proposed network and method is performed using (i) pixel
accuracy; (ii) adjusted accuracy; (iii) F1 score; (iv) IoU; and (v) MCC. Pixel accuracy
(Equation (2)) measures how often the predictions and the binary labels match. Adjusted
accuracy (Equation (3)) takes the average of the sensitivity (Equation (4)) and specificity
(Equation (5)), which measures the proportion of correctly identified actual positives and
actual negatives, respectively. F1 score (Equation (6)) and IoU (Equation (7)) are measured
from the ‘area of overlap’ between the prediction and binary labels and ‘area of union’ (all
of the predictions + binary labels - the overlap). Lastly, a measure of the difference between
the binary labels and the prediction with a consideration of the ratio between positive and
negative elements is calculated by MCC (Equation (8)) [71]. The symbolic representation of
the metrics are:

Pixel accuracy =
TP + TN

TP + TN + FP + FN
(2)

Adjusted accuracy =
Sensitivity + Speci f icity

2
(3)

Sensitivity =
TP

TP + FN
(4)

Speci f icity = 1− TN
TN + FP

(5)

F1score =
2× TP

2× TP + FN + FP
(6)

IoU =
TP

TP + FN + FP
(7)
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MCC =
(TP× TN)− (FP× FN)√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
(8)

where TP is true positive (i.e., prediction = 1, label = 1); FP is false positive (prediction
= 1, label = 0); FN is false negative (prediction = 0, label = 1); and TN is true negative
(prediction = 0, label = 0).

4.2. Training Details

All the models in the experiments are wrapped in the Keras framework with a mini-
batch size of 2. To keep the total number of steps the same or similar, it is set as the ratio of
the number of training images to the batch size. The number of steps for TR1 and TR2 is
therefore approximately 58K and 61K. A learning rate of 1× 10−4 is used to train the base
model M1, which is changed to the optimal value by lowering it or keeping it the same
during DA, such that the minimum validation loss is obtained. Adam, He Normal, and ReLU
are the optimiser, initialiser, and activation functions, respectively. A sigmoid function is
used to obtain the final output maps, and a dropout of 50% is used to avoid over-fitting. A
dice-coefficient loss is used to monitor the models. All the hyper-parameters are kept the
same among all models used for comparison, except in the SegNet, an argmax function is
used for pooling, unlike the max-pooling in other models. A Macbook M1 Pro with 8-core
CPU, 14-core GPU, 14-core NPU, and 16GB RAM is used as the computing machine to
account for the computational expense.

4.3. MSA-UNET and MSA-ResUNET

Table 1 presents the performance of the proposed MSA-UNET and MSA-ResUNET in
terms of five accuracy measures in TR1 and TR2. The proposed networks perform better in
the TR1 dataset than in TR2. This is due to the added complexity in TR2. The complexity
comes from 5× smaller samples, 4× less spatial resolution, and the complex high-rise and
skyscrapers. MSA-ResUNET outperforms MSA-UNET in TR1 in terms of pixel accuracy,
IoU, and MCC. Similarly, MSA-UNET outperforms MSA-ResUNET in TR2 in terms of four
measures except in adjusted accuracy.

Table 1. Same-domain validation results of MSA-UNET and MSA-ResUNET.

Dataset Base Models Pixel Acc. Adjusted Acc. F1 Score IoU MCC

TR1 MSA-UNET 0.979 0.863 0.735 0.672 0.718
MSA-ResUNET 0.981 0.861 0.734 0.673 0.725

TR2 MSA-UNET 0.951 0.722 0.477 0.383 0.453
MSA-ResUNET 0.928 0.764 0.414 0.321 0.430

4.4. Comparison to the SOTA

The base model M1 of MSA-UNET and MSA-ResUNET is compared against six
existing networks from the literature. The comparison is categorised into three variants
of FCN: U-Net variant (MSA-UNET and U-Net), ResUNET variant (MSA-ResUNET and
ResUNET), and VGG encoder variant (MA-FCN and SegNet). Two other SOTA networks
for comparison are U-Net++ and U-Net3+. The experiment is first carried out on both TR1
and TR2 datasets to examine the same-domain validation from the first step of training
(Table 2). Same-domain validation is the case of having the training and validation data
from the same dataset.
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Table 2. Same-domain validation results of the base model (M1) of MSA-UNET on TR1 and TR2
compared to MA-FCN, U-Net, and SegNet. The highest values are highlighted in bold.

