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Abstract: The westerly phase of the stratospheric Quasi-Biennial Oscillation (QBO) was unprece-
dentedly interrupted by an easterly jet at around 22 km during boreal wintertime in 2015/2016 and
2019/2020. Many studies have investigated the role of planetary waves during these disruptions.
However, the behavior of gravity waves (GWs) during these disruptions is still unclear. In this
paper, we investigated the characteristics of stratospheric GWs during QBO disruptions by analyzing
the U.S. high-resolution radiosonde data from 1998 to 2021 from three equatorial stations. The
disruptions were separated into three stages: the westerly zonal wind decreasing stage, the easterly
zonal wind developing stage, and the westerly zonal wind recovery stage. Notably, the tropical
stratospheric GWs’ total energy densities were enhanced during all three stages of both events
compared to those in typical years. The low-tropospheric convection, the middle-tropospheric jet,
and the low-stratospheric vertical wind shear were statistically associated with the stratospheric GW
variations. A quantitative analysis further indicated that the low-tropospheric convection activity,
tropospheric jets, and wind shears in the lower stratosphere could well explain the variations in the
stratospheric GWs in the westerly zonal wind decreasing and easterly zonal wind developing stages
by applying a partial least squares regress analysis.

Keywords: QBO disruption; gravity waves; tropospheric convection; dynamic environment;
regression analysis

1. Introduction

QBO is the dominant periodical oscillation in the tropical stratosphere and has an
average period of approximately 28 months, with descending easterly and westerly zonal
wind regimes [1]. This phenomenon has been investigated for several decades [2–4] since it
was detected [5,6]. Even though QBO is a tropical stratospheric oscillation, its influence can
extend to the tropospheric Hadley circulation and Madden–Julian Oscillation [7,8], even
the stratospheric vortex at high latitudes [1,9–11].

Previous studies [2,3] have explained the possible mechanism responsible for QBO
and its alternating phases from wave-mean flow interactions. This theory can explain
the descent propagation of the zonal wind. The main driving forces of the QBO westerly
and easterly phases are tropical waves, which include the eastward-propagating Kelvin
wave, the westward-propagating Rossby–gravity wave, and small-scale gravity waves (GWs).
In addition, the length of the QBO period is determined by the strength of these waves [1,12].
Vertical-propagating waves deposit their momentum into the background atmosphere
through selective filtering via the background wind [2,3]. The main eastward and westward
forcings of the QBO westerly and easterly phases are provided by the eastward-propagating
Kelvin wave and the westward-propagating Rossby–gravity wave, respectively [1–3].
Furthermore, small-scale GWs are another critical component of tropical waves that
drive QBO [13,14].
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In the winter of 2015/2016, the typical QBO structure was interrupted by an easterly
jet at around 40 hPa. Previous studies [15,16] have found that the QBO westerly wind
was interrupted by the easterly jet at around 40 hPa and that the westerly zonal wind
upwardly propagated above 20 hPa [17]. An unusual QBO structure (hereafter, unQBO)
occurred for the first time since the first QBO event was recorded [18]. There are a series of
studies that have explored the possible roles of extratropical Rossby waves [16,17,19–21],
Kelvin waves [17,22], and ENSO events [23,24] in the unQBO event. Some of them [15,20]
highlighted the contribution of the extratropical Rossby wave to the unQBO event by
calculating the Eliassen–Palm flux. These studies implied that the Rossby wave in the
equator stratosphere came from the extratropics and local generation during the unQBO
event. Mixed Rossby–gravity waves also contribute to the westerly zonal wind disruption
at around 40 hPa [23]. The westward-propagating Rossby wave with a wavenumber of 1
(about 30–40 days) has been found to be closely related to the westerly zonal wind dis-
ruption in the unQBO event at around 40 hPa [25]. The unQBO signal extended to the
mesosphere, which is associated with quasi-stationary wave behavior [21].

Furthermore, the role of strong El Nino events in the unQBO has been explored [24]. It
has been reported that intense El Nino events lead to the weak extratropical easterly zonal
wind that favors the equatorial propagation of extratropical Rossby waves. The roles of
El Nino and sea ice in the unQBO event have been investigated, and the results suggest that
more than half of the relative contribution comes from El Nino and sea-ice variations [26],
in addition to the extratropical jet, while the behavior and contribution of tropical GWs
have not yet been paid enough consideration.

