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Abstract: Estimating plant physiological indicators with remote sensing technology is critical for
ensuring precise field management. Compared with other remote sensing platforms, low-altitude
unmanned aerial vehicles (UAVs) produce images with high spatial resolution that can be used to
clearly identify vegetation. However, the information of UAV image data is relatively complex and
difficult to analyze, which is the main problem limiting its large-scale use at present. In order to
monitor plant physiological indexes from the multi-spectral data, a new method based on machine
learning is studied in this paper. Using UAV for deriving the absorption coefficients of plant canopies
and whole leaf area, this paper quantifies the effects of plant physiological indicators such as the
soil and plant analyzer development (SPAD) value, whole leaf area, and dry matter accumulation
on the relationship between the reflectance spectra. Nine vegetation indexes were then extracted
as the sensitive vegetation indexes of the rice physiological indicators. Using the SVM model to
predict the SPAD value of the plant, the mean squared error (MSE), root mean squared error (RMSE),
mean absolute error (MAE), mean absolute percentage error (MAPE), and symmetric mean absolute
percentage error (SMAPE) values of the model were 1.90, 1.38, 0.13, 0.86, and 4.13, respectively. The
results demonstrate that the rice plants display a considerable biochemical and spectral correlation.
Using SVM to predict the SPAD value has a better effect because of a better adaptation and a higher
accuracy than other models. This study suggests that the multi-spectral data acquired using UAV
can quickly estimate field physiological indicators, which has potential in the pre-visual detection of
SPAD value information in the field. At the same time, it can also be extended to the detection and
inversion of other key variables of crops.

Keywords: rice; physiological parameters; UAV; machine learning

1. Introduction

Rice serves as the staple food for half of the world’s population [1]. Rice physiological
parameters, including chlorophyll content, whole leaf area, and dry matter accumulation,
are considered as the most important plant indexes, which can effectively reflect plant
growth [2,3]. As the key photosynthetic pigment, chlorophyll is responsible for the harvest-
ing of solar radiation and the conversion of chemical energy, and it is directly involved
in photosynthetic potential and primary production [4]. Moreover, chlorophyll content
is well-linked with nitrogen concentration, which is a key parameter in promoting the
growth of plants and evaluating vegetation nutritional conditions. Aboveground biomass
and whole leaf area are important agronomic parameters reflecting crop growth [5], and
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there is a close relationship between them [6]. At different stages of crop growth and
development, the spectral characteristics of crop canopy in the image are also different due
to the changes in crop canopy structure, leaf morphology, and physiological and ecological
characteristics [7]. As the main place of photosynthesis, the whole leaf area of the plant has
a direct impact on the physiological state of the plant [8]. The dry matter accumulation of
plants directly reflects the accumulation of organic matter in crops. From the perspective
of agriculture, chlorophyll, whole leaf area, and dry matter could be used as indicators to
quantify crop photosynthetic capacity and plant productivity, or to estimate plant growth
status [9,10]. Therefore, the real-time and accurate acquisition and the temporal and spatial
distribution of the crop chlorophyll, whole leaf area, and dry matter are of significance for
modern agricultural production.

At present, the main methods for determining the content of chlorophyll are ultraviolet
spectrophotometry, fluorescence analysis, and chlorophyll analysis in vivo. SPAD 502 is
an effective tool for measuring plant chlorophyll. The 502 reading is highly linear, with
the chlorophyll value being measured using chemical analysis [11,12]. Many studies have
shown that the results of chemical experiments that are used to measure chlorophyll content
are almost the same as those that are measured using SPAD 502, indicating that SPAD can
replace chlorophyll content [13]. The detection of whole leaf area and dry accumulation
is carried out manually. These methods are inefficient in actual agricultural production.
Therefore, a more effective method is crucial for the accurate detection of rice physiological
parameters [14,15].

Remote sensing is an effective technology for obtaining ground information based
on the principle of electromagnetic radiation, which has been proven to be an effective
and non-destructive technology for detecting physiological parameters at different spa-
tial scales [10–12]. During vegetation growth, one way to monitor the physiological pa-
rameters of the plant canopy is to retrieve the physiological characteristics of the plant
canopy through the reflection characteristics of the plant canopy [16,17]. Between 400 nm
and 1000 nm, the vegetation shows typical reflection characteristics. The absorptions
of pigments (mainly 430/660 nm—chlorophyll a and 450/640 nm—chlorophyll b, and
450 nm—other pigments, such as carotenoids and lutein) are controlled within the visible
wavelength range (400–700 nm), and the near-infrared range (700–1100 nm) is controlled
through the reflection process within the leaf surface layer [18,19]. At the same time, the elec-
tromagnetic energy reflection in the near-infrared spectrum (NIRS) range of 800–2500 nm
has also been studied for the non-destructive measurement of organic materials such as
food, agricultural products, and forest products. NIR absorption is mainly attributed to
the overtones and combinations of vibration bands involving C-H, O-H, and N-H in the
infrared (IR) region. Compared with the infrared region, the absorption of NIR energy
is weak, leading to the nondestructive measurement of high-density and concentrated
organic materials. Since the molar absorptivity of water in the near-infrared range is
1/1000–1/10,000, it is also useful for samples with a high water content, such as fruits [20].
Based on the above point of view, according to the electromagnetic characteristics of sub-
stances, the target content or composition can be determined using remote sensing without
using chemical substances.

At present, the research objectives of the forecasters focus on estimating crop plant-
ing area and estimating the overall growth through satellite and other large-scale remote
sensing data, but there is a lack of accurate prediction models for small areas. Most of the
selected models are simple linear models [14]. The result may be changed in the external
environment and through human operations. In recent years, with the development of
electronics technology, UAV (unmanned aerial vehicle) remote sensing has occupied an
increasingly important position in agricultural monitoring by virtue of its practicality,
flexibility, and highly temporal nature [21]. The diagnosis of crop nutritional status has
become an UAV remote sensing technology application development trend. The methods,
based on visible light photos, could calculate multiple vegetation indices, and they use
regression algorithms to build FVC models that are suitable for different growing seasons,
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growth stages, and crop water stress [22]. However, visible light photographs contain little
information, and it is difficult to comprehensively reflect the physiological situation of the
plants. Unlike visible light photos, multi-spectral data can describe various characteristics
that are associated with the biochemical and physiological traits of the targets. Yang et al.
used 12-band cameras to obtain multi-time images, and selected the main typical frequency
bands that constitute the green, red, red edge, and near-infrared VI to analyze their spectra
throughout the growing season and texture changes [23]. After the mathematical combina-
tion of the plot-level spectrum and texture values, a new index was constructed to estimate
the VI index corresponding to rice LAI. Liu [24] estimated the whole leaf area and the
dry biomass by modeling different vegetation indices to obtain the correlation magnitude
and accuracy of each index. Carmona [25] proposed the calculation of the Normalized
Vegetation Index (NAVI) for the estimation of chlorophyll content from remote sensing
data using multi-spectral images acquired using the Proba/CHRIS sensor. Zhao [26] car-
ried out experiments on cotton and calculated the reflectance ratio vegetation index (RVI),
normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), wide
dynamic range vegetation index (WDRVI), and several hyperspectral reflectance indexes.
The previous studies show that it is feasible to use the vegetation index to predict plant
physiological parameters.