Dataset FCN Variant Base Models Pixel Acc. Adjusted Acc. F1 Score IoU MCC

TR1

U-Net variant MSA-UNET 0.979 0.863 0.735 0.672 0.718
U-Net 0.973 0.826 0.844 0.770 0.681

ResUNET variant MSA-ResUNET 0.981 0.861 0.734 0.673 0.725
ResUNET 0.969 0.833 0.822 0.741 0.665

VGG-16 encoder MA-FCN 0.981 0.862 0.729 0.667 0.725
SegNet 0.969 0.831 0.666 0.584 0.673

U-Net++ 0.974 0.828 0.823 0.749 0.685
U-Net3+ 0.981 0.855 0.688 0.615 0.723

TR2

U-Net variant MSA-UNET 0.951 0.722 0.477 0.383 0.453
U-Net 0.928 0.760 0.437 0.342 0.479

ResUNET variant MSA-ResUNET 0.928 0.764 0.414 0.321 0.430
ResUNET 0.872 0.745 0.520 0.423 0.351

VGG-16 encoder MA-FCN 0.945 0.729 0.453 0.360 0.436
SegNet 0.854 0.735 0.376 0.277 0.376

U-Net++ 0.930 0.728 0.602 0.510 0.389
U-Net3+ 0.953 0.778 0.471 0.380 0.496

Compared among the U-Net and ResUNET variants on TR1, MSA-UNET and MSA-
ResUNET perform better in terms of pixel accuracy, adjusted accuracy, and MCC when
compared to U-Net and ResUNET. Compared among all base networks, MSA-UNET and
MSA-ResUNET show better performance in the same three metrics. All models are affected
by the complexity of TR2. Despite the complexity, MSA-UNET produces the highest pixel
accuracy, F1 score, and IoU when compared among the U-Net variants. MSA-ResUNET
produces the highest pixel accuracy, adjusted accuracy, and MCC among the ResUNET
variants. The VGG-encoder variants fall behind in both datasets. The other measures except
the pixel accuracy are lower because of their bias towards reporting only the positive case.
The increment in accuracy measures from the MSA-UNET, MSA-ResUNET, and MA-FCN
in TR2 comes from the efficiency of multi-scale aggregation of features in an FCN while
training on a smaller and complex dataset. U-Net++ is the most stable in all accuracy
measures with a higher F1 score and IoU. U-Net3+ also seems to have a lower F1 score
and IoU compared to the other three accuracy measures. Figures 6 and 7 show the sample
results from all base models on TR1 and TR2, respectively. As the models are trained using
the dice loss, the models with the highest F1 score are saved. The samples, therefore, show
a better performance for ResUNET than MSA-ResUNET.

4.5. Effects of Domain Shift

The previous section demonstrated the same-domain validation of the base model
(M1) of different networks. M1, however, suffers from the problem of domain-shift and
fails during the cross-domain validation, which is the case of having the training and
validation data from a different dataset that does not follow the principle of independent
and identical properties. To tabulate these effects, Table 3 presents the performance of
M1 trained on TR1 (abbr. M1(TR1)) but validated against TR2, and M1 trained on TR2
(abbr. M1(TR2)) validated on TR1. The comparison is only made among the networks
that used the concept of multi-scale feature aggregation. Compared to the same-domain
validation of MSA-UNET, the cross-domain validation of M1(TR2) on TR1 shows lower
pixel accuracy (0.951 vs. 0.909), adjusted accuracy (0.722 vs. 0.576), F1 score (0.477 vs.
0.217), IoU (0.383 vs. 0.138), and MCC (0.453 vs. 0.206). Similarly, M1(TR1) validated on
TR2 shows a significantly lower pixel accuracy (0.979 vs. 0.927), adjusted accuracy (0.863
vs. 0.761), F1 score (0.735 vs. 0.522), IoU (0.672 vs. 0.401), and MCC (0.718 vs. 0.499). The



Remote Sens. 2023, 15, 488 14 of 22

MA-FCN and MSA-ResUNET seem to suffer more from the domain-shift compared to
MSA-UNET.

