
Citation: Lin, H.; Zhao, W.; Long, J.;

Liu, Z.; Yang, P.; Zhang, T.; Ye, Z.;

Wang, Q.; Matinfar, H.R. Mapping

Forest Growing Stem Volume Using

Novel Feature Evaluation Criteria

Based on Spectral Saturation in

Planted Chinese Fir Forest. Remote

Sens. 2023, 15, 402. https://

doi.org/10.3390/rs15020402

Academic Editor: Jan Altman

Received: 21 November 2022

Revised: 3 January 2023

Accepted: 5 January 2023

Published: 10 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Mapping Forest Growing Stem Volume Using Novel Feature
Evaluation Criteria Based on Spectral Saturation in Planted
Chinese Fir Forest
Hui Lin 1,2,3, Wanguo Zhao 1,2,3, Jiangping Long 1,2,3,* , Zhaohua Liu 1,2,3 , Peisong Yang 1,2,3,
Tingchen Zhang 1,2,3, Zilin Ye 1,2,3, Qingyang Wang 4 and Hamid Reza Matinfar 5

1 Research Center of Forestry Remote Sensing and Information Engineering, Central South University of
Forestry and Technology, Changsha 410004, China

2 Key Laboratory of Forestry Remote Sensing Based Big Data and Ecological Security for Hunan Province,
Changsha 410004, China

3 Key Laboratory of State Forestry Administration on Forest Resources Management and Monitoring in
Southern Area, Changsha 410004, China

4 Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hung Hom,
Kowloon, Hong Kong, China

5 Soil Science Department, Lorestan University, Khoramabad 68151-44316, Iran
* Correspondence: longjiangping@csuft.edu.cn; Tel.: +86-0731-8562-3848

Abstract: Forest growing stem volume (GSV) is regarded as one of the most important parameters
for the quality evaluation and dynamic monitoring of forest resources. The accuracy of mapping
forest GSV is highly related to the employed models and involved remote sensing features, and the
criteria of feature evaluation severely affect the performance of the employed models. However,
due to the linear or nonlinear relationships between remote sensing features and GSV, widely used
evaluation criteria inadequately express the complex sensitivity between forest GSV and spectral
features, especially the saturation levels of features in a planted forest. In this study, novel feature
evaluation criteria were constructed based on the Pearson correlations and optical saturation levels
of the alternative remote sensing features extracted from two common optical remote sensing image
sets (GF-1 and Sentinel-2). Initially, the spectral saturation level of each feature was quantified using
the kriging spherical model and the quadratic model. Then, optimal feature sets were obtained with
the proposed criteria and the linear stepwise regression model. Finally, four widely used machine
learning models—support vector machine (SVM), multiple linear stepwise regression (MLR), random
forest (RF) and K-neighborhood (KNN)—were employed to map forest GSV in a planted Chinese fir
forest. The results showed that the proposed feature evaluation criteria could effectively improve the
accuracy of estimating forest GSV and that the systematic distribution of errors between the predicted
and ground measurements in the range of forest GSV was less than 300 m3/hm2. After using the
proposed feature evaluation criteria, the highest accuracy of mapping GSV was obtained with the
RF model for GF-1 images (R2 = 0.49, rRMSE = 28.67%) and the SVM model for Sentinel-2 images
(R2 = 0.52, rRMSE = 26.65%), and the decreased rRMSE values ranged from 1.1 to 6.2 for GF-1 images
(28.67% to 33.08%) and from 2.3 to 6.8 for Sentinel-2 images (26.85% to 33.28%). It was concluded that
the sensitivity of the optimal feature set and the accuracy of the estimated GSV could be improved
using the proposed evaluation criteria (less than 300 m3/hm2). However, these criteria were barely
able to improve mapping accuracy for a forest with a high GSV (larger than 300 m3/hm2).

Keywords: forest growing stem volume; spectral saturation; feature evaluation criterion; kriging
spherical model; quadratic model

1. Introduction

Forest growing stem volume (GSV), widely applied in forest resource investigations,
is regarded as one of the most important indices in forest resource quality evaluation [1–3].
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Traditional approaches of mapping forest GSV need a lot of field investigation [4–6]. In
recent years, remote sensing technology has become one of the most important methods
used to estimate forest parameters, such as forest height, GSV and above ground biomass
(AGB) [7,8]. In particular, optical remote sensing images with rich data resources are
widely applied to evaluate forest types and quantitatively estimate forest parameters [9,10].
Normally, optical remote sensing images reflect the forest growth process and changes
in the forest canopy information, and the spectral variables extracted from optical image
sets, including Landsat, Sentinel-2, GF-1, and GF-2, are often used to construct models
for mapping GSV. However, these variables are insensitive to changes in GSV when the
GSV is larger than the saturation levels. Previous studies also proved that the accuracy of
mapping GSV using optical images is affected by an underestimated GSV because of the
saturation phenomenon [11,12]. Therefore, it is still difficult to obtain reliable GSV using
optical images in plantation forests with high GSV levels.