The successful application of remote sensing products depends on the data character-
istics and the types of analytics applied. Machine learning is the cornerstone of artificial
intelligence, and it is an interdisciplinary subject involving probability theory, statistics,
linear algebra, advanced mathematics, algorithm complexity theory, and other fields [27,28].
Relying on the powerful performance of modern computers, machine learning algorithms
can simulate human learning behavior, mine useful rules and knowledge from a large
amount of data information, and constantly reorganize the knowledge structure to achieve
the goal of multiple iterations of self-improvement [29]. Therefore, compared with tra-
ditional algorithms, the main advantage of machine learning algorithms is that they can
significantly improve upon the simulation accuracies of phenomena and processes [30].
Among them, random forest (RF), support vector regression (SVR), and other nonparamet-
ric models have recently become more and more popular in analyzing complex remote
sensing data [31]. RF is a tree-based supervised learning algorithm that is used to solve
classification and regression problems. Since the RF model is composed of many decision
trees, it can generate more accurate and stable predictions [32,33]. SVM is a supervised
learning method for retrieving biophysical parameters from remote sensing data. The
selection of the kernel function type is a key aspect of the applicability of the SVM model.
Because the problem of dimension disaster and nonlinear separability is overcome by using
the kernel function method, the complexity of calculation is not increased when mapping
to a high-dimensional space [34].

Nitrogen (N) plays a vital role in crop growth, development, and yield formation.
The amount of chemical N fertilizer has increased dramatically from 11.3 Tg/year to
107.6 Tg/year over the past four decades [3]. China’s rice production accounts for 20%
of the world’s total, but consumes 35% of the world’s total N fertilizer applied across the
globe [35]. Most of the applied N is lost to the environment, with only 30–50% being used
by crops [36].

In this paper, UAV is used to quickly obtain the reflectivity of plant tube layer and
to calculate the vegetation index. This paper creatively uses multiple vegetation indexes
to jointly predict plant physiological indicators, and uses the idea of machine learning to
achieve the lightweight and non-destructive monitoring of plant parameters. Compared
with single index prediction, the multi-vegetation index has achieved better results for
the prediction of rice physiological parameters. Through the rapid prediction of this
rice physiological index, we can obtain the plant growth status more stereoscopically
and provide a reference for breeders. Therefore, the overall goal of this research is to
develop a methodology through the detection of the physiological parameters of different
rice varieties over different periods, using rice canopy multi-spectral images. Thus, the
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specific objectives were to (1) study the effect of nitrogen application rate on different rice
varieties and different growth stages, and (2) to use multi-spectral images to predict rice
physiological parameters.

2. Materials and Methods
2.1. Experiment Site

Ground-based field experiments were conducted at Baiyun Experimental base, Guangzhou
Academy of Agricultural Sciences, Guangzhou City of Guangdong Province (longitude and
latitude: 113.44, 23.39; altitude: 18 m) during the 2020 and 2021 cropping season. The region
has a typical tropical monsoon climate zone, with a mild climate and significant oceanic
climate characteristics. The location of the study area for ground-based field observations
is shown in Figure 1.
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2.2. Treatment and Experimental Design

The field experiment was laid out using a split-plot arrangement based on a ran-
domized complete block design with four N application rates (0, 5, 7, and 9 kg/666 m2,
abbreviated as N0, N1, N2, and N3, respectively) and eight different rice varieties (Mei
Zhanxiang 2, Xiang Yaxing, 19 Xiang, Ruanhua, Qing Xiangyou 033, Nan Jingxiang, Er
Guangxiang 3, and Li Xiangzhan, abbreviated as H1 to H8, respectively). The gross size of
each plot was 36 m2, and the row spacing of the transplanted plants was 6 × 5 inches, with
11 plants ×80 rows. Three main seedlings were inserted into each family. The outermost
row on both sides of each plot was considered as a border and was not used for data
collection, to avoid border effects. An irrigation and seedling drainage ditch 0.6 m wide
and a ridge 0.3 m wide were set up, surrounded by protection lines. The communities were
separated by ridges. The ridges were covered with film, with independent drainage and
irrigation (Figure 2). Plot irrigation was used with unpolluted water. N fertilizer (urea)
was split-applied artificially at basal, tillering, and heading dressings, and the N-splitting
patterns were 50%, 30%, and 20%, respectively. The base fertilizer was applied 1–2 days
before transplantation, and the tiller fertilizer was applied 5 days after transplantation.
The basal fertilizers, including phosphorus (4 kg/666 m2) as calcium superphosphate and
potassium (8 kg/666 m2) as potassium chloride, were broadcast and incorporated into the
topsoil via rotary tillage from one day before sowing. The management of water slurry
with the prevention and control of diseases, pests, and weeds was carried out in accordance
with high-yield fields.
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2.3. Ground-Based Field Observations

The growth period of earth rice in this region is from early March to July. We chose
two important philological phases, namely the heading stage (7 May 2021) and the maturity
stage (7 June 2021), for field data measurements. In this work, three rice parameters were
determined, including the whole leaf area, dry matter accumulation, and SPAD. For an
accurate determination of SPAD, we used a portable SPAD meter (SPAD value-502 Plus;
Minolta Camera Co., Osaka, Japan) to randomly select 15 normal-growing rice plants for
each experimental plot, and to determine the SPAD value of 3 leaves. The preliminary
processing of the data was performed to calculate the average value of each observation
sample, and the average value was recorded as the test area SPAD value, respectively.
Finally, 64 average values were obtained as cell statistics, and 64 groups of whole leaf area
and dry weight were obtained through the same method (Table 1).

Table 1. Summary of physiological parameters of rice.

Type Number of Samples Max Min Average Standard Deviation

SPAD value 64 41.85 29.52 35.54 2.61
Dry matter accumulation

(kg/666 m2) 64 828.61 209.94 467.24 210.86

Whole leaf area (cm2) 64 2513.47 981.31 1633.36 428.17

2.4. The UAV Model

The camera equipment used in this article was the DJI Phantom 4 multi-spectral
drone, using 6 1/2.9′′ CMOS, including an RGB sensor for visible light imaging and five
monochromatic sensors for multi-spectral imaging. The take-off accumulation was 1487 g
and the maximum flight time was about 27 min. The hover accuracy range when RTK was
enabled and working normally, and the vertical accuracy was ± 0.1 m. The horizontal
accuracy was ± 0.1 m. The UAV automatically flies through the GS PRO planning flight
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mission, and the integrated spectral sunlight sensor on the top can capture solar radiation,
thereby maximizing the accuracy and the consistency of data collection at different times of
the day. When combined with the processed data, this information helps to obtain more
accurate remote sensing results. Finally, the remote sensing data are spliced through the
Pix4d software to obtain red, blue, green, near-infrared, and edge bands. The spectral
sensor information is shown in Table 2.

Table 2. Spectral sensor information.

Band Central Wavelength (nm) Width (nm)

Edge 730 32
Near-infrared 840 52

Green 560 32
Red 650 32
Blue 450 32

2.5. UAV-Based Field Observations

The UAV-based experimental farm is located at the Baiyun Experimental Base of
Guangzhou Academy of Agricultural Sciences in Guangzhou City of Guangdong Province,
Chain. This area has a typical tropical monsoon climate. Combining the five bands of
the stitched multi-spectral image for different operations can yield different vegetation
indices. The nine vegetations, including RVI, NDVI, EVI, GNDVI, NLI, SAVI, OSAVI,
LCI, and SIPI2, are closely related to the growth of plants. The calculation formula was
shown in Table 3. The physiological parameters of plants are recorded in a certain area. In
order to establish a physiological model more accurately, it is necessary to calculate the
average value of each area with similar physiological conditions as the index of the area.
The original image was pre-processed using Pix4dmapper and ENVI software, including
irradiance calibration, mixed noise filter (MNF) denoising, geometric correction, and image
mosaicking. The system, combined with an accurate inertial measurement unit and precise
gimbals, provided stable and high-quality spatial multi-spectral imagery.

