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Abstract: The Afar and Ethiopian plateaus are in a dynamic uplift due to the mantle plume, therefore,
considering the plume effect is necessary for any geophysical investigation including the estimation of
lithospheric stress in this area. The Earth gravity models of the Gravity Field and Steady-State Ocean
Circulation Explorer (GOCE) and lithospheric structure models can be applied to estimate the stress
tensor inside the Ethiopian lithosphere. To do so, the boundary-value problem of elasticity is solved
to derive a general solution for the displacement field in a thin elastic spherical shell representing
the lithosphere. After that, general solutions for the elements of the strain tensor are derived from
the displacement field, and finally the stress tensor from the strain tensor. The horizontal shear
stresses due to mantle convection and the vertical stress due to the mantle plume are taken as the
lower boundary value at the base of the lithosphere, and no stress at the upper boundary value of
the lithospheric shell. The stress tensor and maximum stress directions are computed at the Moho
boundary in three scenarios: considering horizontal shear stresses due to mantle convection, vertical
stresses due to mantle plume, and their combination. The estimated maximum horizontal shear
stresses’ locations are consistent with tectonics and seismic activities in the study area. In addition,
the maximum shear stress directions are highly correlated with the World Stress Map 2016, especially
when the effect of the mantle plume is solely considered, indicating the stress in the study area mainly
comes from the plume.

Keywords: elasticity; GOCE; lithospheric stress; Moho; tectonics

1. Introduction

The stresses inside the Earth are the direct source of any deformation and evolution
processes [1]. There are different factors and fields that contribute to the resulting stress
field. Some of the factors are local fields such as orogenesis, while others are global and
regional fields such as plate-driving forces and mantle convection. The slab-pull force is
the significant driving force of tectonic plates; moreover, mantle plume force along with
mantle convection also contributes to plate kinematics [2]. Different approaches are used to
estimate lithospheric stresses. One can determine a stress field using theoretical models of
interactions in a given structure of the Earth, such as the estimation of stresses due to the
Earth’s rotation. In addition, stresses are also computed from some observed physical data
(e.g., gravity field) or the direct use of stress observations [1]. The study of stresses due to
mantle convection is used to explain seismicity, volcanicity, kimberlite magnetism, and the
development of tectonic features [3].

Different research was conducted in relation to stress inside the lithosphere. Ref. [4]
developed a theory that relates stress to mantle convection and satellite gravity data.
Ref. [5] used a model that relates the free-air gravity anomaly to the stress in the lithosphere
and showed that the far-zone effect of the external gravity field cannot be supported
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by the strength of the lithosphere. Ref. [6] investigated the relationship between mantle
convection and the spatial correlations between free-air anomalies and residual depth
anomalies. Ref. [7] developed a model on plate dynamics and mantle convection and
investigated factors that drive the observed plate motions.

In this study, we focus on estimating lithospheric stress from satellite gravity data.
Different studies applied [4] theory to estimate lithospheric stress due to mantle convection.
Ref. [3] investigated whether tectonic features are associated with convection and stress
fields in the African plates. Similar work by Ref. [8] was conducted in Asia to obtain stress
due to mantle convection from satellite and surface gravity data. Ref. [9] determined the
mantle convection pattern beneath the China lithosphere. Ref. [10] used the stress at the
base of the lithosphere as a boundary condition to compute the stress inside the lithosphere
from satellite gravitational data. Their result showed that the principal stress computed
agreed with the principal stress indicated by mid-plate earthquake mechanisms and in
situ stress measurements. A similar conclusion was made by [11] when it was applied in
central Europe. Ref. [12] investigated the contributions of lower and upper boundaries
to the Earth’s geoid anomaly for different boundary conditions. Ref. [13] developed a
global lithospheric stress model by combining the effects of plate boundary forces and
sub-lithospheric drag forces caused by mantle flow.

Recently, different satellites have been launched to study the Earth’s gravity field. The
Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) was launched in 2009
by the European Space Agency [14] to determine the static gravity field of the Earth with
high resolution. However, the gravity data of this mission can be applied for other purposes
as well. Ref. [15] used the [4] formulae to determine sub-lithospheric stress due to mantle
convection using the GOCE gradiometric data. Ref. [16] developed an integral equation to
recover lithospheric stress from the GOCE gravitational tensor. Ref. [17] estimated the stress
tensor changes for studying the Sar-e-Pol-Zahab Earthquake using time-variable gravity
models of the gravity recovery and climate experiment follow on mission (GRACE-FO) [18].