Various types of sources can generate small-scale GWs, for example, tropical tro-
pospheric convection, shear instability, and topography. GWs can propagate upward
into the stratosphere and increase the level of instabilities by depositing their energy and
momentum into the background atmosphere [27–30]. Meanwhile, GWs are modulated
by the background atmosphere [31–34]. Numerical simulations of the QBO structure
have been carried out using many models (e.g., the general circulation model (GCM)
and the climate-chemistry model (CCM)), which suggest that the QBO characteristics
cannot be simulated as in the case of the observed one, as only global-scale planetary
waves are considered [13,14,35–41]. By analyzing the reanalysis data and satellite data sets,
References [42–44] revealed that more than one-half of the forcing comes from GWs dur-
ing the QBO driving progress, which suggests that GWs are one of the major drivers
of stratospheric QBO. Investigations of the behavior of GWs in unQBO structures have
recently received increasing attention [43,45]. The recent QBO disruption in 2019/2020
is similar to the disruption in 2015/2016, but it was initiated by horizontal momentum
transported from the Southern Hemisphere [46]. During the QBO disruption period, the
troposphere excited more GWs propagating upward and deposited the momentum to
the atmosphere [45]. The enhanced GWs contributed to the development of the westerly
zonal wind disruption [45,47,48]. In January 2020, about 11% of negative wave forcing
came from convective GWs at about 43 hPa [48]. Furthermore, previous studies [15,16,20]
have focused on the westerly zonal wind inversed to the easterly zonal wind period of the
unQBO event (February 2016), while few studies have investigated the easterly zonal wind
development stages and the westerly zonal wind recovery stages. To fill this knowledge
gap, in this study, we seek to characterize the variations in tropical GWs determined by
using the U.S. high-resolution radiosonde.

It is challenging to obtain the parameters of observed GWs at continuous altitudes due
to their small scales, high frequencies, and intermittent occurrences [49,50]. In most models,
the GWs are parameterized [51,52], but the results contain large uncertainties [53]. Previous
studies [45,54–62] have investigated the activities of GWs at two averaged altitudes, e.g.,
the troposphere and the lower stratosphere. The abroad spectral method makes it possible
to investigate GWs at continuous altitudes [33]. Our study investigates the behavior of
tropical GWs in continuous altitude intervals of 0–30 km during the unQBO events by
adopting this method.
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The remainder of this paper is organized as follows: The data and methods are
demonstrated in Section 2. Section 3 includes four parts; GW behavior, and the possible
sources of the enhanced GWs are discussed in Section 3.1, Section 3.2, Section 3.3. Section 3.4
investigates the independent contributions to the stratospheric GW variations by applying
the partial least squares regression analysis. A summary and conclusions are provided
in Section 4.

2. Data and Methods
2.1. Data

In this study, we investigate the behavior of GWs during the unQBO events in the win-
ters of 2015/2016 and 2019/2020 by analyzing a high-vertical-resolution U.S. radiosonde
data set. The radiosonde data set can be freely downloaded from the Stratospheric Processes
and Their Role in Climate Data Center (https://www.ncei.noaa.gov/data/us-radiosonde-
bufr/archive/ (accessed on 1 October 2022)). Radiosonde observations are made at
93 stations, and they have a very wide spatial coverage. The latitudinal and longitu-
dinal coverages are 14.3◦S–71.3◦N and 170◦W–171◦E, respectively. The radiosondes are
regularly launched twice daily at 0000 and 1200 UTC in order to make observations. The
radiosonde observations can obtain relatively complete atmospheric parameters, including
temperature (T), zonal wind (u), meridional wind (v), pressure (p), relative humidity (rh),
and the arise rate (AR) from near-ground to burst height. Since the goal of this study is
to investigate the role of GWs during the unQBO events in the winters of 2015/2016 and
2019/2020, which is only significant at low latitudes, we focus on three equatorial stations,
and they are Ponape Island (6.97◦N, 158.22◦E), Majuro Island (7.08◦N, 171.38◦E), and
Truk Island (7.47◦N, 151.85◦E), with a temporal expansion from 1998 to 2021. The temporal
sampling interval of the radiosondes is 1 sec at these three stations from 2011 to 2021, and
from 1998-2010 the temporal sampling interval is 6 sec. The rise rates of the balloon are
about 3–6 m/s and 5–8 m/s in the troposphere and the lower stratosphere, respectively.
This rise rate variation leads to the measured parameters of the raw observation being
uneven in the vertical direction. For convenient analyses in the following study, the raw
observational data are interpolated into an even resolution of 50 m.

