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Abstract: The local climate zone (LCZ) scheme is of great value for urban heat island (UHI) effect
studies by providing a standard classification framework to describe the local physical structure at a
global scale. In recent years, with the rapid development of satellite imaging techniques, both multi-
spectral (MS) and synthetic aperture radar (SAR) data have been widely used in LCZ classification
tasks. However, the fusion of MS and SAR data still faces the challenges of the different imaging
mechanisms and the feature heterogeneity. In this study, to fully exploit and utilize the features of
SAR and MS data, a data-grouping method was firstly proposed to divide multi-source data into
several band groups according to the spectral characteristics of different bands. Then, a novel network
architecture, namely Multi-source data Fusion Network for Local Climate Zone (MsF-LCZ-Net),
was introduced to achieve high-precision LCZ classification, which contains a multi-branch CNN
for multi-modal feature extraction and fusion, followed by a classifier for LCZ prediction. In the
proposed multi-branch structure, a split–fusion-aggregate strategy was adopted to capture multi-level
information and enhance the feature representation. In addition, a self channel attention (SCA) block
was introduced to establish long-range spatial and inter-channel dependencies, which made the
network pay more attention to informative features. Experiments were conducted on the So2Sat
LCZ42 dataset, and the results show the superiority of our proposed method when compared with
state-of-the-art methods. Moreover, the LCZ maps of three main cities in China were generated and
analyzed to demonstrate the effectiveness of our proposed method.

Keywords: SAR; multi-spectral; data fusion; local climate zone; multi-branch CNN

1. Introduction

The local climate zone (LCZ) scheme, originally proposed to provide an interdisci-
plinary taxonomy, plays an important role in urban heat island (UHI) effect studies [1]. With
the deepening of research, it can also provide a foundation for other urban-oriented studies,
such as population density estimation, economic development monitoring [2], urban clima-
tology [3], infrastructure planning [4], navigation application of disaster mitigation [5], etc.
Recently, with the resolution of satellite images becoming higher, and the swath becoming
wider, LCZ classification in remote sensing images has attracted more attention due to its
broad vision in urban-oriented applications [6]. The 17 LCZ classes, including 10 urban
types and 7 natural types, as shown in Figure 1 [7], have been developed to document
climate-related surface properties at a local scale in the studies of the urban environment.
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Figure 1. Visualization examples of Sentinel-1 and Sentinel-2 image scenes of the 17 LCZ classes,
where the top row is the intensity (in dB) of the Sentinel-1 scene, the middle row is the corresponding
Sentinel-2 scene in RGB, and the bottom row is the high-resolution image from Google Earth as
a reference.

To obtain large-scale LCZ maps for urban-oriented studies, multi-spectral (MS) data
and synthetic aperture radar (SAR) remote sensing data have attracted much attention [8]
due to their large imaging width. MS images are known to contain information with
reflective and missive characteristics that can provide rich details, which makes MS im-
ageries relatively easier to interpret [9]. However, MS images are often influenced by the
presence of clouds or atmospheric conditions when imaging, resulting in difficulty meet-
ing the temporal requirements for LCZ classification [10]. Different to MS, SAR imaging
is sensitive to the backscatter of terrain and object characteristics (e.g., target structure,
geometry, and material characteristics), and has the characteristic of a coherent imaging
capability (both amplitude and phase signals) [11]. In addition, SAR can provide the source
of illumination with longer wavelengths that can penetrate through all weather conditions
and collect images at any time of the day. However, due to the limited band numbers as
well as the effects caused by speckle noises, slant-range imaging, foreshortening, layover,
and shadows, SAR images are not intuitive for interpreting and are relatively difficult to
interpret when compared to MS images [12].

Considering the complementarity of MS and SAR data, multi-source data fusion has
been applied for LCZ classification [13]. Nevertheless, due to the significant differences
between the imaging mechanisms of SAR and MS images, when fused by using the
simple concatenation methods, the gray value differences between MS and SAR images
are obvious [14,15] and cause substantial color distortion in the fused images [14]. In
other words, available information in MS and SAR images is hardly developed thoroughly
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when dealing directly with LCZ classification due to the characteristics of the two different
physical imaging mechanisms. Therefore, how to better fuse MS data and SAR data and
eliminate the difference between the two extracted features is of great importance for
LCZ classification.

