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Abstract: This paper develops a framework for geolocating ground-based moving targets with im-
ages taken from dual unmanned aerial vehicles (UAVs). Unlike the usual moving-target geolocation
methods that rely heavily on accurate navigation state sensors or assumptions of the known target’s
altitude, the proposed framework does not have the same limitations and performs geolocation of
moving targets utilizing dual UAVs equipped with the low-quality navigation state sensors. Consid-
ering the Gaussian measurement errors and yaw-angle measurement bias provided by low-quality
sensors, we first propose an epipolar constraint-based corresponding-point-matching method, which
enables the historical measurement data to be used to estimate the current position of the moving
target; after that, we propose a target altitude estimation method based on multiview geometry,
which utilizes multiple images, including historical images, to estimate the altitude of the moving
target; finally, considering the negative influence of yaw-angle measurement bias on the processes
of target altitude estimation and parameter regression, we take advantage of multiple iterations
among the two processes to accurately estimate the moving target’s two-dimensional position and the
yaw-angle measurement biases of two UAVs. The effectiveness and practicability of the framework
proposed in this paper are proved by simulation experiments and actual flight experiments.

Keywords: altitude estimation; computer vision; corresponding point matching; moving target
geolocation; unmanned aerial vehicle (UAV)

1. Introduction

In recent years, with the advantages of small size, simple operation, and low price [1–3],
unmanned aerial vehicles (UAVs) are increasingly being deployed for a wide variety of
missions, including surveillance and reconnaissance. UAV-based computer vision capabili-
ties, such as target detection and tracking, play particularly important roles in the above
missions. However, it is not sufficient to simply detect and track a moving target; we
often need to know the three-dimensional position of the moving target, which is obtained
by the process of target geolocation [4–6]. In this paper, target geolocation refers to the
process of using UAVs to obtain target information and estimate the position of the target
in the world coordinate system. In this process, GPS (global positioning system) and AHRS
(attitude and heading reference system) are used to acquire the UAV’s navigation state,
such as position and attitude, for geolocation in real time; the UAV’s navigation state
and the target’s image are acquired simultaneously. There have been many studies on
ground target geolocation technology [7–9]. Fabian et al. [10] analyzed the factors that
affect the accuracy of moving-target geolocation. Generally speaking, a precise geolocation
result depends on accurate navigation state measurement of UAVs and target’s altitude.
Therefore, it is difficult to obtain the accurate geolocation result of the non-cooperative
target utilizing the onboard low-quality navigation state sensors. For this reason, this paper
aims to achieve accurate geolocation by using only vision to mitigate the effects of Gaussian
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measurement errors and the yaw-angle measurement bias, and to accurately estimate the
position of the grounded moving target, which is a challenge.

In recent years, scholars have conducted a considerable amount of research on moving-
target geolocation using UAV systems. In general, moving-target geolocation methods can
be divided into two categories: the methods based on one-shot learning [11–14] and the
methods based on multiview geometry [15–17]. As the most commonly used method, the
one-shot method only obtains one image of the moving target but require the altitude of the
moving target. There are many ways to get the altitude information of the moving target.
Some researchers utilized a DEM (digital elevation model) to obtain the altitude of the
moving target. Qiao et al. [18] proposed a vision-based geolocation frame could estimate
the three-dimensional position of a moving target in real time with a gimbal-stabilized
camera, but an accurate digital elevation model is required to obtain the altitude of a
moving target on the ground. Alternatively, some researchers obtained the target’s altitude
through estimating the distance between the UAV and the moving target based on the
size of the target in the image. Zhang et al. [19] proposed a relative distance estimation
method based on the prior information of the target that required the size of the target to be
known and then used the geometric relationship to calculate the distance between the UAV
and the target. Zhu et al. [20] showed that their learning-based method could estimate
the distance to a specific target. Nevertheless, their experimental results showed that the
distance estimation methods based on prior information work well only if the target is close
and are not suitable for accurately geolocating grounded targets with UAVs. In practical
applications, the distance from the UAV to the target is usually determined by a laser
rangefinder [11], which has the highest accuracy among the above-mentioned methods.
However, the use of laser-based methods for the continuous geolocation of moving targets
will greatly reduce the flight time of UAVs due to the weight of the laser rangefinder. It
is worth noting that the above-mentioned methods all assume that the UAV’s navigation
state is accurate; that is, they do not consider the negative influence of the measurement
errors of the UAV’s navigation state on the ground moving-target geolocation.

