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Abstract: The depletion of shallow groundwater has seriously affected the sustainable development
of water resources in the North China Plain (NCP). Based on 556 well monitoring observations over
a period of 13 years, we quantitatively evaluated the shallow groundwater sustainability in the
NCP via various indices (e.g., the reliability, resilience, vulnerability, and sustainability indices), and
further discussed the contribution of different drivers (including climatic and non-climatic factors).
The main conclusions are summarized as follows: (1) the yearly trend of shallow groundwater shows
a serious long-term deficit in the Piedmont Plain but is not significant in the East-Central Plain.
(2) As for the sustainability of shallow groundwater in the NCP, the reliability is below the medium
level (reliability < 0.5) in most areas and the ability of shallow aquifers to restore groundwater is
very weak (resilience < 0.2), while the lack of groundwater storage in most shallow aquifers is not
serious (vulnerability < 0.4). The final sustainability index (<0.1) shows the poor sustainability of
most shallow aquifers in the NCP. (3) The non-climatic factor is the dominant driver of shallow
groundwater depletion in the NCP when compared to the climatic factor. This result is helpful to
formulate the water management policies for sustainable shallow groundwater storage in the NCP.

Keywords: North China Plain; shallow groundwater storage; sustainability index; climatic factor;
non-climatic factor

1. Introduction

The North China Plain (NCP) has become one of the most water-stressed regions in
China due to population explosion, climate change, agricultural activities, and urbaniza-
tion [1,2]. In recent years, groundwater resources have accounted for more than 70% of
water resource utility in the most densely populated regions of China, especially in the
NCP [3–5]. The contradiction between the supply and demand of water resources is very
prominent. Unsustainable high-intensity groundwater extraction has resulted in a signifi-
cant decrease in groundwater of 0.5–2.0 m/year [6,7]. As a result, a series of geological and
environmental problems such as land subsidence, soil salinization, and aquifer depletion
have become increasingly serious, greatly restricting the social and economic development
of the NCP [6,8]. To better optimize the allocation of water resources in the NCP and
alleviate the “groundwater crisis” [9], many scholars devote themselves to studying the
main factors leading to groundwater depletion to further explore the sustainable utilization
of groundwater resources in the NCP.

At present, most studies on groundwater storage deficiency in the NCP are based on
GRACE observation data to assess the trend of the yearly decline of groundwater stor-
age [10–13]. Moreover, the studies in which groundwater decline was typically attributed
to continuous groundwater extraction [14–16], changes in precipitation, and hydrological
drought [17–19] did not separate groundwater storage changes caused by groundwater
extraction and precipitation. However, it has been observed that the water balance in
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Asia showed a stable trend during the moist climate regime from 2010 to 2013 [20]. This
illustrates the need to isolate and assess the individual contributions of factors that in-
fluence groundwater losses. In other words, previous analyses of groundwater trends
have not presented the actual pressure on shallow groundwater caused by climate change
and increasing human demand. Thus, to better differentiate and quantify the variation in
precipitation and the contribution of human-induced influences to shallow groundwater,
we used the in situ monitoring well observations and the Global Land Data Assimilation
System (GLDAS) model from 2005–2018 to assess the impact of human demands and
changing precipitation patterns on shallow groundwater storage variations in the NCP to
complement the existing work.

In addition, the current research on the sustainable development of groundwater
in NCP. On the one hand, the sustainable utilization and evaluation of groundwater
resources in some areas of the NCP (such as Beijing, Hebei, Shandong, Henan, etc.) lack
overall and systematic analysis [21]. On the other hand, the sustainable analysis of the
overall groundwater resources in the NCP based on a single index only considers the
impact of groundwater extraction on the sustainable utilization of groundwater [22], but
does not comprehensively consider the impact of aquifer structure and climate change on
groundwater change; it is easy to be restricted by a single index and the evaluation is limited.
Therefore, some studies choose to use the random performance index of water resource
systems to evaluate the sustainability of groundwater. After considering the water storage
capacity of the aquifer and the serious situation of groundwater deficiency, the case of
aquifer resilience achieves an easily quantified multi-angle sustainability assessment [23,24].
Subsequent studies have added the groundwater deficiency index (GDI index) based on
this method to obtain more standard quantitative results of water storage [25] and to
conduct a more accurate sustainability evaluation, which is of great significance for the
sustainable utilization of subsequent groundwater in the study area.

In conclusion, under the comprehensive consideration of aquifer structure, human
demand, and the influence of climate change, we chose to use the random performance
index of the water resource system and groundwater deficiency index (GDI) to analyze
the reliability, elasticity, and vulnerability index (RRV) of shallow wells in the NCP to
evaluate shallow groundwater depletion from multiple perspectives. On this basis, we
quantitatively evaluate the sustainable development of shallow groundwater from the
perspective of space.

2. Data and Methods
2.1. Data
2.1.1. Groundwater Storage Estimation from Well Observation

Water resources in China are not evenly distributed from north to south. About half
of the population and two-thirds of the farmland are located in northern China, while
the water resources there only account for one-fifth of the national total [26,27]. The NCP
(Figure 1) covers an area of 140,000 sq km, has a population of 350 million, and is responsible
for 10% of China’s food production; however, it is short on water resources per capita and
relies heavily on groundwater for human water supply [28,29].