In order to solve the problems mentioned above, we designed a novel data-grouping
method to arrange the multi-source data according to the guidance of band characteristics
and an MsF-LCZ-Net framework for high-precision LCZ classification, where a multi-
branch convolution neural network (CNN) structure is proposed for feature extraction
and feature fusion from MS and SAR data, followed by a self-attention-based classifier to
enhance the feature aggregation and combine spatial and channel attention efficiently.

In summary, the contributions of this work can be listed as follows:

(1) A data-grouping strategy is proposed to arrange the fusion of MS and SAR data into
band groups according to spectral characteristics, achieving a sufficient fusion of
multi-source data.

(2) A multi-branch fusion CNN is proposed to perform LCZ classification, where a multi-
branch structure is introduced to extract and fuse features, with residual learning
and self channel attention combined into the proposed classifier to accomplish the
LCZ mapping.

(3) We conducted experiments on the So2Sat LCZ42 dataset as well as real scenarios,
and the experimental results demonstrate the effectiveness and robustness of our
proposed method.

The remainder of the paper is organized as follows: Section 2 reviews the related
works. Section 3 presents the details of the proposed method. Experiments are conducted
in Section 4 to demonstrate the effectiveness of our method, and Section 5 gives the
performance analysis for LCZ classification. Finally, we conclude this paper and give the
potential future work in Section 6.

2. Related Work

As a unique classification scheme, LCZ mapping provides a large scale of essential
information for urban-oriented studies. Due to their effectiveness and accessibility, MS
data have become one of the most widely used data sources for LCZ mapping. In order
to make full use of the temporal and spectral information, multi-season Sentinel-2 images
were utilized to perform LCZ classification with a ResNet-based [16] architecture [17].
Moreover, a majority voting strategy was applied to make an accuracy improvement.
In [18], a simple and lightweight model named Sen2LCZ-Net-MF was proposed for large-
scale LCZ classification by fusing multi-level features, and their experiments proved that
multi-level fusion can make the lightweight model achieve a better performance than
relative heavyweight models, whereas, in [19], authors presented a parcel-based idea to
map LCZ from Sentinel-2 images, which took the shape and size of the real footprint of
LCZs into consideration to improve the mapping accuracy. In addition, considering the
scale variance problem, multi-scale features from different channels were extracted and
fused to achieve feasible LCZ classification [20].

However, due to the influence from weather and the absence of height information,
when MS images are applied to perform LCZ classification, classes with spectral charac-
teristics similar to others are not properly classified [21]. Though this problem could be
potentially solved by SAR images, it would result in a disappointing LCZ classification
performance because of information loss caused by speckle noises.

Taking into account the complementarity of MS and SAR images, multi-source data
fusion has proved to be a promising method for improving the stability and accuracy
of LCZ classification. In [22], the authors examined the effect of merging SAR data for
generating LCZs, and the experimental results showed that combining MS and SAR data
can improve the overall performance. In [23], with the help of the Google Earth Engine
(GEE) platform and freely available datasets, the authors demonstrated that multi-source
data fusion can help to generate more accurate LCZ mapping on a large scale. In [24],
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CNNs were used to extract and fuse features from MS and SAR images to perform LCZ
classification. However, these methods ignore the differences in heterogeneous data and
the correlation between bands in MS and SAR data. In our previous work [25,26], we
adopted an embranchment CNN and dynamic filter network to integrate different bands
in SAR and MS data, which could enhance the fusion performance in LCZ classification,
but how to combine the advantages of MS and SAR images and mitigate the difference
between heterogeneous features is still the challenge in LCZ classification.

3. Methodology

The framework of the proposed MsF-LCZ-Net is shown in Figure 2. Our LCZ classifi-
cation framework followed a pipeline approach. Firstly, when dealing with MS and SAR
data, we designed a data-grouping method to generate independent band groups. Then, all
of these band groups were transported to a multi-branch model, which consisted of feature
extraction branches and feature fusion layers. Finally, we performed LCZ classification
using the fused features.
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Figure 2. The overall flowchart of the proposed method (MsF-LCZ-Net).