Table 3. Vegetation index and calculation formula.

Vegetation Index Formula Reference

RVI Rnir/R Jordan (1969) [37]
NDVI (RNIR-R)/(RNIR + R) Tucker (1979) [38]
EVI 2.5 ×(NIR-R)/(NIR + 6 R − 7.5 B + 1) Hui et al. (1995) [39]

GNDVI (NIR-G)/(NIR + G) Anatoly et al. (1996) [40]
NLI (NIR × NIR-R)/(NIR× NIR + R) Goel et al. (1994) [41]
SAVI (1 + 0.5)× (NIR-R)/(NIR + R + 0.5) Huete (1988) [42]

OSAVI (1 + 0.16)× (NIR-R)/(NIR + R + 0.16) Geneviève et al. (1996) [43]
LCI (NIR-RedEdge)/(NIR + RedEdge) Su et al. (2005) [44]

SIPI2 (NIR-Green)/(NIR − Red) Yue et al. (2018) [45]

2.6. Machine Learning Modeling

The support vector machine (SVM) informs an excess glider from the input field
that disintegrates a particular training dataset and permits distance on both sides of the
hyperplane from the nearest instances. For the optimization process, the model generates a
penalty factor for the generated error classification, punishes the error classification through
the penalty factor, and obtains the total penalty by adding the penalty.This technique has
a hyperplane that is responsible for the minimization of the sum of the reciprocal value
of the margin and the total penalty, which is obtained by adding the penalties. Random
forest algorithm is an algorithm that builds multiple trees to train the model and predict
the outcome. This algorithm has the advantages of processing large amounts of data, and a
high accuracy of results, balancing errors, and speed. In multiple linear regression (MLR),
several inputs are connected through a single regression equation for a given output. In
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recent years, these techniques were applied successfully over many fields to obtain the
desired results. In this study, a total of 64 sets of data on the vegetation index and plant
physiological indicators of each sample were used as the training data, and the data were
allocated according to a ratio of 2 to 1 between the training set and the test set to continue
the training of the SVM, random forest model, random tree model, and linear regression
model. The model was trained using Anaconda software based on pandas and sklearn.

In order to judge the goodness of fit between the regression models and the original
data, the coefficient of determination (R2) was chosen as the criterion, and the closer the R2

was to 1, the better the fit. At the same time, the parameters for determining the accuracy of
the regression model were root mean square error (RMSE), average absolute error (MAE),
symmetric average absolute percentage error, average trivial error (MSE), and average
absolute percentage error (MAPE). The smaller the values of RMSE, MAE, MSE, and MAPE
were, the more accurate the model. RMSE, MAE, MSE, and MAPE were expressed through
the following formula [14]. The technical route is shown in Figure 3.
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3. Results
3.1. Rice Biochemical Variation

Comparing the changes in the same rice variety under different nitrogen application
conditions, we can see that there are differences in the biochemical parameters between the
tillering stage and the full heading stage. At the tillering stage, the SPAD content of most
plant leaves changes significantly under the conditions of N1 and N2, which proves that
appropriate nitrogen application is conducive to the synthesis of chlorophyll in plant leaves,
but with a further increase in nitrogen application, the SPAD in leaves does not continue to
change significantly. The dry matter weight and whole leaf area of rice changed significantly
with the increase in nitrogen application. However, at the full heading stage, the SPAD of
most plants did not change significantly with the change in nitrogen application, and the
dry matter weight and whole leaf area of some plants changed significantly under N1 and
N2 treatment. However, with the further increase in nitrogen application, the dry matter
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weight and whole leaf area did not continue to change significantly. Comparing the changes
in different rice plants under the same nitrogen application conditions, it was found that
different plants had different needs and sensitivities to nitrogen. Under the N1 treatment
with low nitrogen application, the SPAD value of ivory Xiangzhan and Guangxiangzhan
3 was significantly higher than those of other plants, but with the increase in nitrogen
application, the SPAD value of ivory Xiangzhan decreased compared with other plants.
Qingxiangyou 033 had the largest horizontal plant dry matter weight under N2 treatment
with low nitrogen application, but with the increase in nitrogen application, the plant dry
matter weight of Ruanhuayou Jinsi increased rapidly, which was significantly higher than
Qingxiangyou 033 under N4 treatment (Figure 4). Detailed tabular data are presented in
Appendix A—Table A1.
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3.2. Change of Rice Vegetation Index

By comparing the different vegetation indexes in Figure 5, it can be found that most
of the indexes increase with an increase in the nitrogen application in the plot. There
are obvious changes among N1, N2, and N3, but N3 and N4 do not change significantly.
Different plants also have great differences. Ruanhuayou Jinsi has a low vegetation index
under N0, but this increases rapidly with the increase in nitrogen application. Compared
with other plants, Guangxiangzhang 3 changed slowly with nitrogen application (Figure 5).

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 25 
 

 

obvious changes among N1, N2, and N3, but N3 and N4 do not change significantly. Dif-
ferent plants also have great differences. Ruanhuayou Jinsi has a low vegetation index 
under N0, but this increases rapidly with the increase in nitrogen application. Compared 
with other plants, Guangxiangzhang 3 changed slowly with nitrogen application (Figure 
5). 

  
 

 
 

 

Figure 5. (a–h) shows the canopy vegetation index of peanut at full heading stage. 

3.3. Single-Factor Regression Modeling 
R2 is the ratio of the sum of squares of regression and the sum of squares of total 

deviation. As a standard for evaluating the goodness of fit of a model, it is called the sam-
ple determination coefficient. The closer its value is to 1, the higher the goodness of fit of 
the model. As is shown in Table 4, the high correlation coefficient R2 of some models in-
dicates that the remote sensing data and the physiological data are correlated. Compared 
with other models, the appearance of the tree model, the forest model, and the SVM mod-
els are better than the linear model. Compared with other remote sensing parameters, EVI, 
LCI, and OSAVI show better results; specifically, the fitting coefficients of dry matter ac-
cumulation and whole leaf area are higher than 0.75 in the tree model and in the forest 
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Table 4. Regression modeling of rice physiological parameters with vegetation index. 

Type (R2) Vegetation 
Index 

Linear Regression 
Model 

Random Tree 
Model 

Random Forest 
Model 

SVM 

SPAD Value EVI 0.45 0.02 0.26 0.41 
 GNDVI 0.33 0.33 0.07 0.29 
 LCI 0.47 0.11 0.61 0.57 

Figure 5. (a–h) shows the canopy vegetation index of peanut at full heading stage.

3.3. Single-Factor Regression Modeling

R2 is the ratio of the sum of squares of regression and the sum of squares of total
deviation. As a standard for evaluating the goodness of fit of a model, it is called the
sample determination coefficient. The closer its value is to 1, the higher the goodness
of fit of the model. As is shown in Table 4, the high correlation coefficient R2 of some
models indicates that the remote sensing data and the physiological data are correlated.
Compared with other models, the appearance of the tree model, the forest model, and
the SVM models are better than the linear model. Compared with other remote sensing
parameters, EVI, LCI, and OSAVI show better results; specifically, the fitting coefficients of
dry matter accumulation and whole leaf area are higher than 0.75 in the tree model and in
the forest model. However, the overall performance of SIPI2 does not meet the expectation,
and it is difficult to predict the physiological values.