In principle, the radiosondes can measure the atmospheric parameters from the ground
to the burst height. We calculated the percentages of the balloons that reached the altitudes
of 25 km, 30 km, and 35 km over these three stations, and they are 87.98%, 78.63%, and 12.08%,
respectively. Therefore, we chose 30 km as the top height.

The Outgoing Longwave Radiation (OLR) data are recognized as a proxy for tropospheric
convection activity, which is one of the most crucial excitation sources of gravity waves [63].
We can freely download the OLR data covering the period of 1998 to 2021 with a spatial
resolution of 2.5◦ × 2.5◦ from the Earth System Research Laboratory (http://www.esrl.noaa.
gov/psd/data/gridded/data.interp_OLR (accessed on 1 October 2022)).

2.2. The Abroad Spectrum Method

Atmospheric GWs can include abroad spectral components due to their various
generations, for instance, tropospheric convection, geography, and nonlinear interactions.
In order to analyze the GWs’ variabilities at continuous altitudes, we adopted the abroad
spectral method [33,34,63,64] to extract the GW perturbations. Detailed information about
the abroad spectral method can be found in [33]; here, we present a brief introduction to the
abroad method. The atmospheric parameters of zonal wind, meridional wind, the ascent
rate, and temperature are denoted by X; i.e., X = [u, v, AR, T]. The atmospheric parameter
is assumed to be composed of background values and wave perturbations [33,34,45]; i.e.,
X = X + X′, where X and X′ are the background values and gravity wave perturbations,
respectively. We calculate the running monthly mean value, which is recognized as the
primary background composite [63]. After removing the monthly mean value from the
raw data, the residual component is recognized as being the perturbations of different
types of waves. The vertical wavelength of the GWs in the tropics is less than 10 km [60].

https://www.ncei.noaa.gov/data/us-radiosonde-bufr/archive/
https://www.ncei.noaa.gov/data/us-radiosonde-bufr/archive/
http://www.esrl.noaa.gov/psd/data/gridded/data.interp_OLR
http://www.esrl.noaa.gov/psd/data/gridded/data.interp_OLR
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We choose a high-pass filter for the residual component, with a cut-off wavelength of
10 km [30,45,65]. The filtered-out component and the running monthly mean value are
recorded as the background value. Then, to eliminate the noise resulting from the balloon
oscillation [65,66] and some other uncertainties, we apply a low-pass filter with a cut-off
wavelength of 2 km to the output of the high-pass filter [65,66]. Finally, the output values
of the low-pass filter are considered to be the GW perturbations.

Eventually, the GWs’ zonal kinetic energy density (Eku), meridional kinetic energy
density (Ekv), kinetic energy density (Ek), potential energy density (Ep), and total energy
density (Et) are estimated as follows:

Eku =
1
2

u′2 (1)

Ekv =
1
2

v′2 (2)

Ek = Eku + Ekv (3)

Ep =
1
2

g2T′2

N2T′2
(4)

Et = Ek + Ep (5)

where u′,v′, T′, T, g, and N are the GWs’ zonal wind perturbations, GWs’ meridional
wind perturbation, GWs’ temperature perturbation, background temperature, gravity
acceleration, and buoyancy frequency, respectively. The buoyancy frequency is calculated
as N2 = g

T
( ∂T

∂z + g
cp
), where cp = 1004 Jkg−1K−1 is the specific heat at a constant pressure.

The overbar denotes the averaged values in a wavelength scale (10 km in this study) [64].