In this work, SAR and MS data from Sentinel-1 and Sentinel-2, respectively, were
employed for LCZ classification. Specifically, following [7], the VV-VH dual polarization
single-look complex (SLC) Level-1 data from Sentinel-1 were used. After applying a series
of pre-processing steps, such as radiometric calibration polarimetric speckle reduction and
terrain correction, eight real-valued bands were obtained from the Sentinel-1 data. On the
other hand, cloud-free Sentinel-2 images were obtained from Google Earth Engine (GEE),
which contain bands B2, B3, B4, and B8 with a 10 m ground sampling distance (GSD), bands
B5, B6, B7, B8a, B11, and B12 with a 20 m GSD, and bands B1, B9, and B10 with a 60 m GSD.
Since bands B1, B9, and B10 mainly contain data related to the atmosphere, which bear
little relevance to LCZ classification, they were not considered in this work. In this way,
the employed Sentinel-2 data consisted of 10 real-valued bands. To keep the consistency of
Sentinel-2 data, the 20 m GSD bands were up-sampled to a 10 m GSD using the bilinear
interpolation method. The details of band information are described in Table 1.

For SAR data, different polarization modes show various sensitivities to the various
types of ground surface. Similarly, there are different dependencies between the spectral
bands of MS data. To extract features from multi-source data more effectively and facilitate
the feature fusion, SAR data were divided into three band groups: VV, VH, and a covariance
matrix off-diagonal element (CMOE), according to polarization methods. Similarly, we
divided the MS data into four band groups based on the correlation between the bands.
Bands B2, B3, and B4 were grouped into RGB to reflect the color of the ground surface.
Bands B5, B6, B7, and B8a were grouped as vegetation red edge (VRE) to detect vegetation
information. Bands B11 and B12 were combined as the group of short-wave infrared (SWIR),
which is less susceptible to the influence of clouds. In addition, band 8 was regarded as
the group of near-infrared (NIR) to detect water on the ground. The grouping situation is
shown in Table 2.
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Table 1. Selected features from Sentinel-1 (band 1–8) and Sentinel-2 (band 9–18) data.

Number Band Number Band

1st band Real part of the unfiltered VH channel 9th band B2
2nd band Imaginary part of the unfiltered VH channel 10th band B3
3rd band Real part of the unfiltered VV channel 11th band B4
4th band Imaginary part of the unfiltered VV channel 12th band B5 (upsampled to 10 m from 20 m GSD)
5th band Intensity of the refined Lee-filtered VH signal 13th band B6 (upsampled to 10 m from 20 m GSD)
6th band Intensity of the refined Lee-filtered VV signal 14th band B7 (upsampled to 10 m from 20 m GSD)

7th band Real part of the refined Lee-filtered
covariance matrix off-diagonal element

15th band
16th band

B8
B8a (upsampled to 10 m from 20 m GSD)

8th band Imaginary part of the refined Lee-filtered
covariance matrix off-diagonal element

17th band
18th band

B11 (upsampled to 10 m from 20 m GSD)
B12 (upsampled to 10 m from 20 m GSD)

Table 2. Band-grouping situation.

Group Band Group Band

VV
1st band
2nd band
5th band

RGB
9th band
10th band
11th band

VH
3rd band
4th band
6th band

VRE

12th band
13th band
14th band
16th band

CMOE 7th band
8th band SWIR 17th band

18th band

NIR 15th band

3.1. Multi-Branch CNN for Feature Fusion

To fully utilize the complementary information of MS and SAR data while alleviating
their disadvantages, the feature-level fusion strategy was employed. Since different band
groups contain specific spatial and spectral information, a split–fusion-aggregate strategy
was adopted to strengthen the expression of characteristics. Specifically, a multi-branch
structure was proposed to extract local low-level features from each band group. The
fusion layers were then applied to combine different hierarchical features into a higher-
order feature set, thus achieving the ability of learning the complementary relationship
between different features.

As shown in Figure 3, the proposed multi-branch CNN consisted of seven shallow
feature extraction branches, two deep feature extraction branches, and three feature fusion
layers. In detail, the shallow branches were employed to capture low-level features from
each band group, which contain rich texture and boundary information. Taking a three-
band input (RGB) as an example, the corresponding feature extraction branch structure is
shown in Figure 3a. Note that the feature extraction branches for other groups share the
same structure. It can be seen that a 3 × 3 convolution was firstly employed to linearly
combine pixels on different channels of the RGB band group. Then, a double-branch feature
extractor (FE) block (Figure 3c) was designed to obtain multi-scale features by applying
down-sample operations with different depths and kernel sizes. In addition, referring to
the residual learning idea, a shortcut connection was added between the first convolution
layer and ReLU so that the gradients learned from backpropagation could be conveyed
efficiently, hence easing the training process. The residual learning behind ResNet [16]
aims to make the shallower architecture deeper by adding the identity mapping from the
previous layer to the current layer and then applying appropriate non-linear activation.
Adding skip connections in the network helps a larger gradient flow to the previous layers,
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through which, the problem of degradation is solved effectively. Specifically, defining the
input RGB band group as IRGB, the extracted RGB features FRGB can be expressed as:

FRGB = δ
(

φ(IRGB) + f̂1(φ(IRGB))
)

(1)

where φ represents the 3 × 3 convolution layer, f̂1 denotes the residual function (two FE
blocks, and a 3 × 3 convolution layer followed by a batch normalization (BN)), and δ is the
ReLU activation operation.

Then, a feature fusion layer was applied to fuse the extracted RGB, VRE, SWIR, and
NIR features into MS features, and to obtain SAR features in the same way. The obtained
MS features FMS can be expressed as follows:

FMS = [FRGB‖FVRE‖FSWIR‖FNIR] (2)

where ‘‖’ refers to the channel concatenation, and FVRE, FSWIR, FNIR represent the extracted
VRE, SWIR, and NIR features, respectively.

Figure 3. Structure of the feature extraction branches, where (a–c) represent shallow feature extraction
branch, deep feature extraction branch and feature extractor block, respectively.

After the shallow feature extraction branch, two deep feature extraction branches were
introduced to perform feature refinement and extract semantic features, the structure of
which can be seen in Figure 3b. Similar to shallow branches, shortcut connections were
applied to solve the gradient divergence problem of the model. In addition, we used 1 × 1
convolution layers to reduce the dimensionality of the feature map, and improved the
expressive ability of the model by adding nonlinearity. Taking MS features as an example,
the refined MS features FMS can be expressed as:

FMS = δ
(

f̂2(FMS) + γ(FMS)
)

(3)

where f̂2 represents the residual function (four FE blocks and a 1 × 1 convolution layer
followed by a BN), and γ denotes the 1 × 1 convolution layer followed by a BN.
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Finally, a feature fusion layer was proposed to fuse the refined features FMS and FSAR
by using channel concatenation. After this, three consequent 3 × 3 convolutions were
applied to reduce the dimensionality of the fused features and map them to the original
space size, which can be expressed as follows:

Ff = ρ3
(
ρ2
(
ρ1
([

FMS‖FSAR
])))

(4)

where Ff is the fused features, and ρ1, ρ2, and ρ3 denote three 3 × 3 convolution layers.

3.2. Self Channel Attention for LCZ Classification

Even though identity-based shortcut connections have proved to be able to learn
considerably deeper and stronger networks, all feature maps in the bridge connections are
considered to be equally important. Under this circumstance, the squeeze-and-excitation
(SE) block [27], proposed to compute explicit associations between feature channels, has in-
creased the representational power of conventional residual modules effectively. Although
SE blocks use the global context to calibrate the weights of different channels and thus
adjust the channel dependence, the feature fusion using weight recalibration can hardly
make full use of the global context. To solve this problem, a self-channel attention (SCA)
block, which can establish long-range spatial and inter-channel dependencies through a
not-full-squeeze way, was proposed, the structure of which is shown in Figure 4.

Figure 4. Schema of the self channel attention (SCA) block, where C, H, and W represent the number
of channels, height, and width of the feature map, respectively. r is a reduction ratio used to vary the
capacity. For simplicity, we denote convolution as Conv while omitting normalization and activation
layer after each convolution layer.

The proposed SCA block aims to learn representative features through a re-weighting
mechanism that accounts for both local and global aspects. Specifically, in SCA, a residual
branch was applied to facilitate gradient flow to earlier layers, thereby addressing the degra-
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dation problem. In addition, an attention branch was proposed to half-down-sample the
feature map to produce non-local spatial and channel attention efficiently, where identity
mapping was applied to adjust the channels’ weight. The SCA can be formulated as:

X̄ = Xres · (ς(Xatt + X)) (5)

where X and X̄ are the input and output feature maps, Xres is the residual representation
of X, Xatt represents the output of the attention branch Batt(·), and ς refers to the sigmoid
activation operation.