Figure 6. Sample results from the MSA-UNET, U-Net, MSA-ResUNET, ResUNET, MA-FCN, SegNet,
U-Net++, and U-Net3+ on the WHU Building dataset (TR1). The left-most images are two different
samples from TR1 followed by the corresponding outputs from the eight base models.

Table 3. Cross-domain validation results on TR1 and TR2. M1(TR1) and M1(TR2) refer to the base
models trained on TR1 and TR2, respectively. To show the effects of the domain-shift, M1(TR1), and
M1(TR2) are validated against TR2 and TR1, respectively.

Evaluation
Metrics

M1(TR1) Validated on TR2 M1(TR2) Validated on TR1

MA-FCN MSA-UNET MSA-
ResUNET MA-FCN MSA-UNET MSA-

ResUNET

Pixel Acc. 0.907 0.909 0.909 0.927 0.928 0.878
Adjusted Acc. 0.560 0.576 0.538 0.761 0.757 0.772
F1 score 0.154 0.217 0.120 0.522 0.529 0.451
IoU 0.092 0.138 0.072 0.401 0.412 0.327
MCC 0.165 0.206 0.141 0.499 0.500 0.450
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Figure 7. Sample results from the MSA-UNET, U-Net, MSA-ResUNET, ResUNET, MA-FCN, and
SegNet, U-Net++, and U-Net3+ on the Melbourne Building dataset (TR2). The left-most images are
two different samples from TR2 followed by the corresponding outputs from the eight base models.

4.6. Supervised Domain Adaptation

The domain-shift in the cross-domain validation is minimised by the supervised DA
of the base model M1(TR1) on TR2, producing a model M2 that performs well on both
datasets. For the DA, the weights and biases are frozen on the encoder side to keep the
existing knowledge from TR1, and the learning is only updated on the remaining layers of
the decoder and the multi-scale aggregation (MSA) block. Four settings are experimented
for updating the learning (DA1, DA2, DA3, and DA4) on MSA-UNET. The experiments are
only performed for the MSA-UNET because of its relatively higher performance during
the cross-domain validation. DA1 represents the case where the weight and biases of the
MSA and the decoder blocks of the U-Net (UNetdec) in MSA-UNET are updated during
the backpropagation of the error. In DA2, only the UNetdec layers are updated with the
MSA frozen. Similarly, DA3 is a case where the last block of the U-Net (UNetlast) and the
MSA are updated. In DA4, only the UNetlast is updated without the MSA. A schematic
representation of the four settings is shown in Figure 8. The learning rate is kept the same
during this experiment as changing it decreased the accuracy measures in the experiments.
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Figure 8. A schematic representation of the four settings of supervised DA. Xn
En where n ∈ [1, 4]

represents the encoder blocks, X5
En represents the bottleneck, Xn

De where n ∈ [1, 4] represents the
decoder blocks, and MSA represents the multi-scale feature aggregation block of our MSA-UNET.

The accuracy measures obtained on the TR2 dataset along with the time taken for the
four experimental settings to run one step of training during the four settings of DA are
shown in Table 4. The results show that setting DA1 produces the highest F1 score and
IoU, DA2 produces the highest pixel accuracy and MCC, and DA4 produces the highest
adjusted accuracy. The pixel accuracy is biased toward only reporting the positive case,
and DA1 is the setting with two leading accuracy measures. Therefore, DA1 is used as the
setting for carrying out the supervised DA on MSA-UNET and MSA-ResUNET for the rest
of the experiments.

Table 4. Experiments carried out in different settings of supervised DA. The highest values are
highlighted in bold.

Evaluation Metric DA1 DA2 DA3 DA4

Time/step (ms) 256 242 152 137
Pixel Acc. 0.942 0.943 0.937 0.934
Adjusted Acc. 0.736 0.740 0.712 0.741
F1 score 0.649 0.486 0.586 0.449
IoU 0.558 0.388 0.485 0.346
MCC 0.431 0.453 0.402 0.427