The NCP is mostly distributed with loose rock pore groundwater. The lithology of the
aquifer changes from gravel, medium-coarse sand, and medium-fine sand in the Piedmont
Plain to medium-fine sand and fine sand in the central plain, and gradually to fine sand and
silty sand in the Marine plain. The shallow aquifer thickness transients from 120~210 m in
the Piedmont Plain to 50~120 m in the East-Central Plain [23]. The thickness of the deep
aquifer gradually increases from 100 m in the Piedmont Plain to about 600 m in the East-
Central plain, but the average storage coefficient is 0.00125, about 2% of the area-weighted
ratio yield of the shallow aquifer (0.075) [30], so the release of deep groundwater is much
lower than that of the shallow aquifer. This is neglected in the calculation of water storage
change [31]. The high heterogeneity of the shallow aquifer system indicates the need for
a more detailed assessment of the response of different shallow aquifers to individual
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components of groundwater loss. At the same time, the high heterogeneity of aquifer
systems suggests a need for a more detailed assessment of the response of different aquifers
to individual components of groundwater depletion. Therefore, shallow aquifers with
more wells and wider coverage were selected for detailed analysis.
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Figure 1. The observed networks of shallow groundwater levels including 556 monitoring wells are
also presented.

The monthly groundwater level measurements from 556 unconfined wells during
2005–2018 were obtained from the Chinese groundwater management authority and the
groundwater yearbook. The locations of 556 monitoring wells are presented in Figure 1.
Due to the uneven spatial distribution of monitoring wells, the regional mean groundwater
level is estimated by the area-weighted Thiessen polygon method. The Thiessen polygons
for these unconfined wells in the NCP are presented in Figure 2.
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The monthly groundwater storage is calculated as the multiplication of the groundwa-
ter level measurement, the area of each Thiessen polygon, and the corresponding specific
yield [10]. The range of specific yield in the NCP is 0.025~0.29, and the spatial data of
comprehensive specific yield were obtained from Cao et al. (2013) [32].

2.1.2. Precipitation Data

Monthly precipitation data from 2005 to 2018 were derived from the catchment land
surface model (CLSM) product of the Global Land Data Assimilation System (GLDAS)
released jointly by NASA and the US National Oceanic and Atmospheric Administration.
The product provides estimates of shallow groundwater storage. However, the results only
represent natural variations in groundwater storage [33,34]. In this study, the CLSM model
is also exploited to estimate the non-climatic portion of shallow groundwater storage in
the NCP.

2.2. Groundwater Performance Indicators

RRV indicators (reliability, resilience, and vulnerability) were used to assess the overall
situation of shallow groundwater storage in the NCP. The RRV index was initially used to
evaluate the random performance of water resource systems [34], which was convenient
for the comprehensive analysis of water resource systems from multiple perspectives. In
order to achieve RRV analysis of shallow groundwater systems in the NCP, we used the
GDI index to calculate the groundwater performance indicators [25]. The first step of GDI
index calculation is to eliminate the seasonality of groundwater storage anomaly (GWSAi)
by deducting the seasonal mean (CMi) [35].

CMi =
∑ni

j=1 GWSAj

ni
(1)

where i represents the month of observation and ni represents the number of observations.
The abnormal groundwater storage after removing CMi represents the net deviation of
groundwater storage change, namely groundwater storage deviation (GSD) [36]. GDI is
normalized by using the standard scoring method with mean (µGSD) and variance (σGSD),
as shown in the following equation:

GDI =
GSDt − µGSD

σGSD
(2)

GDI indices calculated from monitoring wells form the basis of various statistical
indicators [37,38], and a positive GDI demonstrates a satisfactory state, while a negative
GDI denotes an unsatisfactory state [25].

2.2.1. Reliability

Reliability (Rel) represents the probability that the water resource system is in a satis-
factory state [24], while in the groundwater resource system, it represents the possibility
that aquifer storage is higher than a certain threshold (the water storage does not increase
or decrease corresponding to zero GDI index: greater than zero indicates abundant ground-
water; a value less than zero indicates a lack of groundwater). The Rel value is calculated
as the quotient of the number of satisfactory scenarios divided by the total number of
scenarios [37,38]. Rel closer to 1 represents more satisfactory events, indicating stable and
reliable groundwater storage in the region. In contrast, Rel closer to 0 represents more
unsatisfactory events, indicating that the reliability of groundwater is poor in this region.

2.2.2. Resilience

Resilience (Res) represents the ability of a water resource system to overcome an
unsatisfactory state [24], while in the groundwater resource system, it represents the
likelihood that aquifers will return to normal values after overuse of groundwater or
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prolonged groundwater drought. Resilience is quantified as the quotient of the number
of satisfactory scenarios following unsatisfactory scenarios divided by the number of
unsatisfactory scenarios [37,38]. The value ranges from 0 to 1, and closer the Res is to 1, the
better is the ability of the aquifer system to recover groundwater storage.