Similar to the SE block, our SCA block has two operations, viz., squeeze and excitation.
Features were first passed to the squeeze operation to produce a descriptor by aggregating
along each of their spatial dimensions, which allows information from the global receptive
field of the network to be used by all of its layers. To preserve the spatial information and
establish long-range dependencies, the global average pooling was applied to half-down-
sample the input feature map X. Then, convolutions with the same cascaded structure as
the residual block were employed to further extract context features. The squeeze operation
was followed by an excitation operation, where the produced embedding was utilized
to obtain a collection of modulation weights for the feature maps. In this work, the up-
sampling operation was introduced to recover the feature map to its original spatial size.
The function of the attention branch, Batt(·), can be expressed as follows:

Batt(·) = Up(Conv1−3−1(Apool(·))) (6)

where Apool(·) is an average pooling layer used to perform the not-full-squeezed operation,
Conv1−3−1 represents the three cascaded convolutions, and Up(·) refers to the up-sampling
mapping operation. Essentially, SCA blocks pay more attention to those informative
features by establishing spatial-channel interdependencies in an efficient way.

To achieve high-precision LCZ mapping, an SCA-based classifier was designed for
LCZ classification, the structure of which is shown in Figure 5. Concretely, our classifier
contains three residual modules, each of which consists of an SCA block and (N-1) residual
blocks. Hence, the depth of each residual module is N. Average pooling follows the stack
of residual modules, and the final layer is a fully connected layer followed by a softmax
activation, which predicts a specific LCZ class for the input image patch.

Figure 5. Structure of the classifier for LCZ classification, where N is the depth of each residual module.

4. Experiments
4.1. Dataset

Though a large number of publicly available datasets exist for scene classification, few
datasets contain a large scale of multi-source images for LCZ classification. The So2Sat
LCZ42 dataset [28] is a benchmark dataset for global LCZ that is funded by the European
Research Council (ERC). The dataset was labeled by a group of domain experts in remote
sensing following a carefully designed labeling workflow similar to that in world urban
database and access portal tools (WUDAPT) [29]. Afterward, a rigorous quality assessment
was conducted with independent label voting by domain experts who had not labeled the
areas in the labeling stage.
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The dataset contains 400,673 pairs of corresponding Sentinel-1 SAR and Sentinel-2
multi-spectral image patches with LCZ labels, which were selected from 42 urban agglom-
erations and 10 additional smaller areas over all of the inhabited continents (except for
Antarctica) around the world. There are a total of 17 class image patches in the So2Sat
LCZ42 dataset, where 10 are urban classes and 7 are natural classes. The dimension of
the image patches in the dataset is 32 by 32 pixels, corresponding to a physical dimension
of 320 by 320 m. For machine learning purposes, the So2Sat LCZ42 dataset was split
into a training set, a test set, and a validation set, which consist of 352,366, 24,188, and
24,119 pairs of image patches, respectively. Note that all three sub-sets are geographically
separated from each other, despite having drawn the test and validation sets from the same
list of cities. The sample distributions of the training dataset and test dataset are shown in
Figure 6.

Figure 6. Sample distribution of LCZ labels in training set (a) and test set (b).

4.2. Experimental Setup

In this work, the experiments were conducted on Python 3.6 using the Pytorch frame-
work. Two NVIDIA GeForce 2080Ti GPUs, with 12GB RAM for each GPU, were employed
in the training process, and the compute unified device architecture (CUDA was used to
improve the speed. We used the cross entropy loss as the training loss, where momentum
was set to be 0.9 and weight decay was set to be 0.0001. The Adam optimizer [30] was cho-
sen for model optimization. The learning rate was initially set as 1× 10−3, and dynamically
adjusted with the ‘Poly’ learning rate scheduler [31], where the power was set to 0.9. The
batch size was fixed as 32, and the model was trained for 80 K iterations.

4.3. Performance Metrics

To evaluate the performance of different models for LCZ classification, the overall
accuracy (OA), average accuracy (AA), F1 score, and Kappa coefficient were employed as
the performance metrics.

As one of the most commonly used performance measurements, OA is the proportion
of correctly classified samples to the total samples, which is an assessment of the overall
accuracy. The calculation formula is given as follows:

OA =
TP

TP + FP
(7)

where TP represents true positive samples and FP represents false positive samples.
AA is the average of the ratios between the correct predictions of each class and the

total number of each class, calculated as follows:

AA =

N
∑

K=1
recallK

N
(8)
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where N represents the total number of categories and recallK represents the recall value of
the Kth class.