Table 5 compares the performance of both M1 (before DA) and M2 (after DA) on both
TR1 and TR2. Starting with MSA-UNET, M2 shows a significantly higher performance
against M1(TR1) when validated against TR2: pixel accuracy (0.942 vs. 0.909), adjusted
accuracy (0.736 vs. 0.576), F1 score (0.649 vs. 0.217), IoU (0.558 vs. 0.138), and MCC (0.431
vs. 0.206). Similarly, the domain-adapted MSA-UNET (M2) also shows a significantly
higher performance over M1(TR2) when validated on TR1 in terms of pixel accuracy (0.949
vs. 0.928), adjusted accuracy (0.828 vs. 0.757), F1 score (0.710 vs. 0.529), IoU (0.602 vs.
0.412), and MCC (0.606 vs. 0.5). MSA-ResUNET also shows a similar improvement in
all accuracy measures on both TR1 and TR2. The domain-adapted MSA-UNET performs
better on both datasets. Some sample results from the cross-domain validation of M1 and
M2 using MSA-UNET are shown in Figure 9.
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Table 5. Cross-domain validation results of MSA-UNET and MSA-ResUNET on TR1 and TR2.
M1(TR1) and M1(TR2) refer to the base models trained on TR1 and TR2, respectively. M2 refers to the
model previously trained on TR1 and supervised DA on TR2. The M1 and M2, therefore, provide
before and after comparisons of the DA. The highest values are highlighted in bold.

Network Evaluation
Metrics

M1(TR1) Validated on TR2
(before DA)

M2 on TR2
(after DA)

M1(TR2) Validated on TR1
(before DA)

M2 on TR1
(after DA)

MSA-UNET

Pixel Acc. 0.909 0.942 0.928 0.949
Adjusted Acc. 0.576 0.736 0.757 0.828
F1 score 0.217 0.649 0.529 0.710
IoU 0.138 0.558 0.412 0.602
MCC 0.206 0.431 0.500 0.606

MSA-ResUNET

Pixel Acc. 0.909 0.945 0.878 0.926
Adjusted Acc. 0.538 0.767 0.772 0.809
F1 score 0.120 0.627 0.451 0.599
IoU 0.072 0.531 0.327 0.486
MCC 0.141 0.452 0.450 0.552

Figure 9. Sample results from cross-domain validation of the base model (M1) and domain-adapted
model (M2) experimented with MSA-UNET. The two samples on the left compare M1(TR1) to M2 to
show before and after supervised DA on the TR2 dataset. Similarly, the two samples on the right
compare M1(TR2) to M2 to show before and after supervised DA on the TR1 dataset.

5. Discussion
5.1. Domain-Shift and Supervised Domain Adaptation

The experiments have shown that the performance of the base models is significantly
reduced during cross-domain validation because of the domain-shift between the TR1 and
TR2 datasets. Transfer learning methods such as supervised DA are useful in tackling this
problem. Supervised DA from a higher resolution domain to a lower resolution domain is
not new in VHR EO image classification. Wurm et al. (2019) [63] transferred the knowledge
from an FCN trained on Quickbird’s 0.5 m multi-spectral imagery (resampled from 2 m
multi-spectral and 0.5 panchromatic image channels) to Sentinel-2 10 m imagery. They also
experiment with the transfer learning from Quickbird to 6 m SAR imagery from TerraSAR-
X. In their experiment, they conclude that transfer learning from the Quickbird domain
to the Sentinel-2 domain improves the performance of semantic segmentation. It was
observed that the method performs well between the source and target domain of optical
imagery, and fails when the source is optical and the target is SAR imagery. This work has
investigated a similar method of supervised DA on MSA-UNET to transfer the knowledge
gained from VHR imagery of 0.3 m (TR1) to that of 1.2 m (TR2). The supervised DA
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demonstrates an increase in accuracy measures by up to four times, which is a significant
increase in robustness in the cross-domain setting.

5.2. Melbourne Building Dataset in Cross-Domain Validation

The complexity of the TR2 dataset demonstrates increased robustness in the cross-
domain setting from the proposed networks when compared to the networks trained on
TR1. Table 5 validates the increase in robustness in terms of all five accuracy measures.
From the experiment, the domain-shift effect on the base model M1(TR2) is smaller than
the M1(TR1). Looking at MSA-UNET, M1(TR2) produced a 29.4% higher MCC (0.500 vs.
0.206) when compared to M1(TR1). This shows that the developed Melbourne Building
dataset (TR2) is 29.4% more robust in terms of MCC during the cross-validation of M1
among TR1 and TR2. Similarly, TR2 is approximately 18%, 31%, and 27% more robust in
terms of adjusted accuracy, F1 score, and IoU, respectively. The complexity of TR2 has
improved the robustness of both the dataset and the two proposed networks; however,
there exist some limitations to the dataset, as discussed in the next section.