To avoid the limits of the above-mentioned methods, some researchers utilized multi-
ple UAVs to simultaneously acquire multiple images of a moving target and estimated its
position by multiview geometry. Wang et al. [21] utilized multiple UAVs to geolocate a
moving target and presented nonlinear filter based on solving the Fokker–Planck equation
to address the issue of the time delay during data transmission. Xu et al. [22] proposed a
method to adaptively adjust the weights according to the positions of the UAVs, which can
improve the accuracy of the results of the weighted least-squares. However, these methods
did not solve the problems well. On the one hand, mitigating the negative influence of
Gaussian measurement errors on geolocation requires multiple images, and each UAV can
only obtain one image at a time, which means that a large number of UAVs are required
for accurate moving-target geolocation. On the other hand, although the above-mentioned
methods using multiple measurements can mitigate the influence of Gaussian measurement
errors provided by the navigation state sensors, they still have not solved the problem of
yaw-angle measurement bias.

The yaw-angle bias provided by the AHRS may vary every time when the AHRS
is initialized, and the assumption of unknown and constant bias is justified in a short
time window [23]. Related to this, Zhang et al. [24] proposed a vision-based target
geolocation method, which focuses on eliminating the effects of yaw-angle measurement
bias provided by low-quality sensors on target geolocation. Further, Zhang et al. [25]
focused on improving the estimation accuracy of yaw-angle bias by utilizing a particle
swarm optimization algorithm to derive an expression of the optimal trajectory and perform
optimal trajectory planning and then to enhance the geolocation performance. However,
their methods can only be applied to the stationary-target geolocation scenarios.

In the scenario assumed in this paper, two UAVs follow a single moving target on
the ground and estimate the position of the moving target in real time. Except for the
images of the moving target, all the information of the target is unknown. Both UAVs
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are equipped with monocular cameras to obtain target images. In addition, UAVs are
equipped with GPS and AHRS to obtain their own positional and attitude information.
In the navigation state measurement of UAVs, there are Gaussian measurement errors
for position and attitude information, and due to different measurement principles, there
are also measurement biases for yaw angle. The purpose of this paper is to mitigate the
negative impact of UAV navigation state measurement errors on moving-target geolocation
accuracy in the above scenario. In order to deal with this issue, we develop a ground-based
moving-target geolocation framework utilizing dual UAVs, and the constructed system is
shown in Figure 1. The proposed framework is free from the above-mentioned constraint
of assuming the ground target is stationary, and it geolocates the moving target using
sequential images taken from dual UAVs and navigation states provided by low-quality
sensors.

Current frame

Current frame

Position (4.21, 2.19, 0.56)

UAVs

Real time 
images/GPS/
AHRS data 
acquisition

Moving target geolocation

Current frame

UAV1

GPS/
AHRS
data

UAV2

GPS/
AHRS
data

Position (4.21, 2.19, 0.56)

Current frame

Figure 1. Demonstration that the proposed framework realizes online ground moving-target geoloca-
tion using dual UAVs.

The main contributions of this paper are as follows.

• We propose a ground moving-target geolocation framework that utilizes only the
sequence of images obtained by two UAVs with low-quality sensors. The framework
contains the processes of corresponding point matching, target altitude estimation, and
parameter regression, which are used to mitigate the negative influences of Gaussian
measurement errors and yaw-angle biases.

• In order to obtained more available images using only two UAVs, we propose a
corresponding-point-matching method based on epipolar constraint. The method
enables the historical images to be used to estimate the current position of the moving
target. In addition, in order to filter out the wrong corresponding points, we propose
an outer point filtering method based on the consistency principle.

• The effectiveness of the proposed framework was verified via the experiments in
simulated and real environments.
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2. Methods

The proposed ground moving-target geolocation framework based on dual UAVs
is illustrated in Figure 2. The framework utilizes a multiprocess architecture to process
the four tasks of data acquisition, target detection, corresponding point matching, and
moving-target geolocation in parallel. Moreover, in the moving-target geolocation, the two
subtasks of target altitude estimation and parameter regression are processed iteratively.

Current frame

Process1: 
Data acquisition

Process2: 
Target detection

Process3: 
Corresponding  point matching

Process5:
Parameter regression

Current frame

Past frame

Past frame

Target point

Multiview geometry

Current frame

Past frame

Past frame

UAV1 UAV2

Current frame

Target point

Epipolar constraint

Iterations

Process4: 
Target altitude estimation

Target
points

δ𝜓
Target
altitude

Figure 2. Overview of the proposed moving-target geolocation framework using dual UAVs.