The F1 score is the harmonic average of accuracy and recall, which is used to compre-
hensively reflect the performance of the model [32], and is calculated as follows:

F1 =
N

∑
K=1

2× precisionK × recallK
precisionK + recallK

/N (9)

where precisionK represents the precision value of the Kth class.
The confusion matrix was also utilized to reflect the overall effect of LCZ classifica-

tion. Based on this, the kappa coefficient [33] was calculated to reflect the overall bias of
the model.

4.4. Performance Evaluation

With the test dataset of the Sot2Sat LCZ42 dataset, we obtained an OA of 67.87%, an
AA of 59.56%, and a kappa of 0.6476. The confusion matrix is presented in Figure 7. It can
be seen that most predicted labels match the ground truth labels (especially for LCZ 8, A,
D, and G), but several LCZ data types have a relatively low prediction accuracy (especially
for LCZ C). Due to bush and low plants having similar texture characteristics, most of the
LCZ C are misclassified as LCZ D. In contrast, LCZ G is no doubt the easiest to classify.
In addition, other confusions are also caused by similar textures, materials, and heights
between LCZ classes. However, it is difficult to confused between urban classes (LCZ 1-10)
and natural classes (LCZ A-G).

Figure 7. Confusion matrix of classification results from MsF-LCZ-Net (N = 5). For ease of presenta-
tion, the results are normalized by one percent of the total number of samples in each LCZ class.

The prediction results for each LCZ class are given in Table 3. We calculated the
harmonic mean value- F1 score of each LCZ class to analyze the classification results more
objectively. Concretely, the vast majority of LCZ classes have high F1 score values, except
for LCZ 7, C, and E. In addition, we also found that the proportion of each LCZ class
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in the training set is positively correlated with that in the predicted results, from which,
we can deduce that the balance of the dataset has an important impact on the output of
the network. When the characteristics of the two LCZ classes are similar, the network is
accustomed to predicting the class as the one with more training samples. Moreover, the
smaller the ratio of a class in the training set, the greater the difference between precision
and recall in the test set, and the more likely this class is to be misclassified.

Table 3. Prediction results for each LCZ class on the test set.

Class Precision(%) Recall(%) F1(%) Ratio(%)

LCZ 1: compact high-rise 29.7 74.5 42.5 1.44
LCZ 2: compact mid-rise 56.4 67.1 61.3 6.93
LCZ 3: compact low-rise 55.5 57.0 56.3 8.99
LCZ 4: open high-rise 78.1 74.5 76.2 2.46
LCZ 5: open mid-rise 48.8 49.1 48.9 4.68
LCZ 6: open low-rise 39.5 50.1 44.1 10.02
LCZ 7: lightweight low-rise 41.9 24.4 30.8 0.93
LCZ 8: large low-rise 88.9 79.8 84.1 11.16
LCZ 9: sparsely built 57.2 66.5 61.5 3.86
LCZ 10: heavy industry 46.8 53.7 50.0 3.39
LCZ A: dense trees 87.6 91.2 89.4 12.18
LCZ B: scattered trees 56.8 45.2 50.4 2.70
LCZ C: bush and scrub 2.1 18.2 3.7 2.60
LCZ D: low plants 92.0 61.1 73.5 11.74
LCZ E: bare rock or paved 22.9 57.3 32.8 0.68
LCZ F: bare soil or sand 68.5 44.6 54.1 2.24
LCZ G: water 99.7 98.1 98.9 14.00

4.5. Performance Comparison with State-of-the-Art Methods

To illustrate the effectiveness of our proposed method, the performance of the pro-
posed method was compared with nine other state-of-the-art deep-learning-based LCZ clas-
sification methods using MS and SAR multi-source data: MSPPF-NETS [20], LCZ-MF [18],
EB-CNN [25], DenseNet-DFN [26], FusionNet [34], LCZNet [35],
ResNext29_8_64 [24], MCFUNet-LCZ [36], and RSNNet [37]. In order to facilitate a com-
parison, the settings and environment of all competing methods in the training phase
were set as the same. Due to some models not using pre-trained backbones in the feature
extraction step, pretrained backbones were abandoned in all methods for a fair comparison.
All parameter settings refer to the above experiment settings. The depth of the residual
module in the classifier N was set to be 5, with which, the best classification results can be
obtained. The influence of depth on the results will be explained in the next section. The
results are given in Table 4, where we can see that our method achieves the best overall
performance in terms of OA, AA, and kappa.