2.2.3. Vulnerability

Vulnerability (Vul) represents the occurrence possibility of water resource system
failure (unsatisfactory state) events [24]. In this paper, Vul is the sum of the GDI value corre-
sponding to the unsatisfactory events multiplied by the probability (pj) of the unsatisfactory
events occurring during the study period:

Vul = ∑ GDI j×pj (3)

The closer the Vul is to 1, the more serious the loss of groundwater reserves.

2.2.4. Sustainability Index

The sustainability coefficient (Si) describes each region as a function of Rel, Res,
and Vul. In this study, the product of three performance indicators was used to form
the sustainable development coefficient. Compared with the equal-weight summative
coefficient of the three performance indicators [25], it has the advantage of increasing the
weight of the statistical measure with small values and producing a higher index value
only when all statistical measurements are large.

Si = Rel × Res × (1 − Vul) (4)

2.3. Multiple Linear Regression
2.3.1. Functional Model

Since groundwater is an important component of global fresh water demand, it is
critical to distinguish the drivers that cause significant changes in groundwater storage. In
this study, the least squares multiple regression (MLR) method with multiple datasets was
used to quantify the impacts of climatic and non-climatic factors on shallow groundwater
storage variations. Meanwhile, the MLR-based approach paves the way for dominance
analysis, which helps to distinguish the dominant drivers of groundwater storage variations
in NCP. The proposed groundwater functional model has a general form:

SGWAt = β0 + β1P1t + β2P4t + β3P12t + β4NPt (5)

where SGWAt is the measured monthly change in shallow groundwater storage, β0 to β4 is
the model coefficient, P1t is the precipitation of the previous month at observation time t, P4t
is the total precipitation in 4 months before observation time t, P12t is the total precipitation
in 12 months before observation time t, and NPt is the influence of non-climatic factors.

Since the dominant drivers of groundwater variations in NCP are human activities
and precipitation change [8], we divided the simulated shallow groundwater storage
change into climatic (P1t, P 4t, P12t) and non-climatic (NPt) in Equation (5). In the regression
model, precipitation (climatic) components are considered on different time scales (one
month, four months, and twelve months) to reflect the time delay of natural recharge in
the precipitation process.

The intensity of precipitation plays an important role in maintaining groundwater
balance. Due to the high heterogeneity of the aquifer system in the NCP, the recharge
effect of precipitation also varies with different regions. From the Piedmont Alluvial Plain,
Central Alluvial Lacustrine Plain, and Coastal Alluvial Plain, the thickness of the aquifer
becomes thinner, and the permeability becomes lower, and the effect of the aquifer receiving
precipitation is different. In the NCP, high-intensity precipitation mainly occurs in summer
(June to September), which is conducive to rapid recharge of the Piedmont Aquifer with
high permeability. The low-intensity precipitation is favorable for the slow recharge of
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the low permeability aquifer in the middle and east. Therefore, considering the change in
recharge time required by different aquifers, P1t, P4t and P12t are considered in Equation (5).

The first part (P1t) represents the shallow groundwater storage variations caused
by precipitation in the previous 1 month of observation time T. The second part (P4t)
represents the shallow groundwater storage variations caused by precipitation in the first
4 months of observation time T. As mentioned above, precipitation in North China is
mainly seasonal precipitation from June to September. In order to capture the changes in
shallow groundwater storage caused by seasonal high-intensity precipitation, we carefully
selected the total precipitation from June to September each year. This part is especially
important for aquifers with high permeability and fast recharge rate. Selecting other months
will not capture the effect of seasonal precipitation on changes in shallow groundwater
storage. The third part (P12t) represents the change in shallow groundwater storage caused
by precipitation in the previous 12 months of observation time T. This part is especially
important for aquifers with low permeability and slow recharge rate.

The non-climatic component (NPt) was estimated by subtracting the shallow ground-
water storage from the CLSM surface model. Since the CLSM estimation only reflects
the changes in shallow groundwater storage caused by climate change, the non-climatic
component can be obtained by deducting this estimate, which has also been applied in
previous studies such as [35].

2.3.2. Dominance Analysis Using Proportional Reduction of Error

To further identify the dominant factors leading to changes in shallow groundwater
storage, we used proportional reduction of error (ProRE) to perform dominance analysis
of the predictors. Dominance analysis is a tool for calculating the relative contribution of
each predictor in multiple regression models [39]. The dominance analysis was performed
via different models with a single unit of measured observations, and the ProRE of each
component was obtained by removing the corresponding components. For example, the
ProRE of P1t is calculated as

ProREP1t =
(RSS o f GWAt2 − RSS o f GWAt1)

RSS o f GWAt2
(6)

where RSS denotes the residual sum of squares of a time series. GWAt1 is the model
containing all components as

GWAt1 = β0 + β1P1t + β2P4t + β3P12t + β4NPt (7)

In addition, GWAt2 is the model excluding P1t:

GWAt2 = β0 + β2P4t + β3P12t + β4NPt (8)