The data acquisition process uses two UAVs equipped with a camera and low-quality
navigation sensors to track the moving target and obtain the images of the target and the
navigation states of two UAVs simultaneously; then, the images and navigation states are
transmitted to the ground station in real time. The target detection process obtains the latest
image from each UAV and achieves accurate detection of the moving target with the image
pair. The corresponding point matching is to provide sufficient measurement data for the
subsequent moving-target geolocation; it matches the corresponding points in the past
images according to the target points provided by the target detection process, and then the
past frames’ images can be utilized to estimate the current position of the moving target.
The process of target altitude estimation aims to estimate the target’s altitude utilizing
the current images and the past images. After that, the target’s altitude is used by the
parameter regression process to estimate the two-dimensional position of the target and
the yaw-angle measurement biases of two UAVs. Considering the yaw-angle measurement
biases, there are several iterations between the target altitude estimation and the parameter
regression until the estimated yaw-angle biases are less than the given threshold or the
number of iterations reaches the given maximum.

2.1. Parameter Regression

The parameter regression is used to estimate the two-dimensional position of target
and the yaw-angle measurement biases of two UAVs. The target geolocation model based
on UAV can be visualized in Figure 3.
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Figure 3. Target geolocation model.

According to [24], it can be expressed as

[
xP
yP

]
=

[
xv
yv

]
+

(zP − zv)

(0, 0, 1)Cc
w

 xp
yp
f

 ×
[

1 0 0
0 1 0

]
Cc

w

 xp
yp
f

 (1)

where (xP, yP, zP)
T and (xv, yv, zv)T represent the coordinates of the current target’s po-

sition P and the UAV’s position in the world coordinate system w, respectively. The
coordinates of projection point p of current target’s position P are represented as (xp, yp) in
the image plane; and f is the focal length of the camera. In a simulation experiment, the
precise focal lengths can be obtained directly. In a real experiment, we used the kit provided
by ROS [26] to calibrate the cameras to obtain the focal lengths. The UAV’s navigation state
(xv, yv, zv, ψ, θ, φ) was measured by the onboard GPS and AHRS. The rotation matrix Cw

c
represents the transformation from the camera coordinate system c to the world coordinate
system w. The relative altitude h between the current target’s position and the UAV is
defined as

h = zv − zP (2)

In general, the pitch angle θ and the roll angle φ of a UAV can be measured accurately,
but the yaw-angle measurement will have large error due to the use of magnetometer.
Hence, to solve the above-mentioned issue, we estimate the yaw-angle measurement biases
of two UAVs and target’s position by parameter regression. The estimation process is
illustrated as follows.

The goal of parameter regression is to estimate the parameter ξ = [ξ1, ξ2]
T , where

ξ1 := [xP, yP]
T (3)

is the two-dimensional coordinate of the moving target and

ξ2 := [δψL, δψR]
T (4)

are the yaw-angle measurement biases of the left UAV and right UAV, respectively. The
measured navigation state of two UAVs is τ = [τ1, τ2, τ3]

T , where

τ1 := [xvL , yvL , zvL , xpL , ypL , θL, φL]
T (5)

is the navigation state of the left UAV and

τ2 := [xvR , yvR , zvR , xpR , ypR , θR, φR]
T (6)
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is the navigation state of the right UAV. The measured navigation state τ3 := [ψL, ψR]
T

includes the yaw angles of the left UAV and the right UAV, respectively. According to (1),
the general form of the measurement equation is as follows:

ξ1 = F(τ1, τ2, τ3) (7)

and the actual measurements are

γ1 = τ1 + w1, w1 ∼ N(0, Q1) (8)

γ2 = τ2 + w2, w2 ∼ N(0, Q2) (9)

γ3 = τ3 + ξ2 + w3, w3 ∼ N(0, Q3) (10)

where the Gaussian measurement noise covariances Q1 and Q2 are both 7× 7 symmetric
positive-definite matrices, and Q3 is a 2× 2 symmetric positive-definite matrix. Combine
(8), (9) and (10) into the measurement equation as follows:

ξ1 = F(γ1 − w1, γ2 − w2, γ3 − (ξ2 + w3)) (11)

Then, the linearized measurement equation is obtained by using Taylor’s theorem:

F(γ1, γ2, γ3) ≈ ξ1 +
∂F
∂τ1

∣∣∣∣
γ1,γ2,γ3

· w1 +
∂F
∂τ2

∣∣∣∣
γ1,γ2,γ3

· w2 +
∂F
∂τ3

∣∣∣∣
γ1,γ2,γ3

· w3

+
∂F
∂τ3

∣∣∣∣
γ1,γ2,γ3

· ξ2

(12)

Suppose that 2N bearing measurements of the moving target are taken by the left UAV
and the right UAV at the discrete time t = 1, ..., N; that is, (γ11, γ21, γ31),...,(γ1N , γ2N , γ3N).
For 2N bearing measurements, the linear measurement equations are as follows:


F(γ11 , γ21 , γ31)

·
·

F(γ1N , γ2N , γ3N )

 =


I2

∂F
∂τ3

∣∣∣
γ11

,γ21 ,γ31
· ·
· ·
I2

∂F
∂τ3

∣∣∣
γ1N ,γ2N ,γ3N

ξ + W (13)

where
W ∼ N(0, Q) (14)

is the geolocation error caused by the Gaussian measurement error of the UAV’s navigation
state, and its convariance matrix is as follows:

Q = diag


(

∂F
∂τ1

∣∣∣
γ1k

,γ2k
,γ3k

)
Q1

(
∂F
∂τ1

∣∣∣
γ1k

,γ2k
,γ3k

)T

+

(
∂F
∂τ2

∣∣∣
γ1k

,γ2k
,γ3k

)
Q2

(
∂F
∂τ2

∣∣∣
γ1k

,γ2k
,γ3k

)T

+

(
∂F
∂τ3

∣∣∣
γ1k

,γ2k
,γ3k

)
Q3

(
∂F
∂τ3

∣∣∣
γ1k

,γ2k
,γ3k

)T


N

k=1


(15)

From (13), the two-dimensional position of moving target and the yaw-angle biases of
two UAVs can be solved effectively with the weighted least-square method.
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2.2. Estimation of Target Altitude

It can be seen in (1) that the target’s altitude zP is required by the process of parameter
regression. In this section, the target’s altitude zP is obtained by utilizing the multiview
geometry.

The left UAV and the right UAV continuously acquire the navigation state and the
target images when tracking the moving target. We select the current image and N − 1
past images from the sequence of images taken by each UAV as the measurement data to
estimate the current position of the moving target, and the two adjacent images in these N
images must meet the baseline constraint—that is, the distance between the positions of
UAV when taking these two images must be greater than or equal to the given threshold.
Any image gLi(i = 1, ..., N) taken by the left UAV and any image gR j(j = 1, ..., N) taken
by the right UAV can be form an image pair mij, and a total of N2 image pairs can be
obtained. For each image pair mij, its multiview geometry model is shown in Figure 4.
The points pL and pR are the corresponding points of the target’s position P projected in
the left image, gLi, and the right image, gR j, respectively. The corresponding points in the
current images are provided by target detection process, but the corresponding points in
the past images are provided by the process of corresponding point matching described
in Section 2.3. OL and OR are the origins of the left and right camera coordinate systems,
respectively. According to the principle of multiview geometry, if there is no measurement
error, the lines OL pL and OR pR will intersect at point P. Nevertheless, due to the Gaussian
measurement error and yaw-angle biases provided by the low-quality sensors, the lines
will not intersect at the point P. Therefore, we approximate the intersection point P to the
nearest point P

′
from the two lines.

J

LO
RO

Lp Rp

P

Figure 4. Target altitude estimation model.

Let apL(a ∈ R), TRL + bRT
RL pR(b ∈ R) be ray OL pL and ray OR pR in the left coordinate

system, respectively. We denote J as an orthogonal vector with the rays OL pL and OR pR.
The problem is now simplified to searching the midpoint P

′
of the line segment parallel to

J that joins OL pL and OR pR.
The endpoints of the line segment (a0 pL and TRL + b0RT

RL pR) are calculated to solve
the following equation:

[
pL −RT

RL pR pL× RT
RL pR

] a
b
c

 = TRL (16)

for a0, b0, and c0. We let hij be the relative altitude between the target and the UAV when
taking the image gLi, and hij is estimated utilized image gLi and gR j. Similarly, hji is the
relative altitude between the target and the UAV when taking the image gR j, and hji is
estimated utilizing image gR j and gLi. Thus, the relative altitude hij and hji can be obtained
from the following equations:

hij =
1
2
[

0 0 1
]
RL(a0 pL + b0RRL pR + TRL) (17)
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hji =
1
2
[