4.6. Large-Scale LCZ Maps

To further prove the value of our work, we selected three mega cities of China to obtain
their city maps, among which, the prediction maps of Beijing and Guangzhou are shown in
Figure 8, and the LCZ maps of Shanghai in different periods are shown in Figure 9. We
obtained the Sentinel-1 VV-VH dual polarization single-look complex (SLC) Level-1 data
and cloud-free Sentinel-2 images from the Copernicus Open Access Hub using SentinelSat
Python API, and refer to the method in [28] to preprocess the MS and SAR data, respectively.
Since MS images and SAR images are not in the same reference coordinate system, we
used the Image Registration Workflow from ENVI to register them. After that, a sliding
window method was applied to divide the registered multi-source images into 32 × 32
image patches, and were predicted by our trained model in turn, finally obtaining the
LCZ map.



Remote Sens. 2023, 15, 434 12 of 16

Table 4. Classification performance comparison with other state-of-the-art methods on the So2Sat
LCZ42 dataset.

OA(%) AA(%) Kappa(×100)

MSPPF-NETS [20] 62.05 51.32 58.54
LCZ-MF [18] 65.66 50.63 62.21
EB-CNN [25] 61.11 44.37 57.07

DenseNet-DFN [26] 64.07 50.59 60.49
FusionNet [34] 64.57 52.17 57.45

LCZNet [35] 66.23 57.76 63.15
ResNext29_8_64 [24] 64.91 54.05 61.47
MCFUNet-LCZ [36] 65.74 53.18 61.94

RSNNet [37] 64.15 51.66 60.79

MsF-LCZ-Net (N = 5) 67.87 59.56 64.76

From Figure 8, we can find that Beijing shows a compact urban structure, which is
concentrated in the center of the whole map. The central areas are mainly classified as
LCZ 1 compact high-rise and LCZ 2 compact middle-rise. LCZ B scattered trees and LCZ
A dense trees are located in the western and northern area, whereas the eastern areas
are mainly classified as LCZ 8 large low-rise. In contrast, Guangzhou’s city structure is
relatively dispersed.

In addition, we also compared the LCZ maps of the same area at different periods, as
shown in Figure 9. As one of the fastest-growing cities in the world, the development speed
of Shanghai attracts worldwide attention. We compared the LCZ classification results of the
Shanghai area in 2015 and 2021. From Figure 9, we can see that, compared to six years ago,
Shanghai’s urban structure has become more compact. Compact buildings replace bare soil
and large low-rise as the dominant classes in Shanghai. The development of Shanghai in
the past six years is mainly concentrated in the central and eastern areas. Moreover, we can
also deduce that Shanghai’s economic center of gravity has a tendency to move eastward.
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Figure 8. Two examples of large-scale LCZ classification, where (a,b) are the Sentinel-2 satellite image
of Beijing, China and the corresponding LCZ map, and (c,d) are the Sentinel-2 satellite image of
Guangzhou, China and the corresponding LCZ map.
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Figure 9. Changes in Shanghai, China in 6 years, where (a,b) are the Sentinel-2 satellite image of
Shanghai in 2015 and the corresponding LCZ map, and (c,d) are the Sentinel-2 satellite image of
Shanghai in 2021 and the corresponding LCZ map.

5. Discussion
5.1. Effect of Network Depth

Our proposed classifier is composed of three connected residual modules, and the
depth of each part is N. In order to analyze the effect from the architecture, depth N in
the LCZ classification was explored to illustrate the change in accuracy according to the
model complexity.. The evaluation results for the training set and test set are presented in
Figure 10. With the depth N increasing, all evaluation metrics (OA, AA, and kappa) increase
as expected. For the training set, MsF-LCZ-Net (N = 7) obtains the best performance, with
an OA of 97.88%, an AA of 97.19%, and a Kappa of 0.9766. This is because a deeper network
corresponds to a larger size of the receptive field, and hence more high-level features can be
obtained. In addition, the shortcut connections in residual learning can effectively prevent
the problem of gradient vanishing caused by the network being too deep. In contrast, for
the test set, MsF-LCZ-Net (N = 5) obtains the best performance, with an OA of 67.87%, an
AA of 59.56%, and a kappa of 0.6476.