3. Results

In Section 3.1, we defined the different stages of these unQBO events. In Section 3.2,
we investigated the GWs’ behavior during the 2015/2016 and 2019/2020 unQBO events.
The possible sources of the enhanced stratospheric GWs during the unQBO events are
explored in detail in Section 3.3. Due to the results of these three equatorial stations being
similar, the result from Ponapa Island (6.97◦N, 158.22◦E) is selected as the typical one
for presentation.

3.1. The Definition of Different Stages for the unQBO Events

Figure 1a shows that the westerly zonal wind started to turn easterly in February 2016
and January 2020 at about 22 km (corresponding to 38 hPa), which is in agreement with pre-
vious studies [15,16,20]. The zonal wind averaged within the altitude interval of 21–23 km
(corresponding to 46–31 hPa), which is recognized as the QBO index in this study, as
shown in Figure 1b. Notably, the QBO indexes of the 2015/2016 and 2019/2020 unQBO
events had similar temporal variations from August 2015 and August 2019 in both events.
The maximum amplitude (about 12.6 m/s) of the QBO index occurred in December 2015
during the 2015/2016 unQBO event. However, for the 2019/2020 unQBO event, the QBO
index was small (around 0 m/s) from August 2019 to January 2020, and the maximum
value (about 7.49 m/s) of the QBO index occurred in December 2019. From August 2015
to March 2016, the QBO index was larger than that from August 2019 to March 2020.
From April to December 2016 and 2020, the QBO indexes had similar amplitude and
temporal variations.

Figure 1b shows that the QBO index started to decrease from about 12.6 m/s (7.49 m/s)
in December 2015 (2019) to about 0 m/s in February 2016 (January 2020). The period from
December 2015 (2019) to February 2016 (2020) is regarded as the first stage of the unQBO
events (hereinafter, SI). From March 2016 (2020), the QBO index changed into an easterly phase,
and the easterly zonal wind reached the maximum amplitude in late May 2016 (2020), with a
value of −25.6 m/s (−24.5 m/s). Therefore, the period of March, April, and May 2016 (2020)
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is defined as the easterly zonal wind developing period (hereinafter, SII). The easterly zonal
wind started to decrease from June 2016 (2020). It reached about 0 m/s in late August 2016 (2020);
therefore, June, July, and August 2016 (2020) is defined as the westerly zonal wind recov-
ery period (hereinafter, SIII). These three stages of the unQBO events in 2015/2016 and
2019/2020 are marked in Figure 1b by vertical lines.
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Figure 1. (a) Temporal evolution of monthly zonal wind over Ponape Island station (6.97◦N, 158.22◦E).
Panel (b) denotes the daily time series of the averaged zonal wind from 21 km to 23 km over Ponape
Island station (6.97◦N, 158.22◦E) in 2015/2016 (black line) and 2019/2020 (red line). The solid and
dotted contours denote the eastward and westward winds, respectively, with a contour interval of
5 m/s in (a). The thick contours represent zero zonal wind. The blanks denote no observational data.
The horizontal dashed line in panel (b) denotes the speed of 0 m/s. The black and red lines denote
the QBO index for 2015/2016 and 2019/2020, respectively. Boxes indicate SI, SII, and SIII stages
in panels (a,b).

3.2. The Behavior of Stratospheric Gravity Waves during the unQBO Events

The GWs’ perturbation components in the zonal wind, meridional wind, vertical
ascent rate, and temperature are extracted by using the abroad spectral method. The
GWs’ zonal kinetic energy density (Eku), meridional kinetic energy density (Ekv), kinetic en-
ergy density (Ek), potential energy density (Ep), and total energy density (Et) are computed
using Equations (1)–(5). The activity of the stratospheric GWs during the unQBO events is
discussed in this section.