5.3. Limitations and Future Direction

Multi-scale feature aggregation increases the precision of MSA-UNET in complex
urban building footprint segmentation, as shown by the experiments. The increased preci-
sion comes from the significant minimisation in over-segmentation that occurs when the
“background” pixels are predicted as “buildings”. The comparison of over-segmentation in
the TR2 dataset using SegNet, U-Net, MA-FCN, and MSA-UNET is shown by their predic-
tion samples in Figure 10. As seen, the MSA-UNET is less affected by over-segmentation.
However, the problem of under-segmentation, where the buildings are recognised as back-
ground, persists in the TR2 dataset. This comes from the existence of multiple roof types of
different shapes and heights within a single building, the fuzzy boundary between adjacent
buildings on 1.2 m spatial resolution images, and the shadows from high-rise buildings
and skyscrapers in the TR2 dataset. The complexity of TR2 has improved its robustness;
however, the dataset can be further improved by adding more samples of multiple spatial
resolutions from other cities.

Figure 10. Sample results from the MSA-UNET, U-Net, MSA-ResUNET, ResUNET, MA-FCN, and
SegNet (left-right) on the Melbourne Building dataset (TR2). The orange and blue region highlights
the pixels affected by under- and over-segmentation, respectively.
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6. Conclusions

DL methods are the current practices in extracting building footprints from EO images.
U-Net and ResUNET are two commonly used DL networks of an FCN family. A CNN is
the fundamental backbone of an FCN. Despite setting a positive advancement in feature
extraction, CNN-based DL methods have several limitations. This study provides potential
solutions to two major limitations associated with these DL methods. The first limitation
comes from the loss of context information inside the layers of CNNs and the second
comes from the inability of CNNs to robustly extract features in cross-domain settings
due to the domain-shift problem. For the first limitation, this study integrates the partial
concepts of FPN to aggregate the multi-scale feature maps of U-Net and ResUNET. The
integration results in two novel DL networks called MSA-UNET and MSA-ResUNET. The
second limitation is investigated by preparing an experimental setup of two building
footprint datasets and performing the supervised domain adaptation of the developed
network between the datasets. The first dataset is the benchmark WHU Building dataset
and the second is a newly developed dataset from the complex urban setting of the City
of Melbourne. The proposed solutions to the two limitations of CNN-based methods
demonstrate significant efficiency gains. The developed networks outperform other SOTA
networks such as MA-FCN, U-Net, SegNet, U-Net++, and U-Net3+ in terms of several
accuracy measures. The MSA-UNET and MSA-ResUNET, respectively, outperform U-Net
and ResUNET on the two building footprint datasets in terms of pixel accuracy, adjusted
accuracy, and MCC. MSA-UNET also outperforms U-Net on the latter dataset in terms
of pixel accuracy, F1 score, and IoU. The proposed networks also outperform MA-FCN,
which implements the multi-feature aggregation of a similar nature. The experiments
therefore conclude that the proposed multi-scale feature aggregation technique results in
efficiency gains of FCNs such as U-Net and ResUNET. Unlike most experiments from the
literature, this study performs a cross-domain validation between the two datasets. This
validation allows a comprehensive study of the effects of domain shift that come from
several differences between the datasets. The second dataset developed for this study
has 5× fewer samples with 4× lower spatial resolution and includes complex high-rise
buildings and skyscrapers when compared to the benchmark dataset. The cross-domain
validation of the proposed networks demonstrates the reduction in accuracy measures by
two to three times in percentage, concluding that the FCNs fail in cross-domain settings
due to the domain-shift problem. Four supervised DA settings are studied to minimise
the effects of domain-shift, resulting in significant improvement in the robustness of MSA-
UNET and MSA-ResUNET in terms of all accuracy measures. The experiments also
demonstrate that the developed small and complex datasets result in more robust FCNs in
cross-domain settings when compared to the FCNs trained on the benchmark dataset. The
developed high-resolution building footprint dataset can be further used by the geospatial
industries as well as researchers in the domain of city planning and urban feature modelling.
In future works, the use of robust post-processing techniques and the development of more
robust datasets is recommended to increase accuracy in building footprint extraction in
complex city environments.
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