In this paper, we apply the [11] method extended by [19] for determining lithospheric
stress over Ethiopia and its surroundings. We use the GOCE-derived Earth gravity model
and lithospheric structure parameters to estimate lithospheric stress tensors. The relation-
ships between gravity field parameters and the lithospheric stress tensor are derived based
on solving the boundary-value (BV) problem of elasticity to determine the displacement
field in a thin elastic spherical shell representing the lithosphere. This field is used to derive
the strain tensor and later the stress tensor inside the lithosphere. The horizontal shear
stresses at the base of the lithosphere due to mantle convection, derived by [4], and the
vertical stress due to the mantle plume, based on [20], are considered as lower BVs at the
base of the lithosphere. Former studies [21,22] showed that the Ethiopian plateaus are
uplifted by a dynamic effect due to mantle upwelling. Considering the stress due to the
mantle plume in the Afar area as an additional lower BV is the novelty of this study. The
stress tensor is estimated as the Moho boundary in three scenarios: considering the stresses
in horizontal, vertical, and both directions. Finally, we compared the maximum shear stress
directions of each scenario with World Stress Map (WSM) 2016 data [23].

2. Theory

The sub-lithospheric stress due to mantle convection can be obtained in terms of
spherical harmonics from gravity data [4]. Taking these stresses as boundary values, the
stresses propagating into the lithosphere can be computed assuming the lithosphere as a
homogeneous elastic spherical shell [11]. Refs. [17,19] further developed the equations for
computing the propagating stress tensor inside the lithosphere so that the solution will
be stable. This stress tensor is related to the disturbing potential T that is the difference
between the actual and normal gravity potentials.
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The main physical base for modelling stress is to solve the BV problem of elasticity,
which expresses the displacement field for a point at a spherical elastic shell [10]:

(λ + µ)∇(∇ · s) + µ∇2s = 0 (1)

where s = sxex + syey + szez is the vector of displacement in the local north-oriented frame,
in which its x-axis points to the north, z-axis radially upward, and y-axis to the east; ex, ey,
and ez are the unit vectors of the frame; sx, sy, and sz are the displacements along the axes;
γ and µ are Lamé elasticity parameters; and ∇ is the gradient operator.

The general solution to this equation is as follows (e.g., Fu & Huang, 1983 [10]):

s =
∞

∑
n=0

[
A
(

r2∇ωn + rαnωner

)
+ B

(
r2∇ωn + rαnωner

)
+ C∇φn + D∇φn

]
(2)

where r is the geocentric radius of a point inside the lithosphere, n is the degree of spherical
harmonic functions, and the coefficients A, B, C, and D in Equation (2) can be determined
from the BVs at the top and base of the lithosphere. The parameters αn and αn are calculated
using the following (cf. Fu & Huang, 1983 [10]):

αn = −2
nγ + (3n + 1)µ

(n + 3)γ + (n + 5)µ
(3)

αn = 2
(n + 1)γ + (3n + 2)µ
(2− n)γ + (4− n)µ

(4)

and ωn, φn, ωn, and φn are the Laplace coefficients of scalar spherical functions ω, φ, ω,
and φ, respectively (Liu, 1983; Fu & Huang, 1983 [10,11]):

ωn = φn =
1
R

( r
R

)n
Tn (5)

ωn = φn =
1

RL

(
RL
r

)n+1
Tn (6)

where R and RL stand for the radii of the upper and lower boundaries of the spherical
shell, respectively.

By inserting Equations (5) and (6) into Equation (2), the general solution of the dis-
placement field at a point inside the lithospheric shell with the geocentric distance of r
is obtained. However, since the displacement at the bottom of the shell is not known,
and instead the shear stresses due to mantle convection and plume are given, then the
general displacement model (Equation (2)) should be converted, with the strain tensor first
and later to the stress tensor. The relation between the elements of the stress and strain
tensors are:

τij = λδij∇·s + µεij (7)

where τij and εij are the elements of the stress and strain tensor, respectively, and δij is the
Kronecker delta.

According to Equation (7) and after simplifications, the elements of the stress tensor
inside the lithosphere are calculated from the Laplace coefficients of the disturbing potential,
Tn (cf. [19] for details):

τzz =
1
r

∞

∑
n=0

(γK1
n + 2µK2

n)Tn (8)

τxx =
1
r

∞

∑
n=0

[
(γK1

n + 2µK3
n)Tn + 2µK5

n
∂2Tn

∂θ2

]
(9)

τyy =
1
r

∞

∑
n=0

(
(γK1

n + 2µK3
n)Tn + 2µK5

n

[
cot θ

∂Tn

∂θ
+

1
sin2 θ

∂2Tn

∂λ2

])
(10)
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τxz =
µ

r

∞

∑
n=0

K4
n

∂Tn

∂θ
(11)

τyz =
µ

r sin θ

∞

∑
n=0

K4
n

∂Tn

∂λ
(12)

τxy =
µ

r sin θ

∞

∑
n=0

K5
n

(
∂2Tn

∂θ∂λ
− cot θ

∂Tn

∂λ

)
(13)

where

K1
n = A[2n + (n + 3)αn]

( r
R

)n+1
+ B[−2(n + 1) + (2− n)αn]

(
RL
r

)n
(14)

K2
n = A(n + αn)(n + 1)