To improve the accuracy of GSV mapping, underestimated GSV should be corrected
by delaying saturation levels by selecting appropriate feature sets [13]. Generally, it has
been proved that a forest’s vertical structure parameters are more sensitive to GSV than
forest canopy information [14]. Previous studies have explored various methods to ex-
tract vertical forest parameters by delaying the saturation phenomenon, such as synthetic
aperture radar (SAR) or polarimetric SAR data, airborne or spaceborne light detection and
ranging (LiDAR), and CHM products generated from stereo image pairs [15–18]. Though
some results have showed that saturation levels can be delayed by adding vertical forest
parameters, airborne LiDAR is not suitable for assessing forest height over large regions
because of the high cost of acquiring data [19,20]. In addition, for orbital LiDAR data, the
accuracy of forest height in light spots rarely meets the requirements for forest parameter
estimation in medium-scale regions. Therefore, optical remote sensing images remain the
main source of data for mapping forest parameters.

Furthermore, feature evaluation criteria are also important for improving underesti-
mated or overestimated results in mapping forest GSV [21–23]. Normally, optical variable
sets are rather dependent on the employed evaluation metrics, and the accuracy of esti-
mated GSV is also highly related to the sensitivity of selected variables [24]. Generally,
feature evaluation methods are mainly based on the linear or nonlinear relationships be-
tween remote sensing features and GSV, such as importance, distance correlation coefficient
(DC), maximal information coefficient (MIC), and Pearson correlation coefficient [7,25–27].
However, these inadequately express the sensitivity between forest GSV and spectral fea-
tures, especially for the planted forest with a high GSV. After all, underestimated forest
GSVs are mainly caused by the spectral saturation phenomenon that occurs when using
optical remote sensing images.

Additionally, optimal feature sets are obtained with various feature selection methods.
Commonly, the feature selection methods can be broadly classified into three categories:
filters, wrappers, and embedded. Filters are entirely based on a single evaluation criterion,
such as importance or Pearson correlation. However, determining this criterion and its
threshold is rather difficult for various sensors and features [28,29]. Wrappers combine
the feature selection methods with training models, and then, an optimal feature set is
extracted with a certain accuracy index and repeatedly trained models [30,31]. However,
these feature selection methods only refer to a single criterion, such as linear independence,
information entropy, or precision index, and the saturation level of each variable is not
considered as an evaluating feature method [32,33]. Therefore, to correct an underestimated
GSV, the saturation levels of alternative variables should be viewed as a criterion to evaluate
the sensitivity between the variables and GSV [34–36]. In addition, because the kriging
spherical model and the quadratic model are gradually being applied to quantitatively eval-
uate the saturation levels of the features extracted from remote sensing images, it is more
advantageous to focus on spectral saturation in feature evaluation and selection [37,38].
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To overcome the disadvantages of traditional feature evaluation criteria in mapping
forest GSV, we constructed novel feature evaluation criteria based on the Pearson correla-
tions and optical saturation levels of each alternative remote sensing feature. In this study,
two widely used optical remote sensing image sets, GF-1 and Sentinel-2, were acquired
from a planted Chinese Fir Forest, and several types of common features, bands, vegeta-
tion indices, and texture features with different sizes were extracted from the acquired
images. Then, the saturation level of each extracted feature was estimated using the kriging
spherical model and the quadratic model. Next, the proposed feature evaluation criteria
were constructed and applied to obtain optimal feature sets for mapping forest GSV with
four models: the support vector machine (SVM), multiple linear regression (MLR), random
forest (RF), and K-nearest neighbor (KNN) models. The capability of the new feature
evaluation criteria was further evaluated with accuracy indices for mapping forest GSV.

2. Study Area and Data
2.1. Study Area

In this study, the Huangfengqiao state-owned forest farm (113◦04′ to 113◦43′E, 27◦06′

to 27◦24′N), located in You County, Hunan province, China, was selected as the study area.
The landform of the forest farm is mainly low and middle mountains, with the elevation
ranging from 115 m to 1270 m and the slope ranging from 20◦ to 35◦. The climate type of
the region is a subtropical monsoon humid climate, and the annual mean temperature and
the average annual rainfall are 17.8 ◦C and 1410.8 mm, respectively. The forest coverage
rate reaches 86.24% in the region (10,122.6 ha) and comprises Chinese fir (Cunninghamia
Lanceolata), Pinus massoniana Lamb, bamboo, and Liriodendron chinense. The planted
Chinese fir is the dominant species in the study area (Figure 1).
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Figure 1. Location map of the study area.

2.2. Data Preparation

(1) Ground Data

Because of the irregular distribution of the planted Chinese fir forest, a random
stratification sampling method was used to obtain the distribution of the ground samples.
Then, a total of 52 Chinese fir plots were measured during field investigations in 2016
and 2017 (Figure 2a). For all ground samples, the size of each sample (Including 19 plots
of 20 m × 20 m and 33 plots of 30 m × 30 m) was determined by the complexity of the
terrain. Moreover, the positions of the corner and central points of samples were accurately
measured using a global positioning system (GPS) (positioning error of less than 10 cm). In
each sample, parameters related to forest GSV were measured in ground field work, tree
height was measured using a laser altimeter, diameter at breast height (DBH) was measured



Remote Sens. 2023, 15, 402 4 of 19

with a diameter ruler, and crown width in the east–west and north–south directions was
measured with a tape. The stem volume of each tree was calculated based on the binary
volume table of planted Chinese fir in Hunan province (Equation (1)), and the GSV of each
sample was the sum of all tree stem volumes within the plot. In the study, the maximum
DBH and height were 29.48 cm and 20.5 m, respectively. The GSV of the measured samples
ranged from 59 m3/hm2 to 480 m3/hm2, and relationships between forest GSV and DBH
are plotted in Figure 2b.