0 0 1
]
RR(b0 pR + a0RLR pL + TLR) (18)

where pL := [xpL, ypL, fL]
T and pR := [xpR, ypR, fR]

T are the coordinates of the correspond-
ing points in the left and right coordinate systems, respectively. The matrices RRL and TRL
are the rotation matrix and displacement matrix from the right coordinate system to the left
coordinate system, respectively. Similarly, the matrices RLR and TLR are the rotation matrix
and displacement matrix from the left coordinate system to the right coordinate system
respectively. That is,

RL := Cn
c (ψi + δψLn, θi, φi), RR := Cn

c (ψj + δψRn, θj, φj) (19)

where δψLn and δψRn is the estimated value given by parameter regression in the nth
iteration and the initial values δψL0 = δψR0 = 0. There are N image pairs containing image
gLi or image gR j, so we can get N estimates of relative altitude for each image gLi or image
gR j. Thus, we can get the average altitude h̄i and h̄j for image gLi and gR j by the following
equations, respectively.

hi =

N
∑

j=1
hij

N
, hj =

N
∑

i=1
hji

N
(20)

After that, we estimate the target’s altitude according to the indirect adjustment theory.
After the estimation of relative altitude, each image gk(k = 1, ..., 2N) has an estimated
relative altitude hk. There is estimation error for relative altitude hk and measurement error
for UAV’s altitude zvk . According to (2), we have

zvk + evk = zP + hk + ehk
(21)

where evk is the measurement error of zvk and ehk
is the estimation error of hk. For 2N

images, we use Ek to represent evk − ehk
and have

E1
·
·

E2N

 = J2N,1zP −


zv1 − h̄1
·
·

zv2N − h̄2N

 (22)

where J2N,1 represents the 2N × 1 matrix of ones. According to the least-squares theory, zP
can be obtained as follows:

zP = (JT
2N,1 J2N,1)

−1 JT
2N,1


zv1 − h̄1
·
·

zv2N − h̄2N

 (23)

Finally, the estimated altitude of the moving target is used to estimate the yaw-angle
biases and the two-dimensional positions described in Section 2.1.

2.3. Corresponding Point Matching

In this paper, the corresponding points refer to the projection points of the target’s
current position P on different images. The target points provided by target detection
in the current images gL1 and gR1 captured by the left and right UAVs, respectively, are
corresponding points of the moving target’s current position, but the target points provided
by target detection in the past images cannot be regarded as corresponding points because
the target’s position has changed. Therefore, it is necessary to match the corresponding
points before using the past images to estimate the current position of the moving target.

In this section, we first propose a corresponding-point-matching method for the
current images and the past images based on an epipolar constraint. As mentioned above,
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2N images are required for each estimation of target position, of which N images are from
the left camera and the other N images are from the right camera. Among the 2N images,
there are two current images, denoted as gL1 and gR1, and the remaining 2N − 2 images
are the past images. For each matching of the corresponding point, the current images gL1
and gR1 and any past image gn(n = 1, ..., 2N − 2) are used to build a corresponding-point-
matching model, as shown in Figure 5. The points pL := [xpL, ypL]

T and pR := [xpR, ypR]
T

are the corresponding points provided by target detection in the current images gL1 and
gR1 captured by the left UAV and right UAV. The point pn := [xp, yp]T is the corresponding
point provided by the corresponding point matching in the past image gn. OL, OR, and On
are the optical centers of cameras. The points e1, eL, and e2, eR are the intersection points of
the lines OLOn and OROn with the image plane, respectively.

P

Lp
Rp

np

LO
RO

nO

Le
Re1e 2e

ng

1Lg
1Rg

Past frame

Figure 5. Corresponding-point-matching model.