( r
R

)n+1
− Bn[αn − (n + 1)]

(
RL
r

)n
+

C
R2 n(n− 1)

( r
R

)n−1
+

D
RL

2 (n + 1)(n + 2)
(

RL
r

)n+2
(15)

K3
n = A(n + αn)

( r
R

)n+1
+ B[αn − (n + 1)]

(
RL
r

)n
+

C
R2 n

( r
R

)n+1
− D

RL
2 (n + 1)

(
RL
r

)n+2
(16)

K4
n = A(2n + αn)

( r
R

)n+1
+ B[αn − 2(n + 1)]

(
RL
r

)n
+

2C
R2 (n− 1)

( r
R

)n−1
− 2D

RL
2 (n + 2)

(
RL
r

)n+2
(17)

K5
n = A

( r
R

)n+1
+ B

(
RL
r

)n
+

C
R2

( r
R

)n−1
+

D
RL

2

(
RL
r

)n+2
(18)

Equations (8)–(13) are the general solutions of the stress for a point inside the elastic
shell. As observed in Equations (14)–(18), A, B, C, and D parameters are needed to find the
stress inside the lithosphere. Since they are constant for each point, by knowing some BVs
at the top and bottom of the elastic shell, they can be determined. To solve for these four
unknowns, at least four BVs are needed. By considering the stress vanishes at the upper
boundary (r = R) and at the lower boundary with the radius of RL, the shear stresses due to
the mantle convection, and vertical stress due to the mantle upwelling act, we can write

Fz = 0, Fx = 0, Fy = 0 for r = R (19)

Fz = σzz(Manlte plume), Fx = τxz, Fy = τyz for RL = R− DL (20)

where Fx, Fy, and Fz are the force in north, east, and up directions, respectively, and DL is
the depth of lithosphere.

The vertical stress (σzz) is the stress due to the mantle plume effect calculated according
to Morgan (1965) (cf. Molnar et al., 2015 [24]) as the following:

σzz =
2gδρa3Z

3

[
3Z2

r5 +
3a2

r5 −
5a2Z2

r7

]
(21)

where r2 = Z2 + p2, p is the horizontal distance from the point directly over the centre of
the rising sphere pushing the lithosphere upwards, a is the radius of this sphere, and δρ
is a density anomaly centred at a depth Z beneath the free upper surface of the fluid (see
Figure 1); for more details see [25].
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Runcorn (1967) solved the Navier–Stokes equations for estimating the shear stresses
at the bottom of the lithosphere. To find a direct relationship between these stresses and
the long wavelength portion of the gravitational potential of the Earth, he had to assume
that the viscosity and density of the mantle are constant. In addition, he assumed that
the toroidal flow inside the mantle is negligible. The shear stresses in the north and east
directions derived by Runcorn (1967) are the following:(

τxz
τyz

)
=

g
4πG(R− DL)

∞

∑
n=0

(
R

R− DL

)−(n+1)(2n + 1
n + 1

){ ∂Tn
∂θ

∂Tn
sin θ ∂ϕ

}
(22)

where G stands for the Newtonian gravitational constant, g the gravity attraction, and θ
and ϕ are the co-latitude and longitude of the computation point, respectively.

To solve the BV problem of elasticity, we selected four out of six BVs presented in
Equations (19) and (20). Mathematically, and according to Equations (8) and (11), we have

τzz|R = τzz|R =
1
r

∞

∑
n=0

(γ K1
n

∣∣∣
RL

+ 2µK2
n

∣∣∣
RL
)Tn = 0 for r = R, (23)

τzz|RL
=

1
r

∞

∑
n=0

(γ K1
n

∣∣∣
RL

+ 2µK2
n

∣∣∣
RL
)Tn =

n

∑
n=0

σzz,n for r = RL, (24)

τxz|R =
µ

r

∞

∑
n=0

K4
n

∣∣∣
R

∂Tn

∂θ
= 0 for r = R (25)

τxz|R1
=

µ

r

∞

∑
n=0

K4
n

∣∣∣
R

∂Tn

∂θ
=

g

4πG(R− DL)
2

∞

∑
n=2

(
2n + 1
n + 1

)(
R

RL

)−(n+1) ∂Tn

∂θ
for r = RL. (26)
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These BVs are used to solve the unknown values A, B, C, and D by rearranging the
equations in the following form:

H1,n H2,n

(
RL
R

)n
H3,n H4,n

(
RL
R

)n+2

H1,n

(
RL
R

)n+1
H2,n H3,n

(
RL
R

)n−1
H4,n

G1,n G2,n

(
RL
R

)n
G3,n G4,n

(
RL
R

)n+2

G1,n

(
RL
R

)n+1
G2,n G3,n

(
RL
R

)n−1
G4,n




A
B
C′
D′

 =


0

Mn
0
Fn

 (27)

where
H1,n = µn(2n + αn) + {2n(γ + µ) + αn[(n + 3)γ + (n + 2)µ]} (28)