V = a× DBHb × Hc (1)

where V is the volume of each tree, a = 0.000058777042, b = 1.9699831, and c = 0.89646157.
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(2) Remote sensing data and pre-processing

In this study, two remote sensing image sets, GF-1 and Sentinel-2, were employed
to map the forest GSV in a planted Chinese fir forest. Specially, GF-1 images with
4 multispectral bands (spatial resolution: 8 m) and 1 panchromatic band (spatial reso-
lution: 2 m), were acquired on 29 July 2016 (Table 1). Meanwhile, Sentinel-2 images with
13 narrow bands were acquired on 1 November 2017, and the spatial resolution of these
bands was 10 m, 20 m and 60 m [39]. To extract alternative variables from these remote sens-
ing images, a series of pre-processing steps, including radiometric calibration, atmospheric
correction, ortho-correction, geometric correction, image fusion, and clipping, were applied
to the GF-1 and Sentinel-2 images [40]. The preprocessing of remote sensing data was
implemented in ENVI 5.3 software. Ultimately, these pre-processed images were resampled
to 30 m to reduce the matching error between images and samples.

Table 1. The information of acquired GF-1 and Sentinel-2 images.

Remote
Sensing

Data

Acquisition
Time Band Wavelength/(µm) Resolution/(m)

GF-1 29 July 2016

Blue 0.45–0.52 8
Green 0.52–0.59 8
Red 0.63–0.69 8

Near infrared 0.77–0.89 8
Panchromatic 0.45–0.89 2
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Table 1. Cont.

Remote
Sensing

Data

Acquisition
Time Band Wavelength/(µm) Resolution/(m)

Sentinel-2 1 November
2017

Blue 0.490 10
Green 0.560 10
Red 0.665 10

Vegetation Red Edge 0.705 20
Vegetation Red Edge 0.740 20
Vegetation Red Edge 0.783 20

NIR 0.842 10
Vegetation Red Edge 0.865 20

SWIR 1.610 20
SWIR 2.190 20

3. Methods
3.1. Extracting Features

After image preprocessing, three types of features (spectral bands, vegetation indices,
and texture features) were extracted from GF-1 and Sentinel-2 images (Table 2). In our
study, the number of spectral bands was four for GF-1 images and eleven for Sentinel-2
images. Additionally, several texture features with different sizes were extracted from each
spectral band using a gray-level co-occurrence matrix (GLCM). Considering the difference
in spatial resolutions, the sizes of the extracted texture features ranged from 3× 3 to 19× 19.
Moreover, several vegetation indices were also extracted from these images [41,42].

Table 2. Three types feature variables extracted from GF-1 and Sentinel-2 images.

Variable Type Description Reference

Spectral bands GF-1: Blue, Green, Red, NIR [33]
Sentinel-2: Blue, Green, Red, VRE1, VRE2, VRE3, NIR, Narrow NIR,

Water Vapor, SWIR1, SWIR2 [37]

Vegetation indices

SAVI = (1 + L) × (NIR − RED)/(NIR + RED + L)(L = 0.5) [43]
ARVI = [NIR − (2 × RED − BLUE)]/[NIR + (2 × RED − BLUE)] [44]

EVI = 2.5 × (NIR − RED)/(NIR + 6 × RED − 7.5 × BLUE + 1) [45]

TVI =
√

NIR−RED
NIR+RED + 0.5 [31]

MSR = (NIR/RED − 1)/(
√

NIR
RED+1) [22]

NLI = (NIR2 − RED)/(NIR2 + RED) [30]
DVIij = Bandi − Bandj [37]
RVIij = Bandi/Bandj [23]

NDVIij = (Bandi−Bandj)/(Bandi+Bandj)
NDVIijk = (Bandi + Bandj −Bandk)/(Bandi + Bandj + Bandk) [14]

Texture features
Mean, Variance (VAR), Homogeneity (HOM), Contrast (CON),

Dissimilarity (DIS), Entropy (ENT), Second Moment (SM),
Correlation (COR)

[46]

3.2. Spectral Saturation and Estimation Model

In previous studies, saturation levels were indirectly obtained from extreme values
based on scatterplots or fitted curves between selected variables and GSV via visual in-
terpretation. Over the past ten years, some models related to saturation levels have been
applied to determine saturation levels [46–48]. In particular, a semi-exponential model has
often been employed to estimate saturation levels using SAR or polarimetric SAR images,
and the saturation level can be directly extracted from parameter models after solving
them [18,43–45]. For optical images, a kriging model based on the semi-covariance function
in geo-statistics has been widely applied to quantitative analysis spectral saturation. More-
over, it has also been proven that the quadratic model can characterize spectral saturation
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levels. Therefore, the kriging and quadratic models were applied to evaluate the saturation
levels in this study.