3.4. Analysis of Single-Factor Regression Model Accuracy

As shown in Table 5, the overall MAPE (mean absolute percentage error) performance
of the SVM model and the linear regression model of the four models are better than for
the other models. Among the nine remote sensing parameters, LCI, NDVI, and SAVI
performed the best, and SIPI2 and OSAVI performed the worst. The prediction results
of the three physiological parameters and the prediction results of the SPAD value are
relatively accurate, but the prediction results of dry accumulation and whole leaf area have
a large deviation. By comparing all of the models, it was found that the linear model and
the SVM regression model has the best prediction effects of SPAV via LCI, NDVI, and SAVI.
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The model MAPE reached 2.98, 3.55, 3.21, 6.64, 6.17, and 6.15. The complete single-factor
regression model accuracy document is shown in Appendix B—Table A2.

Table 4. Regression modeling of rice physiological parameters with vegetation index.

Type (R2)
Vegetation

Index
Linear Regression

Model
Random Tree

Model
Random Forest

Model SVM

SPAD Value EVI 0.45 0.02 0.26 0.41
GNDVI 0.33 0.33 0.07 0.29

LCI 0.47 0.11 0.61 0.57
NDVI 0.53 −0.30 0.09 0.32
NLI 0.21 0.15 0.04 0.31

OSAVI 0.33 0.49 0.62 0.50
RVI 0.26 0.15 −0.09 0.23

SAVI 0.40 0.18 0.23 0.26
SIPI2 0.26 −0.13 −0.24 0.19

Dry matter EVI 0.83 0.92 0.95 0.11
accumulation GNDVI 0.97 0.97 0.94 0.84

LCI 0.73 0.46 0.69 0.36
NDVI 0.89 0.96 0.92 0.92
NLI 0.70 0.81 0.83 0.31

OSAVI 0.82 0.80 0.96 0.87
RVI 0.84 0.98 0.98 0.92

SAVI 0.78 0.94 0.97 0.88
SIPI2 0.10 0.94 0.94 0.87

Whole leaf area
EVI 0.29 0.72 0.87 0.00

GNDVI 0.70 0.38 0.36 0.02
LCI 0.36 0.36 0.06 0.05

NDVI 0.39 0.71 0.05 0.03
NLI 0.05 0.05 0.36 0.02

OSAVI 0.45 0.73 0.71 0.49
RVI 0.36 0.40 0.41 0.02

SAVI 0.59 0.45 0.83 0.83
SIPI2 0.23 0.40 0.56 0.34

Table 5. Comparison of prediction accuracy of single-factor regression modeling.

Type (MAPE) Vegetation
Index

Linear Regression
Model

Random Tree
Model

Random Forest
Model SVM

SPAD EVI 4.30 6.53 7.06 6.02
GNDVI 3.75 6.38 6.23 4.35

LCI 2.98 6.55 7.16 6.64
NDVI 3.55 5.60 5.82 6.17
NLI 3.30 7.21 5.81 4.82
SAVI 3.21 6.97 5.53 5.54
RVI 3.82 6.26 7.92 5.04

SAVI 3.94 7.82 6.02 6.15
SIPI2 5.20 6.37 5.64 5.34

Dry matter EVI 16.38 43.42 56.49 68.53
accumulation GNDVI 9.75 54.36 55.79 36.28

LCI 23.31 62.17 62.20 49.32
NDVI 11.33 58.03 58.59 72.96
NLI 24.19 59.36 53.32 55.54
SAVI 13.75 53.95 54.76 43.04
RVI 17.20 61.59 56.17 90.88

SAVI 19.92 53.53 60.65 53.52
SIPI2 49.22 60.62 60.11 46.40
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Table 5. Cont.

Type (MAPE) Vegetation
Index

Linear Regression
Model

Random Tree
Model

Random Forest
Model SVM

Whole leaf area EVI 19.77 26.36 30.23 22.66
GNDVI 13.12 37.82 36.00 19.16

LCI 13.52 27.81 23.02 16.47
NDVI 12.97 24.94 31.77 18.66
NLI 16.76 27.89 25.38 17.84
SAVI 12.01 28.91 25.19 19.71
RVI 14.90 30.68 32.76 20.04

SAVI 10.71 21.95 28.99 24.60
SIPI2 20.97 28.69 22.24 21.94

3.5. Analysis of Multi-Factor Regression Model Accuracy

Considering the powerful data analysis ability of machine learning, and providing
more abundant spectral data for the prediction of physiological indexes, we used all nine
spectral indexes mentioned as inputs to build a regression model. The result of the model
text is shown in Table 6. It can be seen from the table that the SVM and forest models
perform the best among the other models, which are distinctly higher than the random
tree and linear regression models. Especially, the prediction effect on the SPAD value is
excellent. The MSE, RMSE, RMAE, MAPE, and SMPE of the prediction, which uses the
SVM to predict the SPAD value, are 1.90, 1.38, 0.13, 0.86, and 4.13, respectively. At the
same time, the random forest has also achieved adequate results. The MSE, RMSE, RMAE,
MAPE, and SMAPE of the model are 2.22, 1.49, 0.55, 1.18, and 7.30. However, the prediction
effect of dry accumulation and whole leaf area do not meet the expectation, and it is difficult
to accurately predict them effectively.

Table 6. Comparison of prediction accuracy of multi-factor regression mode.

Type Model Type RMSE MAE MAPE SMAPE

SPAD value Linear regression 1.71 0.17 1.38 3.80
Random tree 1.91 1.46 10.70 10.82

Random forest 1.49 0.55 1.18 7.30
SVM 1.38 0.13 0.86 4.13

Dry matter
accumulation Linear model 59.11 55.33 15.13 14.01

Random tree 210.85 126.58 48.02 37.31
Random forest 24.27 17.17 60.58 49.54

SVM 201.25 182.80 61.96 44.79

Whole leaf area Linear regression 363.39 315.38 25.46 21.76
Random tree 146.26 108.63 24.80 23.96

Random forest 201.89 161.34 27.07 26.76
SVM 371.36 326.82 24.68 22.72

4. Discussion

The physiological processes of plants, chlorophyll concentration, dry matter accumu-
lation, and whole leaf area determine the state of plants. At the same time, nitrogen is
one of the most important nutritional indicators of crop growth. The amount of nitrogen
application will greatly affect the changes in chlorophyll concentration, dry matter accu-
mulation, and whole leaf area. Shi conducted different nitrogen application treatments on
wheat and measured the chlorophyll contents and whole leaf areas of plant leaves. The
results showed that the chlorophyll concentration and whole leaf area increased first, and
then decreased with the change in nitrogen application [46]. Liao measured the dry matter
mass of winter melon under different nitrogen treatments, and finally concluded that the
dry matter mass of winter melon increased first and then decreased with the increase in
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nitrogen application [47]. This is different from the results of our experiment. It should
be considered that the maximum nitrogen treatment set in the experiment did not inhibit
the plant. At the same time, comparing different vegetation indexes, it can be found that
most indexes increase with the increase in nitrogen application in the plot, which is the
same as the change trend of chlorophyll concentration, dry accumulation, and whole leaf
area, which mirrors the research results of Ni. He obtained the same trend by analyzing
the correlation between the hyperspectral characteristic parameters of honeydew pomelo
leaves and relative chlorophyll content (SPAD) [48]. At the same time, this paper found
that blindly increasing the amount of nitrogen application is not conducive to plant growth,
while a reasonable amount of nitrogen application is conducive to improving the yield. Tao
Sun conducted field trials in Jinhua City, Zhejiang Province, for three consecutive growing
seasons. Two japonica-candid hybrids and two japonica rice varieties were treated with five
nitrogen application rates (0, 150, 225, 300, and 375 kg/666 m2). The amount of nitrogen
increased, and the amount of nitrogen uptake in each growth period increased significantly
with the increase in the amount of nitrogen applied [49].However, according to Rajesh,
he conducted field tests during 2011–2012, and excessive use of fertilizer will not benefit
nitrogen absorption. There is no linear increase with the amount of nitrogen used, and the
higher nitrogen content shows a significantly reduced the NUE value [50]. Therefore, one
of the goals of this article is to find an optimal nitrogen concentration for rice growth and
to achieve efficient rice planting.