H2,n = [γ(−2(n + 1) + αn(2− n)− 2µn[αn − (n + 1)]] (29)

H3,n = 2µ(n− 1)n (30)

H4,n = 2µ(n + 1)(n + 2) (31)

G1,n = µ(2n + αn) (32)

G2,n = µ[−2(n + 1 + αn) (33)

G3,n = 2µ(n− 1) (34)

G4,n = −2µ(n + 2) (35)

C′ = C
R2 , D′ = D

RL2 (36)

Fn =
rg

4πGRL

(
2n + 1
n + 1

)(
R

RL

)−(n+1)
(37)

Mn = r
σzz,n

Tn
(38)

The harmonics of the vertical stress due to mantle plume for degree n, σzz,n are derived
by performing spherical harmonic analysis of the computed stress using Equation (21). The
stress values up to 2000 km from the hot spot location are considered and the stress values
for a distance more than 2000 km are assumed to be zero.

The coefficients A, B, C, and D are obtained by solving the system of Equation (27),
and later they are applied in Equations (8)–(13) to estimate the elements of the stress tensor.
The maximum horizontal shear stress τhh and its direction θs can be computed from the
estimated stress tensor via

τhh =

√(
τxx − τyy

2

)2
+ τ2

xy (39)

θs = 0.5 tan−1
(

τyy − τxx

2τxy

)
(40)

3. Study Area and Data

In this section, we present the geological and tectonic configuration of the study area
and the required data used to compute the lithospheric stress tensors.

3.1. Study Area

We applied the theory over the study area bounded by longitudes of 22◦E and 64◦E
and latitudes of −13◦S and 30◦N to calculate lithospheric stress tensor. Figure 2 shows
the seismic events between 1964–2017 by the red dots (http://www.isc.ac.uk/isc-ehb/
search/catalogue/, accessed on 10 March 2021), and blue arrows stand for the maximum

http://www.isc.ac.uk/isc-ehb/search/catalogue/
http://www.isc.ac.uk/isc-ehb/search/catalogue/
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shear stress presented in the WSM 2016 [23] on the topographic map of the area generated
from ETOPO1 (https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/, accessed on
24 March 2021). The tectonic boundaries are shown by yellow lines and are taken from
the model PB2002 [26]. Seismic evens are well elongated to the tectonic boundary passing
through the Red Sea towards the Afar region. The shear stress direction is south-eastward
in the north-west of the Ethiopian plateau and north-eastward in the south-east of the
Ethiopian plateau.
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The study area includes many geological and tectonic provinces. It is part of a 3000 km
long continental rift system in which the African plate is in the process of splitting into two
new sub-plates or prototypes, the Somali and Nubian Plates at the Afar triple junction. The
northern portion of the rift system, together with Red Sea and Gulf of Aden rifts, forms the
Afar triple junction, and it propagates from the Afar southward through eastern Africa to
the coast of Mozambique [27].

Recorded seismic events from 1964–2017 show that there is widespread seismicity
in East Africa (see Figure 2). The location and depth of earthquakes may provide useful
information about the deformation of the continental lithosphere and magmatic processes
in many sectors of the rift [28]. Most of the seismic activities occurred over the plate
boundaries, the Afar triangle, the main Ethiopian rift (MER), and both branches of the
eastern African rift system (EARS). Some of the largest earthquakes are recorded in Afar,
around Lake Albert, and in the Kenyan Rift [28].

To interpret the computed stress pattern of the study area, we compared our results to
the horizontal maximum shear stress generated from WSM2016 [23], as shown by the blue
arrows in Figure 2. The present-day crustal in situ stress field data all over the world are
collected and analysed to understand geodynamic processes such as global plate tectonics
and earthquakes. There are four stress regimes in the study area in WSM2016. Most of them
are normal faults that localised along the plate boundaries, Afar, MER, and the two branches
of EARS. The strike-slip stress regime is also shown along the plate boundaries and the
continental rift system. In addition, there are thrust faulting stress regimes in some locations
along plate boundaries over the Indian Ocean. There is evidence for the accommodation
of dense and hot material of the mantle along these boundaries, specifically in the Gulf of
Aden, the Red Sea, and the Afar hotspot. Studies of [29] showed small elastic thicknesses in
the Red Sea and Gulf of Aden. The Moho model, computed from the CRUST1.0 model [30],
shows small values of the Moho depth in these areas as well (see [31]).