(1) Kriging Model

When the GSV reaches a certain value, the saturation of spectral variables will occur,
and the saturation phenomenon has been proved to be similar to the distribution of spatial
autocorrelation in geo-statistics [14,38,45]. The kriging model with a spherical function
has the capability of describing the phenomenon of spectral saturation related to GSV. In
this study, the kriging model with a spherical function was applied to fit the relationships
between GSV and the selected variables:

y(h) =


c0 h = 0

c0 + c
(

3h
2a −

h3

2a3

)
0 < h ≤ a

c0 + c h > a
(2)

where y is the selected spectral variable, h is the value of the GSV, c0 is the nugget parameter
indicating the spectral reflectance value at h = 0, c is arch height indicating the change rates
of the spectral reflectance of the selected variable and the GSV, c0 + c is the maximum or
minimum spectral reflectance when the GSV reaches its saturation value, a is the value
of saturation related to GSV; when − c3

2a3 = a2, 3c
2a = a1, c0 = a0, x1 = h, and x2 = h3, the

spherical model is linearized and its coefficients of linear regression can be obtained using
least squares regression:

y = a2 × x2 + a1 × x1 + a0 (3)

After resolving the linearized model, the saturation level located at the extreme value
of the function is calculated according to the model parameters. Combined with the
extreme point of the curve of the model, the saturation of the kriging spherical model is
expressed as:

saturation values =

√
− a1

3a0
(4)

(2) Quadratic model

The quadratic model has been applied to fit the curves between the GSV and spectral
variables. The quadratic model is expressed as follows:

y = a0x2 + a1x + a2 (5)

where y is the selected spectral variable, x is the value of the GSV, and a0, a1, and a2 are
model parameters. After solving the model, the extreme point of the fitted curve is regarded
as the saturation value. Therefore, the saturation of the quadratic model is expressed as:

saturation values = − a1

2a0
(6)

Based on the spherical and quadratic models, the saturation values and the curves
between the estimated GSV and selected spectral variable are illustrated in Figure 3 (band 3
for GF-1 in Figure 3a and band 5 for Sentinel-2 in Figure 3b). It is shown that the estimated
saturations of band 3 extracted from GF-1 was 289.68 m3/hm2 for the spherical model and
332.1 m3/hm2 for the quadratic model. Additionally, the estimated saturation of band 5
extracted from Sentinel-2 was 266.25 m3/hm2 for the spherical model and 299.24 m3/hm2

for the quadratic model. Due to the differences in the spectral saturation estimation models,
the estimated saturation of the same spectral feature was different.
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3.3. Feature Selection Method Based on Spectral Saturation

Normally, the accuracy of mapped forest GSV is directly dependent on the sensitivity
of the selected feature set. However, the Pearson correlation coefficient is widely regarded
as an important index used to evaluate sensitivity based on linear independence. Moreover,
the spectral saturation levels of remote sensing features can directly describe the range of
estimated forest GSV. Therefore, the saturation levels of features should also be regarded as
an index to evaluate sensitivity. Theoretically, the selected features in an optimal variable
set should have high spectral saturation levels and Pearson correlations. Therefore, new
feature evaluation criteria were proposed based on the spectral saturation and Pearson
correlation coefficient. The steps of the proposed feature evaluation criteria are as follows:

(1) The Pearson correlation coefficient and spectral saturation levels of all extracted
remote sensing features related to GSV are first obtained and sorted in descending order.

(2) Based on the sorted Pearson correlation coefficient and spectral saturation levels,
the serial numbers r1i (Pearson correlation coefficient) and r2i (spectral saturation levels) of
each feature i are obtained.

(3) To obtain the initial variable set, a multiple linear stepwise regression model and an
adjusted determination coefficient are employed to determine the number of features sorted
by the Pearson correlation coefficient and spectral saturation levels, respectively. The initial
variable set is determined based on the maximum values of the adjusted determination
coefficients R1 (Pearson correlation coefficient) and R2 (spectral saturation levels).

(4) In an initial variable set, a new importance evaluation index (PS: Pearson and
saturation) is constructed by using the serial numbers and the determination coefficient
with the following formula:

PSi =
r1i
R1

+
r2i
R2

(7)

where PSi is the value of the importance evaluation index corresponding to the Pearson
correlation coefficient and spectral saturation levels.

(5) Finally, features are sorted by the PS values in descending order; the smaller the PS
value, the higher the importance of the feature.

3.4. Model Evaluation and Application

To evaluate the capability of the proposed feature evaluation criteria, the saturation
levels of all features were derived from the kriging model with a spherical function and the
quadratic model, and optimal feature sets were finally obtained with the Pearson correlation
coefficient and the proposed feature selection criteria. Next, four models (SVM, MLR, RF
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and KNN [41,42,47]) were applied to map the forest GSV using the optimal feature set. The
flowchart of mapping GSV is illustrated in Figure 4.
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Additionally, the accuracy of the mapped GSV was evaluated with leave-one-out
cross-validation (LOOCV). The adjusted determination coefficient (R2), root mean square
error (RMSE), and relative root mean square error (rRMSE) between the predicted and
ground-measured GSV were selected as the evaluation indices [48].

R2 = 1−
(1− [1− ∑n

i = 1(yi−ŷi)
2

∑n
i = 1(yi−yi)

2 ]
2
)(n− 1)

n− p− 1
(8)

RMSE =

√
∑n

i = 1(yi − ŷi)
2

n
(9)

rRMSE =
RMSE

yi
× 100% (10)

where yi is the measured GSV, ŷi is the predicted GSV, yi is the average of the measured
GSV, and n is the number of samples.