As important physiological indicators, whole leaf area, SPAD value, and the dry matter
weight at points are of great significance for the rapid monitoring of crop breeding. As the
most basic physiological index, the dry weight of crops directly indicates the accumulation
of organic matter in crops, and the growth status of crops can be judged by combining
the growth days of crops. Chlorophyll, as the main factory of plant photosynthesis, is an
important indicator of concern to plant breeding workers. The whole leaf area of a plant
represents the z of the light energy received by the plant. However, due to the lack of
effective and rapid monitoring means, it is difficult to achieve large-scale rapid monitoring.

With the development of space technology, remote sensing plays an important role
in modern agriculture, enabling people to monitor the growing distance of crops in the
short and long term. Liu et al. used ESA Sentry-2 multi-spectral images and US Geological
Survey DEM to combine object-oriented image analysis and DEM-based flow network
analysis to map and to quantify the aquatic habitats of lentils [51]. However, satellite
remote sensing technology often has shortcomings, such as a lack of accuracy. It is difficult
to obtain data at a centimeter resolution. Although it is possible to accurately monitor
the physiological status of plants in the field in real time by establishing a continuous
monitoring system through small field stations, it is difficult to implement it on a large
scale due to the high cost of establishment and complex maintenance. UAV is flexible in
taking off and landing, is less affected by the environment, and has the advantage of being
able to efficiently obtain spectral information. Therefore, we used DJI Phantom IV UAV to
carry a multi-spectral platform to obtain high-resolution multi-spectral data, which makes
the test results more accurate.

The traditional linear regression model has the advantage of a simple model and
easy operation, but it is more difficult to construct the vegetation index spectrum, and it
is difficult to meet the higher-level accuracy statistical regression. With the upgrade of
computer hardware, recent machine learning methods adopt a nonlinear regression method,
and this is widely used in agricultural monitoring by virtue of its excellent fitting ability.
Other researchers around the world have also achieved good results through machine
learning models. Guo et al. used machine learning methods, such as the backpropagation
neural network model BP, support vector machine, random forest, and extreme learning
machine, to predict corn yield [52]. The mean absolute errors of the BP, SVM, RF, and
ELM models are 1.739, 0.886, 0.925, and 1.356, respectively. Zhang et al. used low-cost
UV-derived photographic point clouds and machine learning methods to map the canopy
heights of dense tropical forests [53]. Kim et al. used a multi-spectral camera on a drone to
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detect weed spots in a buckwheat field [54]. However, there has been a lack of research
on the comparison of machine learning models on rice. We introduced machine learning
models into experiments and compared them, which makes the research more practical.

Given that the variation of various plant physiological parameters could induce strong
responses in specific vegetation indexes, the unbalanced nature of the spectral features
selected from the different vegetation indices could be attributed to the sensitivity of differ-
ent physiological parameters. Many previous studies have proven the correlation between
the parameters of remote sensing images extracted by UAV and plant chlorophyll. A
recent study conducted by Fang et al. also confirms that NDVI can be used to detect plant
chlorophyll [55]. In order to explore the deep relationship between different vegetation
indices and physiological parameters, this paper uses multiple machine learning models to
establish the relationship model between vegetation indices and physiological parameters.
The results show a strong correlation between the physiological index and the vegetation
index. Dry matter is predicted via GNDVI through a regression model, and the R2 between
the predicted value and the real value is as high as 0.967. There is also a good correlation
between whole leaf area and SPAD value, which proves that there is a direct relationship
between the vegetation index and the physiological index. In the case of a single indepen-
dent variable, compared with other vegetation indices, EVI, NDVI, and RVI have higher
accuracies and they can better predict the plant physiological parameters.

Due to a single vegetation index containing less information, it is difficult to compre-
hensively reflect the growth of crops. When a single vegetation index is used to establish
the model, although the correlation is verified, the accuracy of the model is low. Corre-
spondingly, combining multiple vegetation indexes can effectively obtain more information
about plants, greatly improving the accuracy of the model. As a result, using multiple
vegetation indices to predict the physiological indices will have a better effect. A recent
study conducted by Qi et al. also confirms that it is better to use multiple vegetation
indices to predict physiological parameters than to use one vegetation index [14]. This
paper uses machine learning models to simulate the relationship between the physiological
indices of three plants and nine different vegetation indices, and as the evaluation index to
monitor the degree of fit of the linear model of rice leaf SPAD value and MSE, RMSE, MAE,
MAPE, and SMAPE are used as the evaluation criteria of model accuracy. The results show
that the effect of using multiple vegetation indexes to predict chlorophyll concentration
is significantly better than using a single vegetation index, and it is of significance to con-
tinue the research. However, the prediction results of the whole leaf area and dry matter
accumulation are not ideal, so it is difficult to predict this accurately. When comparing four
different machine learning models, the random forest model has the best effect. The best
univariate regression model and multivariate regression model both use the random forest
model. As an important model of machine learning, the random forest and SVM have many
advantages. The model introduces randomness, with adequate anti-noise performance and
a high accuracy rate, which can better complete data fitting.

This work provided a machine learning system for monitoring rice physiological
parameters using aerial drone images. The main focus of our study is on monitoring rice
physiology. This method is not only helpful for monitoring crop growth in the field, but
also for several other applications worth mentioning, including quickly collecting plant
traits and screening excellent varieties. We innovatively used the multi-vegetation index,
combined with the machine learning algorithm. We compared the difference between the
single vegetation index and the multi-vegetation index on the prediction results of the
model. We found that it is difficult to comprehensively evaluate the overall physiology of
rice with a single vegetation index. Comparing with the single vegetation index model,
relationships include other vegetation indexes, and they coincide with the field data ob-
served on freeways, which greatly improves the prediction results. This model realizes the
rapid detection of rice field growth, and provides a new idea for UAVs to monitor crop
growth in the field.
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5. Conclusions

In this work, a new, advanced solution for the prediction of rice physiological parame-
ters by acquiring multi-spectral images through multi-spectral equipment carried by UAVs
is presented. This research made full use of the abundant signal, strong observation ability,
and the real-time characteristics of multi-spectral images, and analyzed the spectral charac-
teristics of different rice varieties, nitrogen application levels, and growth periods. Finally,
a multi-spectral image–rice physiological index model was constructed. Moreover, the
relationships between nitrogen application and rice growth were analyzed and discussed.
The main conclusions can be drawn as follows:

First, the multi-vegetation index composed of nine vegetation indexes was used as the input
parameter. Compared with single vegetation, the multi-vegetation index has a better effect
in MSE and MAPE. Then, we compared the different machine learning models, and we
found that SVM and RF were used to establish the model, and that the overall prediction
effect was good, which significantly improved its ability to monitor rice physiological
parameters, and effectively reduced its dependence on test conditions such as variety and
soil fertility.
Second, the analysis shows that increasing the amount of nitrogen application can promote
rice growth, and increase the chlorophyll concentration, dry matter, and whole leaf area
of rice in the early stage of rice growth, but excessive nitrogen application will not even
inhibit rice growth.