3.2. Data

The Earth’s gravity model TIM-R6 [32], which is a time-wise solution derived from
the GOCE data, is used to recover stress tensors in the lithosphere. Panet et al. (2014) [33]
showed that the GOCE data can be used to investigate the Earth’s deep mass structure,
helping to identify subduction boundaries, oceanic margins, and the location of mantle
superplumes. Refs. [4,34] presented solutions for the shear stresses due to mantle con-
vection from harmonic coefficients determined from satellite gravity measurements. The
low-degree harmonics n ≤ 12 come from the deep Earth layers [35], such as the lower
mantle and core. Similarly, Ref. [3] suggested filtering the Earth’s interior and the higher
degree of topographic gravity signals using harmonic windows limited to 13 and 25 degrees.
The map of the disturbing potential of the TIM-R6 gravity model limited between degrees
13 and 25 is shown in Figure 3a. The positive maximum disturbing potential correlated
to the plate boundaries suggests the presence of high-density mass along with the plates,
and the maximum negative values correspond to deep lithospheric thickness, as compared
with Figure 3b.

The lithospheric thickness model presented by [36] after subtracting the topographic
heights, derived from SRTM30 [37] to degree 180, was used to obtain the lithospheric depth
from the sea level. A maximum lithospheric thickness of 250 km is shown in the Persian
Gulf, and the lowest is found along the plate boundary of Indian Ocean (see Figure 3b).
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Figure 3. (a) Disturbing potential [m2s−2] (GOCE TIM R6, degree 13 to 25) over the study area
compared to the plate boundary (shown in white line). (b) Lithospheric depth (km) of the study area
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High values of disturbing potential are observed along the tectonic boundaries in
the Afar triple junction. As explained before, this area accommodates dense material,
and therefore, observing such high values in this area and specifically along the tectonic
boundaries and the rift systems is normal. However, the lithospheric thickness map of
Conrad and Lithgow-Bertelloni (2006) [36] shows only the least thickness along Gulf of
Aden and the tectonic boundary in the ocean, but not along the Red Sea and Afar and MER.
This could be due to some defects in this model. Furthermore, the largest lithospheric
thickness is observed in the Persian Gulf, showing a low disturbing potential. Therefore,
there is a good correlation between the lithospheric thickness and the disturbing potential
generated from the TIM-R6 model windowed between degrees 13–25.

The stress tensor was computed at the Moho interface of the CRUST1.0 model [30]
for the purpose of demonstrating our result. The elasticity parameters µ and γ, which are
needed to solve the BV problem of elasticity, were computed from the seismic velocity
waves and density of the upper mantle available in CRUST1.0. A Matlab code provided by
Dr. Michael Bevis (https://igppweb.ucsd.edu/$\sim$gabi/crust1.html, accessed 10 March
2021) used for such computations, but these parameters can be computed simply from the
P- and S-wave velocities by the following:

µ = ρv2
S (41)

γ = ρ
(

v2
P − 2v2

S

)
(42)

where ρ stands for upper mantle density, and vs and vp are the velocity of seismic waves,
which are available in the CRUST1.0 model.

These elasticity parameters µ and γ show a similar spatial pattern and magnitude
over the study area, as is presented in Figure 4a,b, respectively. The maximum of the elastic
coefficients correlated with the maximum of the lithospheric thickness and where the
minimum value occurs along the tectonic plate boundaries. The lateral variations in density
and seismic wave velocities of the upper mantle are directly considered for computing
µ and γ. However, a constant density and viscosity were assumed by [4] to obtain the
shear stresses at the base of the lithosphere by Equation (22). However, considering a

https://igppweb.ucsd.edu/$\sim $gabi/crust1.html
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windowed frequency band between degrees 13–25, this at least diminishes the position of
the gravitational signal coming from the deep part of the mantle.

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 21 
 

 

These elasticity parameters μ  and γ  show a similar spatial pattern and 
magnitude over the study area, as is presented in Figure 4a,b, respectively. The maximum 
of the elastic coefficients correlated with the maximum of the lithospheric thickness and 
where the minimum value occurs along the tectonic plate boundaries. The lateral 
variations in density and seismic wave velocities of the upper mantle are directly 
considered for computing μ and γ. However, a constant density and viscosity were 
assumed by [4] to obtain the shear stresses at the base of the lithosphere by Equation (22). 
However, considering a windowed frequency band between degrees 13–25, this at least 
diminishes the position of the gravitational signal coming from the deep part of the 
mantle. 

 
Figure 4. Map of (a) μ  (Pa) and (b) γ  (Pa): white lines are the boundaries of the plates from 
model PB2002 [26]. 