The coordinate of target point pL in the camera coordinate system On is represented as

p′L = RLn

(
K−1

L
[
xpL , ypL , 1

]T
)
+ TLn (24)

where the matrix KL is the intrinsic matrix of the left camera. The matrices RLn and TLn are
the rotation matrix and translation matrix from coordinate system OL to coordinate system
On, respectively. The coordinate of target point pR in the camera coordinate system On is
represented as

p′R = RRn

(
K−1

R
[
xpR , ypR , 1

]T
)
+ TRn (25)

where the matrix KR is the intrinsic matrix of the right camera. The intrinsic matrix K
reflects the attributes of the camera, and its description is as follows:

K =

 fx 0 cx
0 fy cy
0 0 1

 (26)

where fx represents the ratio of the physical focal length to the physical size of the pixel
in the x direction, and fy represents the ratio of the physical focal length to the physical
size of the pixel in the y direction. For the cameras used in simulation experiments and
real experiments, there is fx = fy = f . The coordinate of the principal point of photograph
is denoted as (cx, cy). The intrinsic matrix K is obtained by camera calibration, and the
intrinsic matrices of the left camera and the right camera are denoted as KL and KR,
respectively. The matrices RRn and TRn are the rotation matrix and translation matrix
from coordinate system OR to coordinate system On, respectively. In the corresponding-
point-matching model, the three-dimensional point P may be at any position on the line
OLP because its depth information is unknown. However, no matter where the three-
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dimensional point P is on the line OLP, its projection point pn on image gn must be on the
line e1 pn according to the imaging principle. The line e1 pn can be described as[

TLn × p′L
]
K−1

n
[
xp, yp, 1

]T
= 0 (27)

where K−1
n
[
xp, yp, 1

]T is the coordinate of point pn in the camera coordinate system On.
Similarly, the line e2 pn can also be determined on the image gn according to the target point
pR, which can be described as[

TRn × p′R
]
K−1

n
[
xp, yp, 1

]T
= 0 (28)

Therefore, the coordinates of corresponding point pn on the image gn can be solved by
combining (27) and (28). In other words, the corresponding point we are looking for is the
intersection of line e1 pn and line e2 pn. In the above process, the rotation and translation
matrices between cameras are necessary. For this, the corresponding point matching
subtask first extracts ORB features from the current images, which is an effective and
fast-computing feature point. Then, the subtask matches the feature points extracted from
these two current images with the feature points extracted from the past image. After that,
the eight-point algorithm with random sample consensus (RANSAC) is used to improve
the accuracy of feature point matching and estimate the fundamental matrices FLn and FRn.
The rotation and translation matrices between cameras can be obtained by decomposing
the fundamental matrices FLn and FRn.

However, the error matching of the feature points extracted from the current images
and the past image will reduce the accuracy of the fundamental matrix estimation and then
reduce the accuracy of the corresponding point matching. In this regard, we propose a
method based on the consistency principle to filter the wrong corresponding points. The
subtask of corresponding point matching can obtain 2N − 2 corresponding points because
there are 2N − 2 past images selected to be used to estimate the current position of the
moving target. Then, the two current images and each of the 2N − 2 past image form
multiple groups of observation data—that is, (gL1, gR1, g1),...,(gL1, gR1, g2N−2). Each group
is sent to the iterations of target altitude estimation and parameter regression. After that,
we can get 2N − 2 estimates of yaw-angle biases—that is, ξ21 ,..., ξ22N−2 . For each estimate
ξ2n(n = 1, ..., 2N − 2), we calculate its consistency factor Cn according to the following
equation:

Cn =

2N−2
∑

m=1;m 6=n
I(e(n,m))

2N − 2
(29)

I(�) is an indicator function defined by

I(e(n,m)) =

1, i f e(n,m) < TH

0, otherwise
(30)

where enm is defined by

enm = abs(δψn
L − δψm

L ) + abs(δψn
R − δψm

R ) (31)

After that, we have Cmax = MAX(C1, ..., C2N−2) and its corresponding estimates
ξ2n = [δψn

L, δψn
R]

T . The set Sp of corresponding points to be filtered is obtained; that is,

Sp = {pm|enm ≥ TH} (32)

The corresponding points pm in set Sp are considered as incorrect corresponding
points, and their corresponding image gm will no longer be used to estimate the position
for the moving target. It should be noted that if N = 2 and enm ≥ TH, the two past images
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are eliminated and the geolocation is terminated because there is not enough measurement
data.

In this section, a corresponding-point-matching method based on epipolar constraint
is proposed. Considering the existence of a wrong corresponding point, we also propose a
method based on the consistency principle to eliminate the wrong corresponding points.
After corresponding point matching, multiple past images can be used to estimate the
current position of the moving target.

3. Results

In this section, we evaluate the performance of the proposed geolocation framework
for a moving target. In order to conduct the simulation experiments, we built a moving-
target geolocation platform based on ROS and GAZEBO [26] to evaluate the robustness
of the proposed framework by various simulations. In addition, we used two quad-rotor
UAVs to further verify the effectiveness of the framework in a real experiment.