3. Results and Discussions
3.1. State of Shallow Groundwater Storage

To preliminarily access the state of shallow groundwater storage in the NCP, we
calculated the yearly trends of well monitoring (from 2005 to 2018) observations. It should
be noted that the positive trend in groundwater is shown in shades of red, while the negative
trend is represented in shades of blue. As shown in Figure 3, the shallow groundwater
in the Piedmont Plain region adjacent to the Taihang Mountains shows an obvious blue
color, which means an obvious deficit, indicating that the Piedmont Plain region had a
long-term deficit from 2005 to 2018. In the East-Central Plain, the trend is close to zero,
and the deficit is not obvious, meaning that the groundwater deficit is not serious. This is
consistent with the reality of shallow groundwater exploitation in the NCP: agricultural
irrigation is intensive in the Piedmont Plain, and the mining conditions of shallow aquifers
are excellent, so a large amount of groundwater is extracted for agricultural irrigation,
which is the main exploitation area of shallow groundwater, and the shallow groundwater
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is severely deficient. In contrast, the shallow groundwater in the East-Central Plain is
unusable salt water [40], thus the shallow groundwater depletion in the central and eastern
regions is not as severe.
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3.2. Groundwater Performance Indicators

To assess the status quo of shallow groundwater from multiple perspectives, we
calculated the performance indicators (reliability (Rel), resilience (Res), vulnerability (Vul),
and sustainability index (Si)) for individual monitoring of wells based on the GDI index.
The values of these indices are normalized based on their minimum and maximum values
to compare the results on the same scale from 0 to 1. Figure 4a–d show the results of Rel,
Res, Vul, and Si obtained from in situ well observations. Areas representing high values
(close to 1) of Rel indicate the large storage of groundwater. The high values (close to 1) of
Res indicate the better ability of the aquifer system to recover groundwater storage. The
high values (close to 1) of Vul indicate the more serious loss of groundwater storage. The
high values (close to 1) of Si indicate greater sustainability.

Figure 4a shows that the reliability is below the medium level (<0.5) in most areas of
the NCP, which indicates that the shallow groundwater storage in most areas of the NCP is
relatively minor after 13 years of extraction. At the same time, resilience analysis shows that
most shallow aquifers are severely damaged after long-term groundwater extraction [8,41],
and the ability of shallow aquifers to restore groundwater storage is extremely weak (<0.2)
(Figure 4b). In Figure 4c, similar Vul calculations (nearly between 0.3 and 0.4) suggest that
the lack of groundwater storage in most shallow aquifers is not significant in the NCP (<0.4),
which is attributed to the fact that after realizing the importance of sustainable development
of groundwater, the government adopted water transfer and water-saving measures to
supplement groundwater storage in the later period [42]. Three indicators all affect the
sustainable development of shallow groundwater storage in the NCP. Finally, the value
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of Si is less than 0.1, indicating that most shallow aquifers in the current NCP have poor
sustainability and need to reduce extraction and increase water sources to promote further
groundwater recovery. It is worth noting that there is a strong correlation (0.86) between
resilience (Res) and sustainability (Si), which indicates that the ability of shallow aquifers
to restore groundwater is the main factor affecting the sustainable development of shallow
groundwater in the NCP. This means that irreversible damage to the aquifer structure,
resulting in a continued deterioration of the aquifer’s ability to restore groundwater storage,
must be avoided to better promote sustainable groundwater development.
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Compared with previous studies, we have longer and more densely distributed in situ
well observations. This paper provides spatial quantification of sustainable groundwater
development over a longer time, from more angles, and with denser coverage points.

3.3. Influence of Different Drivers on Shallow Groundwater Variability

In order to determine the influence of climatic and non-climatic factors on shallow
groundwater storage variations, we separated the main components through multiple
linear regression simulation via Equation (5).

To assess the reliability of our multiple linear regression process, the root mean square
errors (RMSEs) between the simulated results and the measured data were calculated. As
shown in Figure 5, the RMSEs are all smaller than 0.3 cm, indicating the efficiency of the
regression model in the whole study region.
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groundwater storage changes.

The model coefficient results obtained by multiple linear regression are presented in
Figure 6. The coefficients are very similar over the East-Central Plain but distinguishable
over the Piedmont Plain. According to the distribution of coefficients, the climatic and
non-climatic impacts on groundwater storage for the East-Central Plain are not clearly
distinguished. However, for the Piedmont Plain, the coefficient results show that there is a
negative correlation between precipitation and groundwater change in 1 and 12 months,
and a positive correlation between non-climatic factors.

Remote Sens. 2023, 15, x FOR PEER REVIEW 10 of 14 
 

 

 
Figure 6. The coefficients obtained using stepwise multivariate linear regression: (a) for one-month 
precipitation predictor (P ); (b) for four-month precipitation predictor (P ); (c) for twelve-month 
precipitation predictor (P ); (d) for non-precipitation predictor (NP ); (e) represents intercept. 

After that, we performed ProRE analysis on the fitting results to obtain the dominant 
drivers of shallow groundwater storage variations (Figure 7). The closer the area color is 
to red, the larger the driver is, and the more likely it is to affect the changes in shallow 
groundwater. As shown in Figure 7a, the non-climatic factor accounts for the largest pro-
portion and plays a dominant role in the change in shallow groundwater storage, that is, 
due to the long-term and intense artificial exploitation of shallow groundwater for agri-
cultural irrigation and daily water supply in the NCP. In contrast, the shallow groundwa-
ter is not sensitive to precipitation accumulated with different time delays (Figure 7b–d). 
Among the climate (precipitation) factors, shallow groundwater in the NCP is more sen-
sitive to accumulated precipitation in the first four months. 