The BVs for estimating the stress in the lithosphere are presented in Equations (19) 
and (20) for upper and lower boundaries. The horizontal shear stresses in the north and 
east directions at the lower boundary were calculated based on Equation (22) and 
presented in Figure 5b. The maximum shear stress in the north and south directions reach 
8 MPa to −10 Mpa, respectively. As it is expected, the shear stress values are correlated 
with the disturbing potential map presented in Figure 3a. The vertical stress due to mantle 
plume, computed using Equation (21) at the hotspot locations ([38]; p. 500 Table 11.1), is 
also considered as an additional BV. We used the same principle as Gedamu et al. (2021) 
[25] to select optimal parameters for the radius of the sphere (a), the depth of the sphere 
(Z), and the density anomaly (δρ). The parameters were derived by computing the Moho 
depth using the theory of isostasy including mantle plume effects and compared with the 
seismic Moho depth data over the study area. Parameters that provide minimum root 
mean square errors were selected using a trial-and-error process. These parameters were 
used to calculate the vertical stress from the rising buoyant sphere in the lower mantle 
beneath the study area (see Figure 1). We obtained an optimal radius of a = 700 km for the 
spherical plume at a depth of Z = 1600 km, and a density anomaly of δρ = 6 kg/m3 (cf. 
Figure 1). From the assumed central mantle plume locations, the normal stress was 
calculated radially to a radius (p) of 2000 km and it was assumed that this effect is 
negligible for more than 2000 km. We estimated the spherical harmonic coefficients of the 
stress due to mantle plume over the study area to a degree and order of 180 so that it will 

Figure 4. Map of (a) µ (Pa) and (b) γ (Pa): white lines are the boundaries of the plates from model
PB2002 [26].

The BVs for estimating the stress in the lithosphere are presented in Equations (19) and (20)
for upper and lower boundaries. The horizontal shear stresses in the north and east directions
at the lower boundary were calculated based on Equation (22) and presented in Figure 5b. The
maximum shear stress in the north and south directions reach 8 Mpa to−10 Mpa, respectively.
As it is expected, the shear stress values are correlated with the disturbing potential map
presented in Figure 3a. The vertical stress due to mantle plume, computed using Equation (21)
at the hotspot locations ([38]; p. 500 Table 11.1), is also considered as an additional BV. We used
the same principle as Gedamu et al. (2021) [25] to select optimal parameters for the radius of
the sphere (a), the depth of the sphere (Z), and the density anomaly (δρ). The parameters were
derived by computing the Moho depth using the theory of isostasy including mantle plume
effects and compared with the seismic Moho depth data over the study area. Parameters that
provide minimum root mean square errors were selected using a trial-and-error process. These
parameters were used to calculate the vertical stress from the rising buoyant sphere in the lower
mantle beneath the study area (see Figure 1). We obtained an optimal radius of a = 700 km
for the spherical plume at a depth of Z = 1600 km, and a density anomaly of δρ = 6 kg/m3 (cf.
Figure 1). From the assumed central mantle plume locations, the normal stress was calculated
radially to a radius (p) of 2000 km and it was assumed that this effect is negligible for more than
2000 km. We estimated the spherical harmonic coefficients of the stress due to mantle plume
over the study area to a degree and order of 180 so that it will be in the same resolution with
other data. This stress has a maximum value of about 25 Mpa (see Figure 5a) over Afar and
MER and reduces by distance from these areas to zero.
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and (b) mantle convection in north direction (MPa).

4. Lithospheric Stress Using Mantle Convection and Mantle Plume

The method proposed by [4] has been successfully developed in several studies, not
only for regional problems (e.g., [3]), but also for planetary problems [39,40]). We estimated
first the unknown A, B, C, and D in Equation (27) for each degree to calculate the stress
tensor coefficients {Ki

n: i = 1, 2, . . . , 5} (cf. [17]) that are used to compute stress tensors using
Equation (8) to Equation (13). The unknowns are calculated from two BVs, presented in
Equations (19) and (20) at the base of the lithosphere and sea level, respectively. The stresses
were computed with a resolution of 1◦ × 1◦ for the following three cases of (1) taking the
horizontal shear stresses due to mantle convection according to [4] as the only non-zero BV,
(2) considering vertical stresses due to mantle plume only, and (3) the combination of (1)
and (2).

The computed normal stresses τxx, τyy, and τzz of the three cases are presented side by
side in Figure 6a–i, respectively, to compare the effects of a vertical stress due to mantle
plume, the horizontal shear stress according to [4], and their combination. The result
shows large τxx (see Figure 6a) values in the north direction estimated based on [4], which
occurred in tectonically active places such as Afar, the MER, and the EARS and along plate
boundaries. The maximum normal stress in the north and south directions reach 40 MPa
and −40 MPa, respectively. Those places with maximum normal stresses in the south
direction are correlated with places with negative disturbing potential (see Figure 3a) and
with deep lithospheric thickness (see Figure 3b). The maximum normal stress in the north
direction due to the mantle plume in Figure 6d occurred in Ethiopia, where the mantle
plume effect was applied and the minimum normal stress in the south direction appeared
in the surrounding area. The combination of a mantle plume and mantle convection (see
Figure 6g) has a similar pattern to when only horizontal shear stresses due to mantle
convection are considered as BVs. A similar trend of stresses occurred for the east-west
component of the stresses, τyy(see Figure 6b,e,h), except the magnitude of stress was
slightly reduced for the combined solution. The upward normal stress (τzz) at Moho due
to mantle convection (see Figure 6c) reached a maximum 1 MPa, while the maximum
downward normal stress occurred around the Persian Gulf. When we consider only the
mantle plume effect (see Figure 6f), the upward stress reduced from 8 MPa (see Figure 5b)
at the base of the lithosphere to 2 MPa at Moho. The combined solution showed (see
Figure 6i) more or less the summation of the two cases. In addition, we estimated the
shear stresses (τxy,τxz, and τyz) for the three cases and present them in Figure 7a–i. The
maximum north-east stress occurred in the Gulf of Aden (see Figure 7a,g), where there is a
transform fault [41]. We observed a similar stress pattern for the combined and Runcorn
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solution (see Figure 7a–c,g–i), showing that the shear stresses computed considering the
mantle plume effect (see Figure 7d–f) are negligible.