Figure 10. Mean values of OA, AA, and kappa based on three tests about network depth N, evaluated
on the training set (a) and test set (b) in the So2Sat LCZ42 dataset, respectively.

5.2. Effect of Data Fusion

To find out the effect from data fusion on LCZ classification, we conducted an ex-
periment with SAR data, MS data, and MS&SAR data. The obtained results are given in
Table 5, where the depth N was set to be 5. It can be seen that the classification results
of SAR data on the test set are disappointing. This is because there are many speckle
noises in the SAR data, which will influence the analysis and interpretation of the SAR
images. In addition, we also found that, when using our method to fuse MS data and SAR
data, the fused data achieve the best performance in both the training set and the test set.
This shows that the fusion method of multi-source remote sensing data can combine the
advantages of different source data while alleviating their respective disadvantages so as to
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achieve better LCZ classification results. Considering that the phase of the SLC source data
may act as a noise in the classification algorithm, we further conducted LCZ classification
by only using the filtered intensity (SAR (Lee-filtered)) motivated by the effectiveness
of the degree of polarization [38]. The results show that the OA, AA, and kappa of the
MS&SAR (Lee-filtered) data increase by 0.15%, 0.71%, and 0.39, respectively, compared
with the MS&SAR data, indicating that it could be a better choice to use filtered intensity
for LCZ classification.

Table 5. Mean values of OA, AA, and kappa evaluated on the So2Sat LCZ42 dataset using different
data sources, where SAR refers to using all of the eight bands and SAR (Lee-filtered) refers to using
only the fifth and sixth bands as described in Table 1.

Dataset OA (%) AA (%) Kappa (×100)

SAR 32.08 22.14 26.54
SAR(Lee-filtered) 46.74 39.75 41.37

MS 65.41 53.96 60.72
MS & SAR 67.87 59.56 64.76

MS & SAR(Lee-filtered) 68.02 60.27 65.15

5.3. Ablation Study

In this section, we designed an ablation study to verify the effectiveness of SCA blocks
and FE blocks. The LCZ classification results of different structures are shown in Figure 11,
where the depth of the network was also set to be 5. It can be seen that, when the SCA
blocks are abandoned in the classifier, the OA, AA, and kappa drop by 2.67%, 3.02%, and
0.0305, respectively, in the test set, with which, it can be deduced that SCA blocks are
beneficial for preserving spatial information and aggregating non-local extracted features
upon the main channel. Hence, when the SCA blocks are not applied in the classifier, the
complex correlation between channels will decrease. When the FE blocks are not employed
in the multi-branch feature extraction structure, the OA, AA, and kappa drop by 2.29%,
1.89%, and 0.0249, respectively, in the test set. This proves that our proposed FE blocks are
beneficial for the extraction and fusion of multi-scale features.

Figure 11. Mean values of OA, AA, and kappa based on three tests about different structures,
evaluated on the training set (a) and test set (b) in the So2Sat LCZ42 dataset, respectively. Here, we
use ‘w-’ to indicate without a specific module.

6. Conclusions

In this study, we proposed an LCZ classification framework that included a data-
grouping method and an MsF-LCZ-Net framework for conducting LCZ mapping, where
a multi-branch CNN was designed to capture multi-level information and enhance the
feature representation, and SCA blocks were introduced to the classifier to establish spatial-
channel dependencies, thereby enhancing the LCZ classification results. We evaluated our
method on the So2Sat LCZ42 dataset, and experiments showed that our MsF-LCZ-Net
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outperformed all of the comparing methods. In addition, we performed LCZ mapping
on three mega cities in China, and also explored the influence of the network depth, data
fusion, and different architecture on the LCZ classification. When the network depth was
set to 5, the MsF-LCZ-net had the best generalization ability. The fusion of the multi-source
data can improve the LCZ classification performance. In addition, the ablation study
proved the effectiveness of SCA and FE blocks. In the future, we are committed to solving
the impact of imbalanced data samples on LCZ classification. In addition, investigating
how to better distinguish between similar LCZ classes is also the focus of our future work.
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