4. Results
4.1. Saturation Values of Features

To evaluate the sensitivity between GSV and features, the saturation levels of alter-
native spectral features should first be estimated. In our study, the quadratic model and
the spherical model were employed to estimate the saturation values of the features ex-
tracted from GF-1 and Sentinel-2 images, respectively (Figure 5 and Table 3). Figure 5
illustrates the fitted curves of the top ten features extracted from GF-1 (Figure 5a,b) and
Sentinel-2 (Figure 5c,d) images. For one feature, the curves fitted by the quadratic model
and the spherical model were basically the same, and the estimated values of spectral
saturation were slightly different. However, the fitted curves and their saturation levels
were significantly different for different remote sensing images.
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Table 3. Spectral saturation levels of the top ten feature variables using two models for different images.

GF-1 Correlation
Coefficient

Quadratic
Model

(m3/hm2)

Spherical
Model

(m3/hm2)
Sentinel-2 Correlation

Coefficient

Quadratic
Model

(m3/hm2)

Spherical
Model

(m3/hm2)

3B1_ENT −0.51 446.60 417.60 NDVI568 0.50 444.02 343.82
3B1_DIS −0.48 284.28 285.21 NDVI368 0.49 342.89 309.16
3B1_SM 0.48 474.54 474.54 NDVI468 0.48 309.41 291.99

3B1_CON −0.47 276.12 277.37 NDVI268 0.47 418.92 340.28
3B1_HOM 0.45 307.18 307.15 NDVI58A8 0.47 382.43 322.14
3B2_ENT −0.43 474.54 474.54 RVI67 0.46 474.54 474.54

3B3_HOM 0.42 474.54 474.54 NDVI578 0.45 330.82 301.85
3B2_DIS −0.41 298.22 297.90 NDVI28A8 0.45 357.96 314.99
3B1_VAR −0.41 240.78 249.22 NDVI48A8 0.43 289.14 279.69
3B2_CON −0.40 285.45 286.76 3B8_ENT −0.42 283.17 278.36

For the top ten features, the absolute values of the Pearson correlation coefficient
ranged from 0.45 and 0.65 for the features extracted from GF-1 images and from 0.40 to
0.51 for the features extracted from Sentinel-2 images. Moreover, for the GF-1 images,
the saturation levels ranged from 240.78 m3/hm2 to 474.54 m3/hm2 using the quadratic
model and from 249.22 m3/hm2 to 474.54 m3/hm2 using the spherical model. For the
Sentinel-2 images, the absolute values of the Pearson correlation coefficient between the
extracted features and forest GSV ranged from 0.42 to 0.50, and the spectral saturation
levels ranged from 283.17 m3/hm2 to 474.54 m3/hm2 using the quadratic model and from
278.36 m3/hm2 to 474.54 m3/hm2 using the spherical model. It was also found that the
orders of spectral saturation did not match the orders of the Pearson correlation coefficient.
When using the Pearson correlation to select features, the results proved that the optimal
feature set ignored the saturation effect. Therefore, it was necessary to retrieve the optimal
feature set based on the Pearson correlation and saturation levels.

4.2. The Results of Proposed Feature Evaluation Criteria

To obtain the initial feature set, all extracted features were first sorted in descending
order according to Pearson correlation and spectral saturation levels. Then, the linear
stepwise regression model was employed to calculate the adjusted determination coefficient
(R2) for various sorted features. Ultimately, the initial feature set was constructed from
the union of the two feature sets extracted from the Pearson correlation and spectral
saturation levels w the maximum determination coefficient. In this study, based on Pearson
correlations, the saturation level of the quadratic model, and the saturation level of the
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spherical model, the maximum determination coefficients were 0.412, 0.322, and 0.303 for
the GF-1 images and 0.401, 0.302, and 0.319 for the Sentinel-2 images, respectively. Using
the proposed feature evaluation criteria, the new importance evaluation index (PS) of the
selected features in the initial feature set was constructed using the serial numbers and
determination coefficients. The top ten PS values extracted from the GF-1 and Sentinel-2
image sets are listed in Tables 4 and 5, respectively.

Table 4. PS values of top 10 variables extracted from GF-1 images.

NO.
Pearson (r1) and Quadratic Model (r2) Pearson (r1) and Spherical Model (r2)

Variable PS1 r1 r2 Variable PS2 r1 r2

1 3B1_ENT 17.96 1 5 3B1_ENT 18.93 1 5
2 3B1_SM 19.70 3 4 3B3_HOM 20.29 7 1
3 3B3_HOM 20.10 7 1 3B1_SM 20.48 3 4
4 3B2_ENT 20.77 6 2 3B2_ENT 24.46 6 3
5 3B1_HOM 33.88 5 7 3B1_HOM 35.24 5 7
6 3B1_DIS 35.91 2 10 3B1_DIS 37.86 2 10
7 3B2_SM 43.30 14 3 3B2_SM 40.58 14 2
8 3B1_CON 43.87 4 11 3B2_DIS 45.82 8 8
9 3B2_DIS 44.26 8 8 3B1_CON 46.01 4 11

10 3B2_HOM 45.33 11 6 3B2_HOM 46.50 11 6

Table 5. PS values of the top 10 variables extracted from Sentinel-2 images.