The monthly mean GWs’ energy densities (Ek, Ep, and Et) within the period from
2011 to 2021 in the altitude range from 5 km to 30 km are plotted in Figure 2. Ek is much
stronger than Ep but smaller than Et. Below the height of 12 km, all the GWs’ energy
densities are weak. Within the altitude range of 12–18 km (corresponding to 197–67 hPa),
the GWs’ energy densities increase with altitude. The GWs’ energy densities have maxima
values at around the tropopause region (about 18 km), which confirms that the tropopause
region is one of the crucial sources of GWs [33,34,62]. From 18 km up to 30 km, the
GWs’ energy densities are dominated by the QBO, indicating that the activity of the
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GWs has a close relationship with background zonal wind, which has been reported in
previous studies [33,34,62,63].
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Figure 2. Altitude and temporal variations in monthly mean gravity wave (a) kinetic energy
density (in J/kg), (b) potential energy density (in J/kg), and (c) total energy density (in J/kg) over
Ponape Island (6.97◦N, 158.22◦E). The monthly mean zonal wind is overplotted in black contours
with a contour interval of 5 m/s. The solid and dashed contours denote the westward and eastward
zonal winds, respectively. The thick contours represent zero zonal wind. The blanks represent no
observational data. Boxes indicate SI, SII, and SIII stages in panels (a–c).

To demonstrate the GW behavior during the unQBO events, we calculate the anomalies
of Ek, Ep, and Et with respect to the climatology (shown in Figure 3). Figure 3 shows that
the anomalies of Ek, Ep, and Et are weaker below 10 km. The Ek anomaly is stronger in
the altitude range from 20 km to 25 km, and the maximum value is about 20 J/kg, which
occurred in December 2012 at around 22 km. The Ep anomaly is stronger around the
tropopause regions, and the maximum value is about 6 J/kg, which occurred in late May
in the tropopause region. Due to the amplitude of the Ep anomaly being much weaker
than that of the Ek anomaly, the variation in the Et anomaly is much more similar to that
in the Et anomaly. Figure 3 shows that the GWs’ energy densities are enhanced when the
zonal wind turns into a westly phase from an easterly phase in the stratosphere. When
the westerly zonal wind turns into an easterly phase, the GWs’ energy densities do not
generally enhance [63]. The amplitudes of the GWs’ energy densities are typically weak
when the zonal wind is strong in both the westerly QBO and easterly QBO phases due to
the filter effect of the background zonal wind. As shown in Figure 3a,c, the GWs’ energy
densities during all stages in both unQBO events are stronger than those in regular QBO
periods. In particular, in the SI stages of the 2015/2016 and 2019/2020 events, the zonal
wind turns into an easterly phase from a westerly phase corresponding to the enhancement
of the GWs’ energy densities, which is different from the behavior of GWs in general
QBO structures.
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Figure 3. Temporal evolution of gravity wave (a) kinetic energy density anomaly, (b) potential energy
density anomaly, and (c) total energy density anomaly. Color shading denotes the GWs energy
density anomalies with respect to the monthly climatology (the unit is J/kg). The monthly mean
zonal wind is overlaid in black contours with a contour interval of 5 m/s. The solid and dashed black
contours denote the eastward and westward zonal wind, respectively. The thick contours represent
zero zonal wind. The blanks indicate no observational data. Boxes indicate SI, SII, and SIII stages
in panels (a–c).

The averaged Et anomaly from 21 km to 23 km was calculated to represent the vari-
ations in the stratospheric GWs’ energy densities. The amplitude of the stratospheric Et
anomaly had a peak (23.5 J/kg) in February 2016, corresponding to the westerly zonal wind
turning into an easterly phase. A similar result was observed in the 2019/2020 event, and
a stratospheric Et anomaly peak (21.3 J/kg) occurred in January 2020 when the westerly
zonal wind turned into an easterly phase. Previous research [63] has reported that the
GWs’ energy densities do not significantly enhance when the westerly zonal wind turns
into an easterly phase. In contrast, the GWs’ energy densities are enhanced considerably
when the westerly zonal wind turns into an easterly phase during the SI stage in both
unQBO events.

As shown in Figure 4, during the SII stage, the GWs’ energy densities are enhanced in
both unQBO events. Figure 4a indicate that the amplitude of the stratospheric Et anomaly
peaks in March 2016 with an amplitude of 32.7 J/kg. During the SII stage in 2020, the
amplitude of the stratospheric Et anomaly is weaker than that in the 2016 SII period. In the
SIII stages in both 2015/2016 and 2019/2020, the amplitude of the stratospheric Et anomaly
is enhanced, which corresponds to the easterly zonal wind turning westerly like in the
general QBO structures. The possible reasons for the enhanced GWs’ energy densities are
investigated in Section 3.3.
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Figure 4. The time series of the QBO index and stratospheric Et anomaly over Ponape Island station
(6.97◦N, 158.22◦E) in (a) 2015/2016 and (b) 2019/2020. The red lines denote the QBO index. The
black lines indicate the stratospheric Et anomaly. The horizontal lines represent wind speed, which is
0 m/s (red line), and energy density anomaly, which is 0 J/kg (black lines). Boxes indicate SI, SII, and
SIII stages.