 
Figure 7. The spatial pattern of proportional reduction of error (ProRE) for regression model pre-
dictors. (a) for non-climatic part; (b) for one-month precipitation part; (c) for four-month precipita-
tion part; (d) for twelve-month precipitation part. 

Figure 6. The coefficients obtained using stepwise multivariate linear regression: (a) for one-month
precipitation predictor (P1t); (b) for four-month precipitation predictor (P4t); (c) for twelve-month
precipitation predictor (P12t); (d) for non-precipitation predictor (NPt); (e) represents intercept.
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After that, we performed ProRE analysis on the fitting results to obtain the dominant
drivers of shallow groundwater storage variations (Figure 7). The closer the area color is to
red, the larger the driver is, and the more likely it is to affect the changes in shallow ground-
water. As shown in Figure 7a, the non-climatic factor accounts for the largest proportion
and plays a dominant role in the change in shallow groundwater storage, that is, due to
the long-term and intense artificial exploitation of shallow groundwater for agricultural
irrigation and daily water supply in the NCP. In contrast, the shallow groundwater is not
sensitive to precipitation accumulated with different time delays (Figure 7b–d). Among
the climate (precipitation) factors, shallow groundwater in the NCP is more sensitive to
accumulated precipitation in the first four months.
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In order to evaluate the variation in precipitation, a trend analysis was also conducted
for precipitation at different time accumulative scales. Figure 8a–c show the accumulative
precipitation trend one month, four months and twelve months before the observation time,
respectively. The results show that precipitation intensity in the NCP presents a generally
positive trend, which is not consistent with the groundwater storage variations derived
from well observations (Figure 3). It also indicates that precipitation (climatic factor) is not
the main driver for the long-term decline in shallow groundwater storage in the NCP.
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To further investigate this issue, we also assessed the trend of shallow groundwater
storage in the CLSM. Figure 8d shows the trend of shallow groundwater storage estimated
from the CLSM (climatic components). It was found that climate-driven shallow ground-
water changes very little (note the different color bars in Figure 8d), and the Piedmont
Plain shows an obvious positive trend, which also presents different features compared
to the trends presented in Figure 3. This again confirms the minor contribution of the
climatic component.

Instead, as compared to the climatic composition, these results present obvious con-
sistency between trends of non-climatic components (Figure 8e) and those derived from
556 well observations (Figure 3). For instance, there are negative trends over the Piedmont
Plain of the NCP, that is, there are long-term losses in shallow groundwater, while the losses
in the central and eastern regions are not serious. The correlation coefficients between
the trend of climatic components (Figure 8d) or non-climatic components (Figure 8e) and
total groundwater storage (Figure 3) are presented in Table 1. The quantitative results also
support that the shallow groundwater storage deficit in the NCP is mainly derived from
non-climatic factors.

Table 1. Correlation analysis for climatic component and non-climatic component.

Correlation Index Climatic Component Non-Climatic Component

Shallow groundwater storage −0.36 0.99

For the study of groundwater driving factors in the NCP, the advantages of this pa-
per are as follows: more comprehensive measured data, the realization of a long-term
point-to-point analysis, and more accurate results. In addition, instead of attributing the
cause of the groundwater deficit to the combined influence of man-made extraction and
rainfall, this paper conducts an isolated analysis of the driving factors causing groundwater
change, obtains independent non-climatic and climatic components of shallow ground-
water, and further separates the climatic components of different time scales considering
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the delayed effect of precipitation on groundwater recharge. This was performed in more
detail compared to other papers that directly deduct the climatic component estimated
by the CLSM from the overall groundwater (deep + shallow) to obtain the non-climatic
component of groundwater [25]. We consider that the CLSM estimates represent only
the climatic component of shallow groundwater [33,34]. Therefore, the interference of
deep groundwater is eliminated, and accurate results of shallow groundwater drivers are
obtained in a more detailed stratification.

In addition, since the specific yield is needed in the calculation process of in situ
wells, but the aquifer structure changes due to long-term groundwater extraction, its
groundwater storage capacity changes correspondingly, but the specific yield data are not
updated accordingly. Is there a higher real-time specific yield to obtain more accurate
groundwater data? Secondly, the time range of the existing in situ data is only from 2005 to
2018, which brings the question of whether longer data can be obtained. Moreover, this
paper only analyzes the changes in shallow groundwater, so whether it is possible to use
additional data sources to conduct a detailed exploration of the overall groundwater in
the NCP remains to be seen. Finally, the number of wells obtained in the present paper is
the most intensive under the 13-year time scale, but that is only about 39 wells per 10,000
square km, which is still not enough for the NCP, and a more detailed analysis is flawed.
We also hope to have more detailed data to support further research.

4. Conclusions

Based on the in situ well observations, we analyzed the spatial distribution, the
sustainability, and dominant drivers of shallow groundwater variations in the NCP. The
results demonstrate the following:

(1) There is an obvious long-term shallow groundwater deficit in the Piedmont Plain,
while the deficit is not significant in the East-Central Plain.