NO.
Pearson (r1) and Quadratic Model (r2) Pearson (r1) and Spherical Model (r2)

Variable PS1 r1 r2 Variable PS2 r1 r2

1 NDVI568 15.74 1 4 NDVI568 15.03 1 4
2 RVI67 24.90 6 3 RVI67 24.37 6 3
3 NDVI268 26.53 4 5 NDVI268 25.65 4 5
4 NDVI368 31.48 2 8 NDVI368 30.07 2 8
5 NDVI58A8 32.34 5 6 NDVI58A8 31.28 5 6
6 NDVI5128 33.24 12 1 NDVI5128 33.06 12 1
7 NDVI5118 34.05 11 2 NDVI5118 33.70 11 2
8 NDVI468 40.59 3 10 NDVI468 38.83 3 10
9 NDVI28A8 43.13 8 7 NDVI28A8 41.89 8 7

10 NDVI578 47.26 7 9 NDVI578 45.67 7 9

When using the proposed feature evaluation criteria, the PS values of the top
10 variables extracted from the GF-1 images ranged from 17.96 to 45.33 with the quadratic
model and from 18.93 to 46.50 with the spherical model. Compared with a single criterion,
the PS values between the feature and GSV also contained contributions from the Pear-
son correlation coefficient and spectral saturation levels. Therefore, the PS values were
determined by the orders of the Pearson correlation coefficient and saturation levels. It
is illustrated that some features with high Pearson correlation coefficients were excluded
from the top 10 variables extracted with the proposed method because of low saturation
levels, such as 3B1_VAR extracted from the GF-1 images. Moreover, the values of PS were
also related to the employed models used to extract spectral saturation levels. The gaps of
estimated spectral saturation levels were mainly induced by the quadratic and spherical
models. When using the new criteria, most of the variables were in the top ten, but the
orders changed.

For the Sentinel-2 images (Table 5), the orders of the top ten variables evaluated with
the proposed method were rather different from those of the variables extracted with
Pearson correlation coefficients or spectral saturation levels. After using the proposed
method, the ranks of the features changed. Though there were some differences in the
estimated saturation values when using the different estimation models, it was found that
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these models had no effect on the rank of the top ten features when using the proposed
feature selection method.

4.3. Optimal Feature Set

Using the linear stepwise regression model and determination coefficients, the initial
feature set was formed from the union of the two feature sets extracted from the Pearson
correlations and spectral saturation levels with the maximum determination coefficient.
Then, the PS values of all initial feature sets were retrieved with the proposed feature
selection method. To guarantee the independence of the features, variance inflation factor
(VIF) was introduced to conduct collinearity analysis, and refined feature sets were con-
structed after removing linearly dependent features. Finally, after using linear stepwise
regression models, optimal feature sets of various feature selection methods were obtained
from the refined feature set in descending order. In our study, three optimal feature sets
(Table 6) were derived using Pearson correlation coefficients, PS values with the spherical
model, and PS values with the quadratic model. For various feature selection methods,
the numbers of features contained in the optimal feature set are largely dependent on the
feature selection methods.

Table 6. Optimal feature set according to various feature selection methods.

Data Feature Selection Method Optimal Feature Set

GF-1

Pearson (5) 3B1_ENT, 3B1_SM, 3B4_ENT, 3B4_HOM,
3B4_SM

Pearson and spherical model (7)
3B1_ENT, 3B1_DIS, 3B1_SM, 3B1_CON,
3B1_HOM,
3B2_ENT, 3B3_HOM

Pearson and quadratic model (7)
3B1_ENT, 3B1_DIS, 3B1_SM, 3B1_CON,
3B1_HOM,
3B2_ENT, 3B3_HOM

Sentinel-2

Pearson (7) NDVI568, NDVI368, NDVI6128, NDVI285,
3B8_ENT, 3B8_SM, RVI85

Pearson and spherical model (4) 3B8_ENT, 3B8_SM, NDVI5118, NDVI5128

Pearson and quadratic model (4) 3B8_ENT, 3B8_SM, NDVI5118, NDVI5128

For the GF-1 images, the optimal feature set mainly came from texture information, and
the number of feature sets was dependent on the FS methods. There were five features in
the optimal feature set using Pearson correlations and seven features in the optimal feature
set using the proposed method. Furthermore, these optimal feature sets with different
models used for estimating saturation levels had the same features. For the Sentinel-2
images, most selected features came from vegetation indices, and the results of the optimal
feature set were the same when using different models to estimate the saturation levels. It
was inferred that the optimal feature sets obtained from the proposed method were largely
dependent on the relative changes in saturation levels.

4.4. The Results of Estimated Forest GSV

To further analyze the capability of the proposed feature evaluation criteria, four
models (SVM, MLR, RF and KNN) were employed to estimate forest GSV using two
optimal feature sets extracted from GF-1 and Sentinel-2 images. LOOCV was used to
retrieve the evaluation indices, including the determination coefficient (R2), root mean
square error (RMSE), and relative root mean square error (rRMSE) between the predicted
and measured GSV values. The estimated results of the four models are listed in Table 7.

Table 7 shows that the proposed feature evaluation criteria could effectively improve
the accuracy of estimating forest GSV. When using the optimal feature set obtained with
Pearson correlations, the rRMSE values ranged from 32.57% to 34.82% for the GF-1 images
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and from 30.64% to 36.53% for the Sentinel-2 images. After using the optimal feature set
obtained with the proposed feature evaluation criteria, the saturation levels and Pearson
correlations between features and GSV were employed to evaluate the capability of the
features in mapping GSV. The rRMSE values ranged from 28.67% to 33.08% for the GF-1
images and from 26.85% to 33.28% for the Sentinel-2 images. The highest GSV mapping
accuracy was obtained with the RF model for the GF-1 images (R2 = 0.49, rRMSE = 28.67%)
and with the SVM model for the Sentinel-2 images (R2 = 0.52, rRMSE = 26.65%). It was
obvious that the optimal feature set obtained with the proposed method was better able to
map GSV than that obtained with Pearson correlation coefficients.