The machine learning model showed a certain degree of retrieval accuracy for the
study area. Nevertheless, the spectral inversion model is influenced by many factors,
including light sources, temperature, weather conditions, etc. Additionally, compared with
other studies, high-resolution multi-spectral images were adopted in this study. Therefore,
the differences in the resolution of images, types of aircraft, and multi-spectral camera
bands may affect the retrieval results. In the actual application, the model should be
selected based on the development of the model, using the accuracy requirements and the
results of current surveys. At the same time, because the experimental location is limited
to Guangdong Province, China, the model is not practical for other regions. Subsequent
experiments can be conducted in different regions to improve the universality of the model.

Author Contributions: Conceptualization, S.L., T.C. and L.Z.; Data curation, W.Y., Y.G. and S.Y.;
Formal analysis, S.L. and Y.L. (Yongda Lin); Funding acquisition, L.Z.; Investigation, S.L., B.Z., H.Z.,
J.T. and X.L.; Methodology, S.L., W.Y. and L.Z.; Project administration, B.Z., Y.L. (Yubin Lan) and L.Z.;
Resources, B.Z. and H.Z.; Software, S.L., W.Y., T.C. and L.Z.; Validation, Y.L. (Yongda Lin) and X.L.;
Visualization, T.C. and J.T.; Writing—original draft, S.L., B.Z. and W.Y.; Writing—review and editing,
T.C. and L.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Key Science and Technology Planning Project of Guang-
dong Province (2019B020214003), the National Key R&D Program of China (2020YFD1000905), the
Guangdong Technical System of Peanut and Soybean Industry (2022KJ136-05), and the National
Natural Science Foundation of China (42005142).

Data Availability Statement: The data provided in this study can be made available upon request
from the corresponding author. The data have not been made public because they are still being used
for further research.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2023, 15, 453 15 of 20

Appendix A

Table A1. Analysis of Variance of Physiological Parameters of Rice.

Varieties Reproductive
Period

Nitrogen
Application

Level
SPAD Dry Matter Weight

(kg/666 m2) Whole Leaf Area (cm2)

Meixiangzhan 2

Tillering Stage

N1 33.79 ± 0.81 Aa 239.50 ± 20.10 Abcd 1105.89 ± 189.30 Aa
N2 35.97 ± 0.22 Ba 237.20 ± 9.41 Aa 1368.00 ± 49.80 Aab
N3 35.98 ± 1.16 Ba 248.80 ± 17.28 Aab 1514.91 ± 150.92 Aab
N4 36.50 ± 0.39 Bab 280.40 ± 31.56 Aabc 1520.47 ± 169.36 Aa

Full Heading Stage

N1 30.40 ± 0.39 Aa 628.45 ± 40.35 Aa 1581.88 ± 79.55 Abc
N2 31.35 ± 0.034 Aa 679.14 ± 28.84 Aab 1950.26 ± 241.32 Ba
N3 32.77 ± 0.80 Ba 657.05 ± 41.00 Aa 2075.52 ± 61.18 BCab
N4 31.33 ± 0.66 Aa 663.74 ± 49.94 Aa 2347.00 ± 60.42 Cab

Ivory Xiangzhan

Tillering Stage

N1 36.12 ± 1.26 Ac 239.30 ± 5.32 Abcd 1026.09 ± 43.45 Aa
N2 36.63 ± 1.44 Aab 259.30 ± 17.77 ABab 1348.17 ± 132.63 Bab
N3 37.27 ± 0.75 Aa 287.50 ± 17.49 Bbcd 1582.71 ± 131.31 Bab
N4 36.37 ± 1.26 Aab 262.50 ± 12.26 Abab 1499.07 ± 93.55 Ba

Full Heading Stage

N1 29.53 ± 0.43 Aa 618.79 ± 69.91 Aa 1418.39 ± 109.60 Aabc
N2 30.33 ± 0.62 Aa 633.78 ± 32.67 Aab 1942.61 ± 117.91 Ba
N3 33.47 ± 0.88 Ba 656.48 ± 44.94 Aa 1814.85 ± 362.83 ABa
N4 30.93 ± 0.28 Aa 667.60 ± 39.24 Aa 1969.68 ± 120.58 Ba

19 Xiang

Tillering Stage

N1 35.55 ± 0.75 Aabc 220.60 ± 27.75 Abc 981.31 ± 156.31 Aa
N2 36.77 ± 0.79 ABab 276.30 ± 17.83 Bab 1261.80 ± 93.41 ABab
N3 37.35 ± 0.73 Ba 233.30 ± 17.10 ABa 1290.97 ± 128.16 Ba
N4 37.02 ± 0.11 ABab 251.00 ± 13.34 ABa 1304.23 ± 118.67 Ba

Full Heading Stage

N1 35.20 ± 0.63 Ae 636.16 ± 65.84 Aa 1345.31 ± 228.15 Aab
N2 37.06 ± 0.42 Bd 736.78 ± 28.50 Abc 2049.05 ± 67.37 Ba
N3 37.70 ± 0.56 Bc 681.05 ± 82.11 Aa 2176.54 ± 232.57 Bab
N4 38.08 ± 0.19 Bd 819.92 ± 16.708 Bb 2355.12 ± 286.83 Bab

Ruanhuayou Jinsi

Tillering Stage

N1 34.03 ± 0.77 Aab 250.30 ± 17.94 Acd 1079.60 ± 89.80 Aa
N2 37.17 ± 0.62 Bab 284.60 ± 30.78 Abb 1327.44 ± 189.90 Aab
N3 37.57 ± 0.38 Ba 328.90 ± 38.85 Bd 1707.20 ± 225.63 Bb
N4 36.89 ± 1.53 Bab 308.10 ± 9.55 ABc 1388.70 ± 110.63 ABa

Full Heading Stage

N1 30.93 ± 0.28 Aab 556.68 ± 17.49 Aa 1164.75 ± 55.75 Aa
N2 32.81 ± 0.88 Bb 747.33 ± 58.59 Bbc 2076.61 ± 55.87 Ba
N3 35.31 ± 0.52 Cb 805.91 ± 36.51 Bb 2491.95 ± 323.08 Bb
N4 35.62 ± 0.80 Cb 727.56 ± 30.93 Bab 2151.58 ± 238.94 Bab

Qingxiangyou 033

Tillering Stage

N1 35.26 ± 1.14 Aabc 261.80 ± 13.52 Ad 1060.26 ± 70.00 Aa
N2 38.06 ± 0.85 Bab 283.30 ± 15.31 ABb 1446.56 ± 84.78 Bb
N3 37.26 ± 0.95 Aba 324.70 ± 14.64 Cd 1465.37 ± 51.39 Bab
N4 37.01 ± 1.32 ABab 302.80 ± 19.94 BCbc 1421.53 ± 39.42 Ba

Full Heading Stage

N1 31.85 ± 0.85 Abc 594.13 ± 8.52 Aa 1762.00 ± 365.02 Ac
N2 34.07 ± 0.57 Bbc 674.58 ± 82.49 (A,ab) 2128.03 ± 261.29 Aa
N3 33.95 ± 0.84 Ba 649.02 ± 22.03 (A,a) 2040.83 ± 272.11 Aab
N4 36.60 ± 0.19 Cbc 671.64 ± 21.51 (A,a) 2037.58 ± 89.11 Aa