3.1. Simulation Experiment

For simulation experiments, a moving target detection and tracking platform in an
urban environment was built. In the platform, a vehicle runs in a city environment, as
shown in Figure 6, and two UAVs with vertically downward cameras detect the target
utilizing Yolov5 [27], as shown in Figure 7. The flight altitude of the two UAVs is 100 m,
and the baseline between the two UAVs is 70 m. In the process of target sensing, the UAVs
first use the target detection algorithm to find the target, and then use the proposed method
to continuously geolocate the moving target. We implemented the proposed framework
using Python and ran the framework on a machine with Intel(R) an i7-10700 @2.90 GHz
CPU and NVIDIA RTX 2070 Super GPU.

Figure 6. Urban environment and moving path of the target in the GAZEBO simulation.

Before geolocating the moving target using multiple images, including the past im-
ages, the corresponding points in the past images were matched using the corresponding-
point-matching method described in Section 2.3. The accuracy of the corresponding-
point-matching method proposed in this paper depends heavily on the estimation of the
fundamental matrix F, and wrong corresponding point matching will cause an error in
target geolocation. However, the estimation of the fundamental matrix is occasionally
inaccurate due to the matching error of ORB features between the current image and the
past image. Therefore, the method of filtering the wrong corresponding points is proposed
in Section 2.3.
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(a) View of left UAV (b) View of right UAV

Figure 7. Two UAVs track and detect the moving target.

In order to evaluate the performance of the method for corresponding point matching
and the effectiveness of the method for filtering the wrong corresponding points, we
obtained the experimental results shown in Figure 8. In this experiment, we did not
consider the influence of UAV navigation state measurement error on the geolocation
results, but only observed the changes caused by the corresponding points. It is worth
noting that eight images were used for each geolocation in this experiment. In Figure 8,
the black line is the ground-truth path of the moving target, and the yellow line is the
path estimated by the proposed moving-target geolocation framework without filtering
the wrong corresponding points. It can be seen that the corresponding point matching
introduces errors to the moving-target geolocation, and the geolocation error is large when
the car is at the corner of an image, which is due to the small overlap between the current
image and the past images, so there are not enough ORB features to estimate an accurate
fundamental matrix. However, the geolocation error was greatly reduced after using the
proposed method of filtering the wrong matching points, as shown by the red line.
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Figure 8. Paths of geolocation in the experiment of corresponding point matching.

The statistical characteristics of continuous geolocation results are shown in Table 1,
in which we count the mean absolute errors (MAEs), the standard deviations (STDs), and
the maximum errors (MAX) of geolocation results in each direction, X, Y, and Z. The mean
absolute error (MAE) is calculated as follows:

MAE =

n
∑

i=1
|yi − ŷi|

n
(33)
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where n represents the number of geolocations, and yi and ŷi represent the estimated value
and the true value, respectively. It can be seen in Table 1 that the proposed method can
effectively filter out the wrong corresponding points and reduce the geolocation errors.

Table 1. Statistical results of geolocation in the experiment of corresponding point matching.

Before Filtering After Filtering

x y z x y z

MAE (m) 0.283 0.274 1.216 0.151 0.173 0.720

STD (m) 0.373 0.408 1.561 0.125 0.164 0.547

MAX (m) 4.135 6.335 8.574 0.692 1.135 2.464

After matching corresponding points, the past images and the current images are used
to estimate the target’s altitude zP. We obtained the statistical characteristics of altitude
estimation in the continuous geolocation process, as shown in Table 2. We utilized 4
or 8 images to obtain the altitude estimation results, and compared the mean absolute
errors, the standard deviations, and the maximum errors of altitude estimation errors
when using different numbers of images. In addition, we set σψ = σθ = σϕ = 2

◦
and

σxv = σyv = σzv = 3m. The yaw-angle biases δψL, δψR of the left and right UAVs were set
as follows:

δψL = 0.2t + δψ0; δψR = 0.2t− δψ0 (34)

where t(s) represents the flight time of UAVs and δψ0 was set to 20 in this experiment.
It can be seen form the results shown in Table 2 that the more images used for target
altitude estimation, the more accurate the altitude estimation will be. However, using more
images means more computing costs, and the average processing speed of moving-target
geolocation was 22 FPS when utilizing eight images and the above-mentioned machine in
the realistic experiment.