Table 7. GSV estimated with various feature selection methods.

GF-1 Sentinel-2

Criteria Model R2 RMSE
(m3/hm2)

rRMSE
(%) R2 RMSE

(m3/hm2)
rRMSE

(%)

Pearson
correlation

MLR 0.43 65.13 32.96 0.24 73.96 35.87
KNN 0.32 70.51 34.19 0.31 71.03 34.95
SVM 0.45 64.23 32.57 0.38 63.17 30.64
RF 0.29 71.79 34.82 0.23 82.72 36.53

Proposed
method

MLR 0.44 62.11 30.91 0.38 74.91 33.28
KNN 0.38 66.48 33.08 0.47 58.09 28.17
SVM 0.47 60.82 30.27 0.52 55.62 26.65
RF 0.49 58.67 28.67 0.45 62.22 30.18

To further analyze the estimated forest GSV, scatter plots between ground-measured
and predicted GSV were plotted using the GF-1 images (Figure 6) and the Sentinel-2 images
(Figure 7). It was found that the accuracy of mapping forest GSV relied on the feature
evaluation criteria. After using the proposed method, the features were simultaneously
evaluated by double criteria, saturation levels and Pearson correlation, and overestimated
results with low GSV values were significantly improved by adding some features with
high saturation levels to the optimal feature set. Figures 6 and 7 illustrate that the number
of underestimated samples was significantly decreased after using the proposed feature
selection method (Figures 6e–h and 7e–h). Therefore, considering the spectral saturation
levels of the features, the accuracy of estimated GSV was sufficiently improved by expand-
ing the range of GSV. However, due to the limited capability of optical images, saturation
still occurred for the samples with a GSV of more than 300 m3/hm2.
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To describe the gaps between different feature criterion methods, two models (SVM
and RF) were employed to map the planted Chinese fir forest using the GF-1 and Sentinel-2
images (Figure 8). When using the optimal feature set obtained with the proposed method,
the estimated GSV was obviously larger than that obtained with the Pearson criterion
(Figure 8e–h). The gaps of the estimated GSV with different feature selection methods
were caused by the capabilities of the selected features. These results (Figure 9) illustrate
that the ranges of the estimated GSV were extended after adding some features with high
saturation levels. For a forest with a low GSV (less than 100 m3/hm2), overestimated
results often occur when using an optimal feature set obtained with the Pearson criterion.
After using the proposed method, the proportion of low GSV values (less than m3/hm2)
decreased from 13.00% to 3.37% for the GF-1 images and from 15.53% to 4.08% for the
Sentinel-2 images. Meanwhile, the proportion of high GSV (ranging from 200 m3/hm2

to 300 m3/hm2) increased from 42.49% to 47.16% for the GF-1 images and from 40.47%
to 50.86% for the Sentinel-2 images. It can be inferred that the sensitivity of the optimal
feature set and the accuracy of estimated GSV could be improved by viewing saturation
levels as an evaluation criterion. However, once a forest’s GSV is larger than its saturation
levels, the saturation phenomenon inevitably occurs in optical images.

 
Figure 8. Map of forest GSV with SVM and RF from GF-1 and Sentinel-2 images. (a–d) show the
results using Pearson correlation and (e–h) show the results using the proposed method.
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5. Discussion
5.1. Saturation Levels and Quantitative Model

Optical images are widely used for mapping forest parameters, such as AGB and
GSV [12,18,23,32]. Additionally, spectral variables are insensitive to changes in GSV when
the GSV or AGB is larger than certain levels. Consequently, it is rather important to
construct a quantitative model for evaluating the capability of mapping GSV for alternative
features. Essentially, quantitative models of saturation levels can be employed to express
the relationships between remote sensing features and AGB, and the extreme values or
trends of the models regarded as saturation levels can be determined with a mathematic
method. At present, several parameter models have been used to determine the saturation
levels of alternative features extracted from various images and forest types, such as the
semi-exponential, kriging, and quadratic models [18,22]. In our study, the kriging model
with a spherical function and the quadratic model were employed to obtain fitted curves,
and the extreme points of the fitted curves were regarded as the saturation levels for
each feature.

Furthermore, the quantitative model of saturation levels is different from the estima-
tion models of forest GSV. Normally, the objective of a quantitative model of saturation
levels is to seek a unique extreme point of fitted curves, and a minimum of error between
estimated and measured GSV is regarded as the goal for estimation models of forest GSV.
The extreme points of fitted curves depend on the selected models and observations. Here,
it was confirmed that the estimated saturation level was largely dependent on the quan-
titative model for a certain feature. Figure 6 and Table 4 illustrate the saturation levels
obtained with the two models. For most features, the difference in the saturation levels
obtained with the two quantitative models was less than 50 m3/hm2, and there were few
variables with roughly the same estimated saturation levels.