Nanjingxiangzhan

Tillering Stage

N1 33.90 ± 0.80 Aa 209.90 ± 17.6155 (A,b) 1015.77 ± 89.23 Aa
N2 36.59 ± 1.46 Bab 241.80 ± 15.35 (AB,ab) 1203.73 ± 118.34 Aab
N3 36.65 ± 1.32 Ba 271.50 ± 13.81 (B,abc) 1438.87 ± 67.69 Bab
N4 35.81 ± 0.32 ABab 277.50 ± 20.85 (B,abc) 1473.45 ± 99.02 Ba

Full Heading Stage

N1 32.82 ± 0.65 Acd 545.54 ± 17.46 (A,a) 1411.14 ± 112.87 Aabc
N2 33.91 ± 0.86 Abc 704.81 ± 21.53 (B,ab) 2065.37 ± 217.53 Ba
N3 36.22 ± 0.50 Bb 658.77 ± 29.27 (AB,a) 1908.01 ± 128.49 Ba
N4 37.21 ± 0.34 Bcd 644.48 ± 92.08 (AB,a) 1992.98 ± 107.71 Ba

Erguangxiangzhan 3

Tillering Stage

N1 36.73 ± 1.85 Ac 212.40 ± 15.00 (A,bc) 991.43 ± 58.72 Aa
N2 38.33 ± 0.83 Ab 269.00 ± 13.79 (B,ab) 1348.92 ± 61.167 Bab
N3 37.31 ± 0.33 Aa 307.30 ± 9.54 (C,cd) 1526.36 ± 48.74 Cab
N4 39.25 ± 0.80 Ac 251.00 ± 18.17 Ba 1355.34 ± 49.75 Ba

Full Heading Stage

N1 36.25 ± 0.18 Ae 606.01 ± 45.18 Aa 1280.40 ± 54.35 Aab
N2 38.15 ± 0.74 Bd 828.62 ± 14.61 ABc 2206.06 ± 173.17 Ba
N3 39.22 ± 0.55 Bd 711.63 ± 42.87 ABab 2068.16 ± 24.20 Bab
N4 41.85 ± 0.88 Ce 668.51 ± 89.13 Aa 2001.28 ± 159.28 Ba
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Table A1. Cont.

Varieties Reproductive
Period

Nitrogen
Application

Level
SPAD Dry Matter Weight

(kg/666 m2) Whole Leaf Area (cm2)

Lixiangzhan 4

Tillering Stage

N1 35.82 ± 0.74 Abc 233.20 ± 23.89 Aa 1001.01 ± 72.31 Aa
N2 36.30 ± 0.40 Aab 235.00 ± 17.79 Aa 1187.70 ± 28.84 Ba
N3 36.90 ± 0.10 Aa 317.20 ± 13.25 Bd 1530.21 ± 63.41 Cab
N4 38.50 ± 0.65 Bbc 278.90 ± 15.08 Babc 1506.64 ± 77.22 Ca

Full Heading Stage

N1 33.62 ± 1.12 Ad 625.53 ± 13.03 Aa 1625.80 ± 139.07 Abc
N2 34.37 ± 0.56 Ac 675.57 ± 25.10 Aab 2125.90 ± 210.50 Aa
N3 35.40 ± 0.21 Ab 602.42 ± 69.71 Aa 2176.20 ± 300.37 Bab
N4 35.65 ± 1.07 Ab 640.96 ± 49.20 Aa 2513.50 ± 118.29 Bb

The capital letters in the table represent the variance analysis of different nitrogen application levels of peanuts at
the same variety and growth period. The lowercase letters in the table represent the variance analysis for different
varieties of peanuts with the same nitrogen application level and growth period.

Appendix B

Table A2. Comparison of Prediction Accuracy of Complete Single-Factor Regression Models.

Vegetation
Index Type Model Type MSE RMSE MAE MAPE SMAPE

DVI SPAD Linear regression 4.44 2.11 1.54 4.41 4.38
DVI SPAD Random tree 3.29 1.81 1.35 6.60 6.54
DVI SPAD Random forest 1.62 1.27 0.83 7.00 6.99
DVI SPAD SVM 4.40 2.10 1.48 6.07 5.98
EVI SPAD Linear regression 4.20 2.05 1.50 4.30 4.29
EVI SPAD Random tree 2.79 1.67 1.20 6.67 6.63
EVI SPAD Random forest 0.99 1.00 0.74 7.11 7.05
EVI SPAD SVM 3.92 1.98 1.42 6.17 6.10

GNDVI SPAD Linear regression 4.79 2.19 1.61 4.61 4.59
GNDVI SPAD Random tree 3.61 1.90 1.25 6.49 6.42
GNDVI SPAD Random forest 1.04 1.02 0.72 6.91 6.86
GNDVI SPAD SVM 4.73 2.18 1.59 6.09 6.01

LCI SPAD Linear regression 3.91 1.98 1.45 4.14 4.13
LCI SPAD Random tree 2.21 1.49 1.03 6.82 6.78
LCI SPAD Random forest 0.68 0.82 0.57 7.31 7.25
LCI SPAD SVM 3.25 1.80 1.28 6.36 6.31

NDVI SPAD Linear regression 4.10 2.02 1.48 4.22 4.21
NDVI SPAD Random tree 2.97 1.72 1.28 6.69 6.64
NDVI SPAD Random forest 1.00 1.00 0.72 6.83 6.76
NDVI SPAD SVM 3.82 1.96 1.39 6.19 6.12
NLI SPAD Linear regression 4.49 2.12 1.52 4.36 4.33
NLI SPAD Random tree 3.66 1.91 1.35 6.56 6.48
NLI SPAD Random forest 1.31 1.14 0.75 6.82 6.76
NLI SPAD SVM 4.52 2.13 1.52 5.98 5.88

OSAVI SPAD Linear regression 4.10 2.02 1.48 4.22 4.21
OSAVI SPAD Random tree 2.97 1.72 1.28 6.69 6.64
OSAVI SPAD Random forest 1.13 1.06 0.75 6.88 6.79
OSAVI SPAD SVM 3.82 1.96 1.39 6.19 6.12

RVI SPAD Linear regression 4.55 2.13 1.57 4.50 4.48
RVI SPAD Random tree 2.97 1.72 1.28 6.69 6.64
RVI SPAD Random forest 1.15 1.07 0.70 6.84 6.80
RVI SPAD SVM 4.55 2.13 1.55 6.14 6.07

SAVI SPAD Linear regression 4.10 2.02 1.48 4.22 4.21
SAVI SPAD Random tree 2.97 1.72 1.28 6.69 6.64
SAVI SPAD Random forest 1.16 1.08 0.74 7.11 7.03
SAVI SPAD SVM 3.83 1.96 1.39 6.19 6.12
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Table A2. Cont.