In general, looking at Figures 6 and 7, the first column of the figures
(Figures 6a–c and 7a–c) has a similar pattern with the third column of figures
(Figures 6g–i and 7g–i), except between Figure 6c,i. This is because the vertical stress
due to the mantle plume at the base of the lithosphere affected the propagated stress
(vertical stress in Figure 6i) more significantly than the effect of horizontal shear stresses at
the base of the lithosphere.

Finally, the maximum shear stresses for the three cases (see Figure 8a–c) were com-
puted from the recovered stress tensor. As observed in Figure 8a–c, these stresses are along
the plate boundaries of the Gulf of Eden and Indian Ocean as well as in the Persian Gulf
when computed based on the shear stresses and the combination of shear and vertical
stresses as the lower BVs. The stress pattern when the mantle plume effect is depicted
shows higher shear stress in Afar and around the MER following the plate boundary.
However, as we go farther to these places the pattern looks like the first case, in which the
horizontal shear stresses are used as BVs, because the effect of mantle plume was reduced.
Similarly, the computed maximum shear stress direction for three cases (see Figure 9d–f)
are compared to those of WSM2016 (see Figure 9a–c). The Matlab Code provided in the
WSM2016 homepage gives a map of the input stress data (Figure 9a), the computed max-
imum shear stress direction (Figure 9b), and the plate motion direction (Figure 9c). The
maximum shear stress direction is closely correlated with the result of WSM2016 as we
compare Figure 9a–c with Figure 9d–f.
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Figure 6. Estimated normal stresses at Moho surface with (a) τxx, (b) τyy, and (c) τzz from the
horizontal shear stresses as lower BVs at the base of the lithosphere, (d) τxx, (e) τyy, and (f) τzz

from the vertical stress due to mantle plume, and (g) τxx, (h) τyy, and (i) τzz from the combination
of horizontal and vertical stresses (MPa). The tectonic boundaries of the plates were taken from
PB2002 [26]; black dots are seismic events from 1964–2017.
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Figure 7. Estimated shear stresses at Moho surface: (a) τxy, (b) τxz, and (c) τyz from the horizontal
shear stresses as the lower BVs at the base of the lithosphere; (d) τxy, (e) τxz, and (f) τyz from the
vertical stress due to mantle plume as the lower BVs; and (g) τxy, (h) τxz, and (i) τyz from both vertical
stress and horizontal stress as the BVs (MPa). The tectonic boundaries of the plates were taken from
PB2002 [26]; black dots are seismic events from 1964–2017 (http://www.isc.ac.uk/isc-ehb/search/
catalogue/, accessed on 10 March 2022).
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Figure 9. World Stress Map (WSM) 2016: (a) input stress data with its direction, (b) maximum horizontal
shear stress directions, (c) direction of plate motion. Estimated maximum shear stress direction at Moho
surface from (d) horizontal shear stress due to mantle convection [4], (e) vertical stress due to mantle
plume, and (f) horizontal shear and vertical stresses due to mantle convection and plume.

5. Discussion

As we observed, for computing the stress tensor, the depth of the lithosphere–asthenosphere
boundary, the Lame elasticity coefficients, which are dependent on the mantle density and
seismic wave velocities, are needed in addition to the gravity data. Therefore, the error of
the estimated stress tensor depends on the errors of these parameters. This means that the
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estimation of error of the tensor solely from the gravity field based on the error propagation law
is not correct and the estimated errors are not realistic and meaningful.

The stress tensor inside the lithosphere is derived from the strain tensor, which is
defined from the solution of the BV problem of elasticity assuming the lithosphere is a
homogenous thin elastic spherical shell. A comparison of our results with the WSM2008
data [42] was obtained by compiling 347 focal mechanism data points of the WSM2008 and
grouping 332 of them in 24 distinct regions (boxes) based on their geographical proximity,
kinematic homogeneity, and tectonic setting. Out of the 24 distinct regions, we selected
16 regions (see Figure 10) and other stand-alone points that fall inside our study area. The
estimated depth of the stress for most stations was 15 km below sea level; therefore, we
computed the stress tensor at same depth again to compare our result with the result of [42].
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Figure 10. Focal mechanism data assembled into boxes according to [42].