Additionally, the disadvantages of the kriging model with a spherical function and the
quadratic model are that the shapes of their fitted curves are unreasonable when the GSV is
larger than extreme points (saturation levels), and the gaps between the fitted curves and
ground-measured GSV grow larger as the forest GSV increases. It was found that these
gaps are caused by the characteristics of the kriging model with a spherical function and
the quadratic model. Concretely, these fitted curves have the capability for the accurate
description the relationships between GSV and features when the GSV is lower than the
saturation level. Once the GSV is larger than the saturation level, it is very hard to express
the relationships between features and the forest GSV for these models.
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5.2. The Contribution of Proposed Feature Selection Method

For a planted forest with a high GSV, the saturation phenomenon is considered an im-
portant factor that limits the accuracy of mapping the GSV using optical images. Previous
studies have shown that spectral saturation problems are caused by various factors, such as
remote sensing images, forest type, stand parameters, and topography, especially for forests
with dense canopies [32]. Recently, researchers have proposed several potential solutions
to solve the spectral saturation problem, such as using the forest height (CHM) derived
from various methods and using time-series optical images [22,32]. Additionally, previous
studies also have shown that saturation levels can be delayed by selecting appropriate
remote sensing variables [2,23,33]. Normally, optimal feature sets are dependent on the
feature selection methods. The accuracy of mapping forest AGB or GSV has been increased
to some extent through various improved feature selection methods based on filters, wrap-
pers, and embedded models. Simultaneously, delayed saturation levels can enlarge the
range of estimated GSV with the use of selection variable sets with high saturation values.
However, these saturation values are rarely directly viewed as an evaluation criterion used
to select features.

Essentially, the key to improve the accuracy of estimated GSV is that the selected
features have high saturation levels. In our study, the proposed feature selection method
based on the saturation values of alternative variables was constructed to obtain optimal
feature sets. The saturation levels and Pearson correlation coefficients between the features
and GSV were employed together to evaluate the ability of features for mapping GSV.
The results showed that the number of overestimated samples and errors between the
ground-measured and estimated GSV were obviously decreased after using the proposed
feature selection methods, especially for the samples with a GSV of less than 300 m3/hm2

(Figures 8 and 9).
To further demonstrate the bias of the mapped results, the errors between the ground-

measured and predicted GSV using two feature criteria are illustrated in Figures 10 and 11.
Generally, the errors between the predicted and ground-measured GSV presented a specific
distribution for mapping forest GSV using optical remote sensing images. Figures 10 and 11
illustrate that the results of our study using Pearson correlation were basically consistent
with those of previous studies for four models and that the rRMSE values ranged from
30% to 40% [2,23,33]; this consistency is also reflected in the underestimated results in the
high GSV images and the overestimation results in the low GSV images [23,33]. Therefore,
the accuracy of mapping forest GSV is largely constrained by these overestimation and
underestimation phenomena when using traditional feature criteria. The major reason for
this is that the signals of optical remote sensing images without penetration capture changes
in forest GSV in terms of the forest canopy [18,23]. In young forests (less than 100 m3/hm2),
the canopy increased faster than the forest GSV and over-estimated frequently occurred. In
mature or over-mature forests, the forest canopy increased slower than the forest GSV and
the saturation phenomenon often occurred.

In our study, the capability of features was double-evaluated with the proposed feature
selection method based on the spectral saturation and Pearson correlation coefficients.
Then, the systematic distribution of residuals was broken by using the optimal feature
set obtained from the proposed method (Figures 10e–h and 11e–h). The results showed
that the number of overestimated samples was significantly decreased after adding some
features with high saturation levels. It was found that the improved forest GSV ranged
from 100 m3/hm2 to 300 m3/hm2. For the samples with a GSV smaller than 100 m3/hm2

or larger than 300 m3/hm2, the contribution of the proposed method was very weak
(Figures 10 and 11). The saturation phenomenon remains an inevitable issue for mapping
forest GSV or ABG using optical remote sensing images. To overcome the saturation
phenomenon, vertical features of forests, such as the canopy height model (CHM) or
features extracted from polarimetric SAR images, are regarded as an effective means to
delay the saturation problem [15,16,22]. In addition, the bias of mapped GSV is also
affected by the errors of ground-measured GSV involved in several forest parameters
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(DBH and H), as well as the uncertainty of the binary volume table of planted Chinese fir.
However, compared with the recently estimated accuracy and bias in mapping forest GSV
using remote sensing images, the influence of ground-measured errors on the accuracy
of estimation is much smaller than the errors induced by remote sensing images and
models. Therefore, the uncertainty of mapped forest GSV should be further evaluated after
obtaining reliable features and models.
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6. Conclusions

In this study, the saturation levels of remote sensing features derived from GF-1 and
Sentinel-2 images were estimated with different quantitative models. Then, novel criteria
for evaluating features were constructed based on the saturation levels and Pearson correla-
tion coefficients between features and GSV. The optimal feature sets were obtained with the
proposed criteria for evaluating features and the linear stepwise regression model. After
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mapping forest GSV with four widely used machine learning models, the results illustrated
that the proposed feature evaluation method as better able to select an optimal feature set
for mapping GSV. It was concluded that the sensitivity of the optimal feature set and the
accuracy of estimated GSV could be improved by viewing saturation levels as an evaluation
criterion. However, the contribution of the proposed method was found to be very weak
for forests with a GSV of more than 300 m3/hm2. The saturation phenomenon remains an
inevitable issue when mapping forest GSV or ABG using optical remote sensing images. In
the future, the accuracy of mapping forest GSV will be improved using spaceborne LiDAR
(GEDI and ICESat-2) products to delay the saturation levels of features, and multi-temporal
optical remote sensing images will be also applied to improve the sensitivity of features.
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