(2) The reliability is below the medium level (reliability < 0.5) in most areas of the NCP,
and there is very low ability (resilience < 0.2) of most shallow aquifers to recuperate
from the decline in groundwater storage. Meanwhile, the deficit of groundwater
storage in most shallow aquifers is not serious (vulnerability < 0.4) in the NCP. The low
reliability and resilience values in most areas of the NCP result in the weak sustainable
development ability (sustainable index < 0.1) of shallow groundwater storage.

(3) The multiple linear regression model was used to separate the impacts of precipitation
and non-precipitation components, revealing the sensitivity of climatic and non-
climatic drivers of shallow groundwater in the NCP. The results demonstrate that the
non-climatic factor is the dominant driver of shallow groundwater storage depletion
in NCP.

Our study provides a quantitative analysis of shallow groundwater status and sustain-
ability in the NCP, and comprehensively assesses the impacts of climatic and non-climatic
factors on shallow groundwater decline in the NCP. It will be of high relevance to govern-
ing bodies to implement water management policies for sustainable shallow groundwater
storage. Since we focus on shallow groundwater variations but not whole groundwater
variations in the NCP, the GRACE and GRACE Follow-On observations are not consid-
ered in this work. Considering the good performance of satellite gravimetry in tracking
groundwater in the NCP, we will further distinguish between the shallow groundwater
and confined water (deep groundwater) variations in our upcoming work.

Author Contributions: H.Z. and M.D. were involved in the computational framework, conceptu-
alization, methodology, data analysis, interpretation of results, and paper writing; M.D. and M.W.
simulated the experiments and processed the measured data; H.Z., M.D. and Z.L. were involved in
methodology. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (No.
41931074, 42074018, 42061134007, and 41704012).



Remote Sens. 2023, 15, 474 13 of 14

Data Availability Statement: The groundwater level data are publicly available on the Data Sharing
Repository of National Earth System Science Data Center (http://www.geodata.cn/data/datadetails.
html?dataguid=10392011028646 (accessed on 27 June 2021)). The data of the GLDAS simulation are
provided by the official data sharing repositories maintained by NASA (https://ldas.gsfc.nasa.gov/
gldas (accessed on 17 January 2022)). We thank these institutes who provided data for this study.

Acknowledgments: The authors would like to thank the anonymous reviewers for their valuable
comments, which improved the paper’s quality.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, P.; Zha, Y.; Shi, L.; Zhong, H. Identification of the terrestrial water storage change features in the North China Plain via

independent component analysis. J. Hydrol. Reg. Stud. 2021, 38, 100855. [CrossRef]
2. Tang, Q.; Zhang, X.; Yin, T. Anthropogenic impacts on mass change in North China. Geophs. Res. Lett. 2013, 40, 3924–3928.

[CrossRef]
3. Feng, T.; Shen, Y.; Chen, Q.; Wang, F. Seasonal driving sources and hydrological-induced secular trend of the vertical displacement

in North China. J. Hydrol. Reg. Stud. 2022, 41, 101091. [CrossRef]
4. Chao, N.; Chen, G.; Li, J.; Xiang, L.; Wang, Z.; Tian, K. Groundwater Storage Change in the Jinsha River Basin from GRACE,

Hydrologic Models, and In Situ Data. Groundwater 2020, 58, 735–748. [CrossRef]
5. Wu, Y.; Pei, J.; Wang, Z.; Zhang, Y.; Yuan, H. Analysis on the Characteristics of Crustal Structure and Seismotectonic Environment

in Zigui Basin, Three Gorges. Front. Earth Sci. 2021, 9, 780209. [CrossRef]
6. Gong, H.; Pan, Y.; Zheng, L.; Li, X.; Zhu, L.; Zhang, C.; Huang, Z.; Li, Z.; Wang, H.; Zhou, C. Long-term groundwater storage

changes and land subsidence development in the North China Plain (1971–2015). Hydrogeol. J. 2018, 26, 1417–1427. [CrossRef]
7. Wang, Y.; Zheng, C.; Ma, R. Review: Safe and sustainable groundwater supply in China. Hydrogeol. J. 2018, 26, 1301–1324.

[CrossRef]
8. Feng, W.; Zhong, M.; Lemoine, J.M.; Biancale, R.; Hsu, H.T.; Xia, J. Evaluation of groundwater depletion in North China using the

gravity recovery and climate experiment (GRACE) data and ground-based measurements. Water Resour. Res. 2013, 49, 2110–2118.
[CrossRef]

9. Famiglietti, J.S. The global groundwater crisis. Nat. Clim. Change 2014, 4, 945–948. [CrossRef]
10. Zhang, C.; Duan, Q.; Yeh, P.J.-F.; Pan, Y.; Gong, H.; Moradkhani, H.; Gong, W.; Lei, X.; Liao, W.; Xu, L.; et al. Sub-regional

groundwater storage recovery in North China Plain after the South-to-North water diversion project. J. Hydrol. 2021, 597, 126156.
[CrossRef]