We first interpolated our estimated stress tensor values at the location of the 16 regions
as well as stand-alone points, then calculated the maximum shear stress direction in the
regions for comparison with the three cases, as in Section 4. Figure 11 shows that estimated
directions in the first and third cases involving the horizontal shear stresses due to the
mantle convection model of [4] are far from those of WSM2008, unlike the second case
in which the vertical stress due to mantle plume is used. Especially, the similarity of the
second case is more pronounced in regions/boxes 1 to 5 (cf. Figure 10) in Afar, the Gulf of
Eden, MER, and the Red Sea, where the mantle plume stress is significantly high. These
results were also verified in Figure 12 by comparing the maximum shear stress direction in



Remote Sens. 2023, 15, 462 16 of 19

Figure 12c,d. This suggests that these stress directions fit better with the in situ stress data
presented by [42].

Remote Sens. 2023, 15, x FOR PEER REVIEW 18 of 21 
 

 

Figure 10. Focal mechanism data assembled into boxes according to [42]. 

We first interpolated our estimated stress tensor values at the location of the 16 
regions as well as stand-alone points, then calculated the maximum shear stress direction 
in the regions for comparison with the three cases, as in Section 4. Figure 11 shows that 
estimated directions in the first and third cases involving the horizontal shear stresses due 
to the mantle convection model of [4] are far from those of WSM2008, unlike the second 
case in which the vertical stress due to mantle plume is used. Especially, the similarity of 
the second case is more pronounced in regions/boxes 1 to 5 (cf. Figure 10) in Afar, the Gulf 
of Eden, MER, and the Red Sea, where the mantle plume stress is significantly high. These 
results were also verified in Figure 12 by comparing the maximum shear stress direction 
in Figure 12c,d. This suggests that these stress directions fit better with the in situ stress 
data presented by [42]. 

 
Figure 11. The mean values of the differences between our maximum shear stresses and those of 
WSM2008 data in the selected regions. Figure 11. The mean values of the differences between our maximum shear stresses and those of

WSM2008 data in the selected regions.

Remote Sens. 2023, 15, x FOR PEER REVIEW 19 of 21 
 

 

 
Figure 12. Maximum shear stress directions when the lower BVs are (a) the horizontal shear stresses 
due to mantle convection [4], (b) the horizontal shear and vertical stress due to mantle convection 
and plume, (c) vertical stress due to mantle plume, and (d) [42] data for the selected 17 
regions/boxes. 

6. Conclusions 
The stress tensor inside the lithosphere can be determined from the Earth’s gravity 

field and other information about the mechanical properties of the lithosphere such as 
density and elasticity parameters. To do so, the general solution of the boundary-value 
problem of elasticity for a thin elastic spherical shell was used to derive the strain tensor, 
from which the stress tensor can be computed. The general solution of the stress tensor 
contains some constants which need to be determined from the stress at the base and top 
of the lithospheric shell.  By assuming that there is no stress at the upper boundary of the 
shell and at its base there are horizontal shear stresses due to mantle convection and 
vertical stress due to the mantle plume these constants are estimated. The main 
contribution of this study is to show how the vertical stress due to the mantle plume 
should be considered as an additional lower boundary value to propagate stress upward 
into the lithosphere. 

Based on the developed mathematical models, the stress tensor in the Afar region 
was computed in three scenarios for the lower boundary values, (a) considering the 

Figure 12. Maximum shear stress directions when the lower BVs are (a) the horizontal shear stresses
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6. Conclusions

The stress tensor inside the lithosphere can be determined from the Earth’s gravity
field and other information about the mechanical properties of the lithosphere such as
density and elasticity parameters. To do so, the general solution of the boundary-value
problem of elasticity for a thin elastic spherical shell was used to derive the strain tensor,
from which the stress tensor can be computed. The general solution of the stress tensor
contains some constants which need to be determined from the stress at the base and top of
the lithospheric shell. By assuming that there is no stress at the upper boundary of the shell
and at its base there are horizontal shear stresses due to mantle convection and vertical
stress due to the mantle plume these constants are estimated. The main contribution of this
study is to show how the vertical stress due to the mantle plume should be considered as
an additional lower boundary value to propagate stress upward into the lithosphere.

Based on the developed mathematical models, the stress tensor in the Afar region was
computed in three scenarios for the lower boundary values, (a) considering the horizontal
stress due to mantle convection, (b) vertical stress due to the mantle plume, and (c) a
combination of them. Our numerical study shows similar stress patterns for the first and
third scenarios, meaning that the shear stress due to the convection has significantly larger
magnitude than the vertical stress due to the plume. However, our comparisons between
the maximum shear stresses and directions generated from our stress tensors and those
of the WSM2016 data show a high correlation when the vertical stress due to the plume is
solely considered as the lower boundary value, indicating that the mantle plume might
have a major contribution to the stress regime of the area.
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