3.3. Possible Sources of the Enhanced Gravity Waves during the unQBO Events

In this section, we identify the possible reasons for the enhanced GWs’ energy densities
during the 2015/2016 and 2019/2020 unQBO events. The potential sources we explore
include the tropospheric convection, tropospheric jet, and stratospheric vertical shear.

3.3.1. The Tropospheric Convection

The Outgoing Longwave Radiation (OLR) represents the tropospheric convection in
this study. A decreased OLR indicates an increased tropospheric convection [17,33]. To
describe the tropospheric convection, we calculate the daily mean detrended OLR during
the 2015/2016 and 2019/2020 unQBO periods. The correlation coefficient between the
daily mean stratospheric Et anomaly and the detrended OLR during each stage in the
2015/2016 and 2019/2020 unQBO events are calculated. The correlation coefficients be-
tween the stratospheric Et anomaly and the detrended OLR are significantly correlated
during the SII stage in the 2015/2016 event, with correlation coefficients of −0.38. This
result (shown in Figure 5c,f,i) implies that the tropospheric convection contributed to
the enhanced stratospheric GWs in the 2015/2016 SII stage, which is in agreement with
that of previous studies [47,48]. The negative correlation coefficients imply that the in-
creased tropospheric convection is one of the sources of the GWs. However, the enhanced
stratospheric GWs in the 2015/2016 SI and SIII stages have little relation to the tropo-
spheric convection activity due to their small correlation coefficients. Figure 6c,f,i show
the scatter plots between the stratospheric Et anomaly and the detrended OLR in the
2019/2020 SI, SII, and SIII stages. We find that the detrended OLR only has a significant
correlation with the stratospheric Et anomaly in the SI stage in the 2019/2020 event, with
a correlation coefficient value of 0.38. This positive correlation coefficient means that an
increased tropospheric convection decreased the stratospheric GWs during the SI stage in
2019/2020. The correlation between the detrended OLR and the stratospheric Et anomaly
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results suggests that the tropospheric convection may be a critical source of the enhanced
GWs only during the SII stage in 2015/2016.
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corner of each panel. The double asterisk (“**”) denotes a significant level larger than 95%.
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Figure 6. Panels (a,d,g) display the scatterplots between tropospheric jet anomaly and the strato-
spheric GW total energy density anomaly in SI, SII, and SIII stages in the 2019/2020 event, respectively.
Panels (b,e,h) are similar to panels (a,d,g) but instead display the scatterplots between stratospheric
vertical shear anomaly and stratospheric GW total energy density anomaly in SI, SII, and SIII stages in
2019/2020, respectively. Panels (c,f,i) are similar to above panels but instead display the scatterplots
between detrended OLR and stratospheric GW total energy density anomaly in SI, SII, and SIII in the
2019/2020 event, respectively. The lines denote the fit line. The correlation coefficients between each
factor and the stratospheric GW total energy density anomaly are displayed in the upper right corner
of each panel. The double asterisk (“**”) denotes a significant level larger than 95%.

3.3.2. The Atmospheric Jet and Vertical Shear

Based on the GW theory, the atmospheric jet and vertical shear play essential roles
in GW excitation [34]. The maximum amplitude of horizontal wind is recognized as a
proxy for tropospheric jet sources, which is around the altitude from 13 km to 17 km
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around 6.79◦N in the study. Then, the averaged horizontal wind from 13 km to 17 km is
regarded as the tropospheric jet in the following analysis. The horizontal wind is specified

by Jet =
√
(u)2 + (v)2, where u and v are the background zonal wind and meridional