11. Yin, W.; Han, S.-C.; Zheng, W.; Yeo, I.-Y.; Hu, L.; Tangdamrongsub, N.; Ghobadi-Far, K. Improved water storage estimates within
the North China Plain by assimilating GRACE data into the CABLE model. J. Hydrol. 2020, 590, 125348. [CrossRef]

12. Xiang, L.; Wang, H.; Steffen, H.; Wu, P.; Jia, L.; Jiang, L.; Shen, Q. Groundwater storage changes in the Tibetan Plateau and
adjacent areas revealed from GRACE satellite gravity data. Earth Planet. SC. Lett. 2016, 449, 228–239. [CrossRef]

13. Wu, Y.; Zhao, Q.; Zhang, B.; Wu, W. Characterizing the Seasonal Crustal Motion in Tianshan Area Using GPS, GRACE and
Surface Loading Models. Remote Sens. 2017, 9, 1303. [CrossRef]

14. Fishman, R.; Devineni, N.; Raman, S. Can improved agricultural water use efficiency save India’s groundwater? Environ. Res.
Lett. 2015, 10, 084022. [CrossRef]

15. Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-based estimates of groundwater depletion in India. Nature 2009, 460, 999–1003.
[CrossRef]

16. Tiwari, V.M.; Wahr, J.; Swenson, S. Dwindling groundwater resources in northern India, from satellite gravity observations.
Geophys. Res. Lett. 2009, 36, 1–5. [CrossRef]

17. Asoka, A.; Gleeson, T.; Wada, Y.; Mishra, V. Relative contribution of precipitation and pumping to changes in groundwater
storage in India. Nat. Geosci. 2017, 10, 109–118. [CrossRef]

18. Mishra, V.; Aadhar, S.; Asoka, A.; Pai, S.; Kumar, R. On the frequency of the 2015 monsoon season drought in the Indo-Gangetic
Plain. Geophys. Res. Lett. 2016, 43, 102–112. [CrossRef]

19. Panda, D.K.; Mishra, A.; Jena, S.K.; James, B.K.; Kumar, A. The influence of drought and anthropogenic effects on groundwater
levels in Orissa, India. J. Hydrol. 2007, 343, 140–153. [CrossRef]

20. Yirdaw, S.Z.; Snelgrove, K.R.; Agboma, C.O. GRACE satellite observations of terrestrial moisture changes for drought characteri-
zation in the Canadian Prairie. J. Hydrol. 2008, 356, 84–92. [CrossRef]

21. Wang, K.; Chen, H.; Fu, S.; Li, F.; Wu, Z.; Xu, D. Analysis of exploitation control in typical groundwater over-exploited area in
North China Plain Hydrol. Sci. J. 2021, 66, 851–861.

22. Qian, Y.; Zhang, Z.; Fei, Y.; Chen, J.; Zhang, F.; Wang, Z. Sustainable exploitable potential of shallow groundwater in the North
China Plain. Chin. J. Eco-Agric. 2014, 22, 890–897.

23. Loucks, D.P. Quantifying trends in system sustainability. Hydrol. Sci. J. 2009, 42, 513–530. [CrossRef]
24. Hashimoto, T.; Stedinger, J.R.; Loucks, D.P. Reliability, Resiliency, and Vulnerability Criteria For Water Resource System

Performance Evaluetion. Water Resour. Res. 1982, 18, 14–20. [CrossRef]

http://www.geodata.cn/data/datadetails.html?dataguid=10392011028646
http://www.geodata.cn/data/datadetails.html?dataguid=10392011028646
https://ldas.gsfc.nasa.gov/gldas
https://ldas.gsfc.nasa.gov/gldas
http://doi.org/10.1016/j.ejrh.2021.100955
http://doi.org/10.1002/grl.50790
http://doi.org/10.1016/j.ejrh.2022.101091
http://doi.org/10.1111/gwat.12966
http://doi.org/10.3389/feart.2021.780209
http://doi.org/10.1007/s10040-018-1768-4
http://doi.org/10.1007/s10040-018-1795-1
http://doi.org/10.1002/wrcr.20192
http://doi.org/10.1038/nclimate2425
http://doi.org/10.1016/j.jhydrol.2021.126156
http://doi.org/10.1016/j.jhydrol.2020.125348
http://doi.org/10.1016/j.epsl.2016.06.002
http://doi.org/10.3390/rs9121303
http://doi.org/10.1088/1748-9326/10/8/084022
http://doi.org/10.1038/nature08238
http://doi.org/10.1029/2009GL039401
http://doi.org/10.1038/ngeo2869
http://doi.org/10.1002/2016GL071407
http://doi.org/10.1016/j.jhydrol.2007.06.007
http://doi.org/10.1016/j.jhydrol.2008.04.004
http://doi.org/10.1080/02626669709492051
http://doi.org/10.1029/WR018i001p00014


Remote Sens. 2023, 15, 474 14 of 14

25. Nair, A.S.; Indu, J. Assessment of Groundwater Sustainability and Identifying Factors Inducing Groundwater Depletion in India.
Geophys. Res. Lett. 2021, 48, e2020GL087255. [CrossRef]

26. Liu, C.; Yu, J.J.; Kendy, E. Groundwater exploitation and its impact on the environment in the North China Plain. Water Inter.
2001, 26, 265–272.