Vegetation
Index Type Model Type MSE RMSE MAE MAPE SMAPE

SIPS2 SPAD Linear regression 5.95 2.44 1.93 5.58 5.49
SIPS2 SPAD Random tree 3.64 1.91 1.29 6.36 6.30
SIP2 SPAD Random forest 1.49 1.22 0.79 6.55 6.46
SIPI2 SPAD SVM 4.79 2.19 1.60 5.80 5.67
DVI Dry matter accumulation Linear regression 25,272.66 158.97 130.24 35.04 28.83
DVI Dry matter accumulation Random tree 15,235.54 123.43 81.44 56.67 46.47
DVI Dry matter accumulation Random forest 6118.24 78.22 48.79 57.85 47.21
DVI Dry matter accumulation SVM 40,626.66 201.56 192.42 51.03 45.44
EVI Dry matter accumulation Linear regression 12,799.01 113.13 82.80 23.16 19.28
EVI Dry matter accumulation Random tree 1718.21 41.45 27.01 59.13 48.31
EVI Dry matter accumulation Random forest 669.17 25.87 16.29 59.19 48.55
EVI Dry matter accumulation SVM 36,594.71 191.30 181.56 51.02 45.42

GNDVI Dry matter accumulation Linear regression 3028.99 55.04 40.62 10.03 9.80
GNDVI Dry matter accumulation Random tree 1164.05 34.12 24.37 59.19 48.30
GNDVI Dry matter accumulation Random forest 661.81 25.73 17.81 59.43 48.54
GNDVI Dry matter accumulation SVM 32,760.81 181.00 170.95 50.66 45.40

LCI Dry matter accumulation Linear regression 16,640.53 129.00 97.03 27.92 23.57
LCI Dry matter accumulation Random tree 4586.09 67.72 44.55 58.47 47.77
LCI Dry matter accumulation Random forest 3798.58 61.63 34.35 58.46 47.58
LCI Dry matter accumulation SVM 37,997.51 194.93 185.09 50.98 45.43

NDVI Dry matter accumulation Linear regression 11,372.35 106.64 78.45 20.16 17.40
NDVI Dry matter accumulation Random tree 1753.56 41.88 27.49 59.16 48.34
NDVI Dry matter accumulation Random forest 760.43 27.58 16.20 58.57 48.25
NDVI Dry matter accumulation SVM 35,972.30 189.66 180.11 50.98 45.42
NLI Dry matter accumulation Linear regression 22,520.33 150.07 121.80 30.74 26.16
NLI Dry matter accumulation Random tree 13,801.87 117.48 69.99 56.61 46.31
NLI Dry matter accumulation Random forest 6512.88 80.70 49.70 57.12 47.02
NLI Dry matter accumulation SVM 39,097.22 197.73 188.70 51.23 45.43

OSAVI Dry matter accumulation Linear regression 11,388.91 106.72 78.52 20.18 17.41
OSAVI Dry matter accumulation Random tree 1753.56 41.88 27.49 59.16 48.34
OSAVI Dry matter accumulation Random forest 558.03 23.62 15.42 59.36 48.41
OSAVI Dry matter accumulation SVM 35,978.27 189.68 180.13 50.98 45.42

RVI Dry matter accumulation Linear regression 10,965.51 104.72 72.97 22.22 19.04
RVI Dry matter accumulation Random tree 1768.99 42.06 27.07 59.12 48.30
RVI Dry matter accumulation Random forest 615.61 24.81 15.74 58.77 48.37
RVI Dry matter accumulation SVM 35,824.93 189.27 179.53 51.04 45.42

SAVI Dry matter accumulation Linear regression 11,423.99 106.88 78.66 20.22 17.45
SAVI Dry matter accumulation Random tree 1753.56 41.88 27.49 59.16 48.34
SAVI Dry matter accumulation Random forest 557.48 23.61 15.21 59.21 48.58
SAVI Dry matter accumulation SVM 35,990.92 189.71 180.16 50.98 45.42
SIPS2 Dry matter accumulation Linear regression 39,057.18 197.63 185.62 49.58 42.86
SIPS2 Dry matter accumulation Random tree 1409.91 37.55 28.18 59.07 48.20
SIP2 Dry matter accumulation Random forest 567.53 23.82 16.29 60.00 48.75
SIPI2 Dry matter accumulation SVM 39,490.60 198.72 189.85 50.79 45.44

DVI Whole leaf area Linear regression 165,290.47 406.56 338.79 22.50 20.84
DVI Whole leaf area Random tree 123,097.42 350.85 248.08 25.74 24.21
DVI Whole leaf area Random forest 29,272.65 171.09 120.38 27.75 25.88
DVI Whole leaf area SVM 182,313.12 426.98 347.75 21.47 21.65
EVI Whole leaf area Linear regression 130,033.38 360.60 282.98 19.21 17.43
EVI Whole leaf area Random tree 27,643.13 166.26 121.24 29.65 27.95
EVI Whole leaf area Random forest 15,666.32 125.17 87.33 29.67 27.82
EVI Whole leaf area SVM 176,291.82 419.87 342.79 21.63 21.70

GNDVI Whole leaf area Linear regression 79,538.29 282.03 220.06 14.91 13.92
GNDVI Whole leaf area Random tree 17,395.32 131.89 94.15 29.96 28.22
GNDVI Whole leaf area Random forest 9462.54 97.28 64.36 30.24 28.36
GNDVI Whole leaf area SVM 169,213.80 411.36 336.42 21.73 21.73
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Table A2. Cont.

Vegetation
Index Type Model Type MSE RMSE MAE MAPE SMAPE

LCI Whole leaf area Linear regression 134,879.89 367.26 284.19 19.28 17.45
LCI Whole leaf area Random tree 71,123.41 266.69 187.69 27.74 26.05
LCI Whole leaf area Random forest 28,645.13 169.25 101.89 28.00 26.34
LCI Whole leaf area SVM 178,639.35 422.66 345.00 21.59 21.69

NDVI Whole leaf area Linear regression 128,002.80 357.77 280.84 18.89 17.26
NDVI Whole leaf area Random tree 26,831.71 163.80 119.40 29.71 28.01
NDVI Whole leaf area Random forest 12,495.40 111.78 68.31 30.28 28.53
NDVI Whole leaf area SVM 174,517.98 417.75 341.06 21.65 21.71
NLI Whole leaf area Linear regression 161,138.78 401.42 329.63 21.86 20.22
NLI Whole leaf area Random tree 103,305.31 321.41 210.89 26.55 24.98
NLI Whole leaf area Random forest 44,411.55 210.74 126.89 27.68 25.77
NLI Whole leaf area SVM 178,843.23 422.90 344.64 21.57 21.68

OSAVI Whole leaf area Linear regression 128,074.73 357.88 280.96 18.90 17.27
OSAVI Whole leaf area Random tree 26,831.71 163.80 119.40 29.71 28.01
OSAVI Whole leaf area Random forest 11,681.40 108.08 70.51 29.03 27.51
OSAVI Whole leaf area SVM 174,529.22 417.77 341.07 21.65 21.71

RVI Whole leaf area Linear regression 113,690.16 337.18 268.98 18.63 16.85
RVI Whole leaf area Random tree 26,831.71 163.80 119.40 29.71 28.01
RVI Whole leaf area Random forest 11,729.30 108.30 71.34 29.49 27.91
RVI Whole leaf area SVM 174,965.33 418.29 341.81 21.65 21.71

SAVI Whole leaf area Linear regression 128,226.56 358.09 281.22 18.92 17.29
SAVI Whole leaf area Random tree 26,831.71 163.80 119.40 29.71 28.01
SAVI Whole leaf area Random forest 7346.30 85.71 60.75 29.92 28.27
SAVI Whole leaf area SVM 174,553.00 417.80 341.08 21.65 21.71
SIPS2 Whole leaf area Linear regression 153,025.81 391.19 329.70 21.69 20.45
SIPS2 Whole leaf area Random tree 34,384.50 185.43 141.18 29.20 27.46
SIP2 Whole leaf area Random forest 11,312.49 106.36 79.31 29.11 27.41
SIPI2 Whole leaf area SVM 179,197.60 423.32 344.84 21.47 21.65
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