winds, respectively. To eliminate the seasonal variation effect, we calculate the anomalies of
the tropospheric jet from the climatology. The scatterplots of the tropospheric jet anomaly
and stratospheric Et anomaly during each stage in 2015/2016 and 2019/2020 are plotted
in Figures 5 and 6. Furthermore, the correlation coefficients between the tropospheric
jet anomaly and the stratospheric Et anomaly are in Figures 5 and 6. The correlation
coefficients are 0.64 and 0.43 during the SI and SII stages in 2015/2016, respectively, with
a significant level larger than 95%. In the 2019/2020 SI and SII stages, the correlation
coefficients between the tropospheric jet anomaly and the stratospheric Et anomaly are
0.7 and 0.544, respectively. These high correlation coefficients indicate that the tropospheric
jet is one of the critical sources of the enhanced stratospheric GWs during the SI and SII stages
in the 2015/2016 and 2019/2020 unQBO events. However, during the SIII stages, the
correlation coefficients are 0.2 and 0.221 in the 2015/2016 and 2019/2020 unQBO events,
which implies that the tropospheric jet has less contribution to the enhanced stratospheric
GWs during the SIII stages.

The atmospheric vertical wind shear has a close relationship with the atmospheric
wave activity [28,67,68]. Therefore, we investigate the atmospheric vertical shear (Sh)
during the 2015/2016 and 2019/2020 unQBO events in the radiosonde station latitude
(about 6.97◦N). We calculate the anomalies of the vertical shear of the horizontal wind (Sh).
The vertical shear can be derived from Equation (7):

Sh =

√(
∂u
∂z

)2
+

(
∂v
∂z

)2
(6)

The vertical shear anomaly is significantly enhanced when the zonal wind turns into
westerly zonal wind from easterly zonal wind, while the enhancement is not obvious when
the westerly zonal wind changes into easterly zonal wind. The variability of the vertical
shear anomaly agrees with the behavior of the stratospheric GWs’ energy densities [45,47,48,63].
During the unQBO periods, the vertical shear anomaly is significantly enhanced in the
easterly and westerly regimes in the stratosphere. The enhanced vertical shear anomaly
corresponds to the regions with a stronger GW energy density anomaly. The stratospheric
vertical shear anomaly averaged at 21–23 km (corresponding to 46–31 hPa).

In addition, we investigate the effect of the stratospheric shear anomaly on the strato-
spheric GW variations during each stage. The correlation coefficients between the strato-
spheric vertical shear anomaly and the stratospheric Et anomaly are high in the 2015/2016
SI stage, with a value of −0.72. In the 2019/2020 SI and SII stages, the correlation co-
efficients are very small, and the correlation coefficient is larger in the SIII stage, with
a value of −0.42. This result implies that the stratospheric vertical shear made an es-
sential contribution to the stratospheric GWs during the 2015/2016 SI and 2019/2020
SIII stages. The results suggest that the tropospheric convection, tropospheric jet, and
stratospheric vertical shear have a close relationship with the stratospheric GW variations
during each stage in both unQBO events. Therefore, we quantitatively analyze the contri-
bution of each factor to the temporal variations in the stratospheric GWs by adopting a
regression analysis.

3.4. Contributions of Individual Factors

The above analysis indicates that the three factors (namely, the tropospheric convec-
tion, tropospheric jet, and stratospheric vertical shear) have a close relationship with the
stratospheric GW variations during both disruption events. The contribution of each factor
to the stratospheric GW activity in each stage is quantified by using a statistical regression
analysis. Considering that the sample data points are few (less than 100) during the period
of each stage and that there may be a correlation between the variable factors, we adopt
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partial least squares regression (PLSR) to estimate the contributions of each factor. The
PLSR provides a method for the regression modeling of multiple dependent variables to
multiple independent variables when the independent variables have less than 200 samples
and when the variables have a high degree of correlation. The PLSR model is reliable,
and the overall conclusion is robust. The stratospheric Et anomaly is taken as the depen-
dent variable, and the tropospheric jet anomaly, the stratospheric vertical shear anomaly,
and the detrended OLR are taken as the independent variables to construct the PLSR
model during each stage. These three independent variables can explain 71.4% (55.4%),
27.1% (38.3%), and 7.1% (11.7%) of the total variance of the stratospheric Et anomaly during
the SI, SII, and SIII stages in the 2015/2016 (2019/2020) disruption event, respectively. This
result implies that at least one of the major variables for the stratospheric GW activity
is captured by the PLSR model during the SI and SII stages in both events. These three
factors are not essential sources for the enhanced stratospheric GWs during the SIII stage in
both disruption events. Considering the minimal explanation of these three factors in the
SIII stage in both events, we only analyze the SI and SII stages in the following analysis.