27. Liu, C.; Xia, J. Water problems and hydrological research in the Yellow River and the Huai and Hai River basins of China. Hydrol.
Process. 2004, 18, 2197–2210. [CrossRef]

28. Liu, J.; Zheng, C.; Zheng, L.; Lei, Y. Ground water sustainability: Methodology and application to the North China Plain.
Groundwater 2008, 46, 897–909. [CrossRef] [PubMed]

29. Zheng, C.; Liu, J.; Cao, G.; Kendy, E.; Wang, H.; Jia, Y. Can China cope with its water crisis?—Perspectives from the North China
Plain. Groundwater 2010, 48, 350–354. [CrossRef]

30. Chen, W. Groundwater in Hebei Province; Seismological Press: Beijing, China, 1999. (In Chinese)
31. Fei, Y.; Miao, J.; Zhang, Z.; Chen, Z.; Song, H.; Yang, M. Analysis on evolution of groundwater depression cones and its leading

factors in North China Plain [in Chinese with English abstract]. Resour. Sci. 2009, 31, 394–399.
32. Cao, G.; Zheng, C.; Scanlon, B.R.; Liu, J.; Li, W. Use of flow modeling to assess sustainability of groundwater resources in the

North China Plain. Water Resour. Res. 2013, 49, 159–175. [CrossRef]
33. Nair, A.S.; Indu, J. Utilizing GRACE and GLDAS data for estimating groundwater storage variability over the Krishna Basin.

ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 4, 129–136.
34. Nair, A.S.; Indu, J. Improvement of land surface model simulations over India via data assimilation of satellite-based soil moisture

products. J. Hydrol. 2019, 573, 406–421. [CrossRef]
35. Jasechko, S.; Birks, S.J.; Gleeson, T.; Wada, Y.; Fawcett, P.J.; Sharp, Z.D.; McDonnell, J.J.; Welker, J.M. The pronounced seasonality

of global groundwater recharge. Water Resour. Res. 2014, 50, 8845–8867. [CrossRef]
36. Thomas, B.F.; Famiglietti, J.S.; Landerer, F.W.; Wiese, D.N.; Molotch, N.P.; Argus, D.F. GRACE Groundwater Drought Index:

Evaluation of California Central Valley groundwater drought. Remote Sens. Environ. 2017, 198, 384–392. [CrossRef]
37. Mays, L.W. Groundwater Resources Sustainability: Past, Present, and Future. Water Resour. Manag. 2013, 27, 4409–4424. [CrossRef]
38. Joodaki, G.; Wahr, J.; Swenson, S. Estimating the human contribution to groundwater depletion in the Middle East, from GRACE

data, land surface models, and well observations. Water Resour. Res. 2014, 50, 2679–2692. [CrossRef]
39. Vining, G.; Judd, C.M.; Mcclelland, G.H. Data Analysis: A Model-Comparison Approach. Technometrics 1992, 34, 107. [CrossRef]
40. Kendy, E.; Zhang, Y.; Liu, C.; Wang, J.; Steenhuis, T. Groundwater recharge from irrigated cropland in the North China Plain:

Case study of Luancheng County, Hebei Province, 1949–2000. Hydrol. Process. 2004, 18, 2289–2302. [CrossRef]
41. Huang, Z.; Pan, Y.; Gong, H.; Yeh, P.J.-F.; Li, X.; Zhou, D.; Zhao, W. Subregional-scale groundwater depletion detected by grace

for both shallow and deep aquifers in North China Plain. Geophys. Res. Lett. 2015, 42, 1791–1799. [CrossRef]
42. Liu, C.; Zheng, H. South-to-north Water Transfer Schemes for China. Int. J. Water Resour. 2002, D18, 453–471. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1029/2020GL087255
http://doi.org/10.1002/hyp.5524
http://doi.org/10.1111/j.1745-6584.2008.00486.x
http://www.ncbi.nlm.nih.gov/pubmed/18754798
http://doi.org/10.1111/j.1745-6584.2010.00695_3.x
http://doi.org/10.1029/2012WR011899
http://doi.org/10.1016/j.jhydrol.2019.03.088
http://doi.org/10.1002/2014WR015809
http://doi.org/10.1016/j.rse.2017.06.026
http://doi.org/10.1007/s11269-013-0436-7
http://doi.org/10.1002/2013WR014633
http://doi.org/10.2307/1269570
http://doi.org/10.1002/hyp.5529
http://doi.org/10.1002/2014GL062498
http://doi.org/10.1080/0790062022000006934

	Introduction 
	Data and Methods 
	Data 
	Groundwater Storage Estimation from Well Observation 
	Precipitation Data 

	Groundwater Performance Indicators 
	Reliability 
	Resilience 
	Vulnerability 
	Sustainability Index 

	Multiple Linear Regression 
	Functional Model 
	Dominance Analysis Using Proportional Reduction of Error 


	Results and Discussions 
	State of Shallow Groundwater Storage 
	Groundwater Performance Indicators 
	Influence of Different Drivers on Shallow Groundwater Variability 

	Conclusions 
	References