The standardized coefficients of the three independent variables are shown in Figure 7.
The standardized regression coefficients are the regression coefficients obtained after the
standardization of the independent variable, and the data are standardized to eliminate the
influences of dimensional and magnitude so that different variables are comparable; there-
fore, the standardized regression coefficient can be used to compare the effect of different
independent variables on the dependent variable. A larger standardized regression coeffi-
cient means that the dependent variable is more important to the independent variable.
We find that, during the 2015/2016 SI period, the tropospheric jet anomaly significantly
positively affects the stratospheric Et anomaly. The stratospheric vertical shear significantly
negatively affects the stratospheric GW variation. Only the tropospheric jet anomaly greatly
positively affects the stratospheric Et anomaly during the 2019/2020 SI period. The effects
of the stratospheric vertical shear anomaly and the detrended OLR anomaly are insignifi-
cant. During the SII stages in 2015/2016 and 2019/2020, the tropospheric jet anomaly has
the most significant positive effect on the stratospheric Et anomaly.
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Furthermore, the variable importance in the projection (VIP) of the three variables is
plotted in Figure 8. The VIP value means that the influence of the content of each metabolite
component on the classification and interpretation ability of the sample can be measured. The
threshold is usually set to 1. When the VIP value is larger than 1, then it means that the factor
makes an important contribution to the regression model. During the 2015/2016 SI period,
the tropospheric jet anomaly and the stratospheric vertical shear anomaly are vital for the
stratospheric Et anomaly, with VIP values larger than 1. During the 2015/2016 SII period,
the effect of the tropospheric jet anomaly and the detrended OLR is vital for the enhanced
GWs. During the 2019/2020 SI and SII stages, only the tropospheric jet anomaly VIP
value is larger than 1, which means that the tropospheric jet anomaly is important for the
enhanced stratospheric GWs.
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Based on the PLSR results, these three possible sources are essential in the SI and SII stages
in both events. The tropospheric jet anomaly is vital for the enhanced stratospheric GWs during
the SI and SII stages in both events. The stratospheric vertical shear anomaly and the detrended
OLR anomaly are only important in the SI and SII stages in 2015/2016, respectively.

4. Conclusions

The regular QBO structure was disrupted in the winters of 2015/2016 and 2019/2020.
We analyzed the GW activity during the QBO disruption events in detail by separating the
disruption events into three stages. We analyzed the possible sources of the enhanced GWs
during each stage in both events. A correlation analysis shows that the tropospheric jet,
the stratospheric shear, and the OLR are closely related to the stratospheric GW energy
density anomaly. The PLSR model fit the variations of the stratospheric Et anomaly very
well and could explain more than 50% and 20% of the stratospheric GWs variations in the
SI and SII stages in both events. The PLSR model standardized coefficients and variable
importance projection results indicate that the tropospheric jet anomaly is important during
the SI and SII stages in the 2015/2016 and 2019/2020 events. The stratospheric vertical shear
is important in the SI stage, and the detrended OLR is important during the SII stages in
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2015/2016. The tropospheric jet and stratospheric atmospheric instability are important for
the enhanced stratospheric GWs during the SI and SII stages in 2015/2016. The increased
tropospheric jet should be an important source for the enhanced stratospheric GWs during
the SI and SII stages in 2019/2020. Previous studies have confirmed that the subtropical
jet and polar vortex have a close relationship with the QBO phase. The subtropical jet has
a poleward shift during the easterly QBO phase and has a equatorward shift during the
westerly QBO phase [69]. The Northern Hemispheric polar vortex is weakened/enhanced
in the lower stratosphere during the easterly QBO/westerly QBO phase in winter [11].
The poleward or equatorward shift of the atmospheric jet could affect atmospheric wave
propagation and momentum deposition, which can influence the QBO structure. The
role of the atmospheric jet during the QBO disruption events will be explored in our
future work.
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