Table 2. Statistical results of altitude estimation of the target.

Number of Images MAE (m) STD (m) MAX (m)

4 3.372 2.769 9.812
8 2.448 1.931 7.819

Similarly to the experiments of target altitude estimation, we evaluated the perfor-
mance of yaw-angle bias estimation. In this experiment, the true values of yaw-angle
biases need to be known in order to evaluate our method, but it is difficult to measure
the yaw-angle biases of a sensor in actual flight. Therefore, we set the same experimental
conditions as the altitude estimation experiment to evaluate the performance of yaw-angle
biases’ estimation in the simulation environment. As shown in Table 3, the same conclusion
can be obtained—that is, the proposed method can effectively estimate the yaw-angle biases
of UAVs, and the more images used, the more reliable the estimation results will be.

Table 3. Statistical results of yaw-angle bias estimation.

Number of
Images MAE (deg) STD (deg) MAX (deg)

4 δψL 7.642 4.270 13.943
δψR 6.633 3.477 13.125

8 δψL 3.051 2.781 7.099
δψR 2.550 2.156 6.957
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In the proposed framework, the altitude of a moving target and the yaw-angle biases
of two UAVs are estimated iteratively until the preset conditions are reached. We preset
two conditions for stopping the iteration. One is that the estimated yaw-angle biases of the
current iteration are less than 0.1, and the other is that the maximum number of iterations
is reached, and we set the maximum number of iterations to 20 in this study. Table 4 shows
the average absolute errors of the estimated values in the iteration process of the proposed
framework utilizing eight images under the above-mentioned experimental settings. It
can be seen that when the number of iterations is four, the estimated yaw-angle biases and
target altitude reach stable values. After that, the results of subsequent iterations fluctuate
around the stable values. This is because in the iteration process, there is not only the
influence of yaw-angle biases, but also the influence of Gaussian measurement errors. This
makes it impossible for the whole system to reach a minimum yaw-angle biases through
multiple iterations.

Table 4. Iterative process of parameter estimation.

Number of
Iterations k 1 2 3 4 8 12 16 20

δψLk (deg) 16.372 4.269 2.812 2.753 2.841 2.912 2.736 3.051
δψRk (deg) 14.448 4.931 2.469 2.817 2.526 2.728 2.837 2.550

zP (m) 10.448 5.931 3.819 2.769 2.815 2.635 2.864 2.448

The main factors that affect the geolocation accuracy are the measurement errors of
the UAV’s navigation state. Therefore, we evaluated the performance of the proposed
framework under different measurement errors of the UAV’s attitude angle and position.
As the comparison algorithm, the one-shot method assumes that the distance from UAV to
the moving target is known (e.g., provided by laser rangefinder) and utilizes only one image
to estimate the three-dimensional coordinates of the moving target. This approach assumes
that the UAV navigation state is provided by an accurate AHRS, so it does not consider
the influence of the UAV navigation state measurement errors on the geolocation result.
We first assume that only the attitude angle has Gaussian measurement error in the UAV’s
navigation state, and then compares the performance of the proposed framework and the
one-shot method. Specifically, we set σψ = 1◦, ..., 5◦, respectively, and σψ = σθ = σϕ. In the
comparisons, we compared the three-dimensional geolocation errors and the distance error,
as shown in Figure 9. It should be noted that the distance error is the distance between the
estimated three-dimensional position and the true three-dimensional position.

The proposed framework utilizes 4 or 8 images to obtain the geolocation results for
each geolocation. It can be seen that with an increase in attitude-angle measurement errors,
the geolocation errors obtained by the two methods increase. In terms of the x coordinate
and y coordinate, the geolocation errors of our method are always smaller than those of the
one-shot method. This is because the proposed framework can expand the measurement
data by corresponding point matching, and more measurement data can mitigate the
negative influence of Gaussian measurement errors. In the same way, for the proposed
framework, the geolocation results obtained by using eight images are more stable than
those obtained by using four images. However, in terms of z coordinate, the geolocation
error of our method is larger than that of the one-shot method. There are two reasons for
this phenomenon. On the one hand, the target’s altitude zP is calculated according to the
distance between the UAV and the moving target, and the true distance is assumed to
be known for the one-shot method. On the other hand, the altitude estimation method
described in Section 2.2 regards the point closest to the two lines of sight as the target point.
The geolocation error caused by attitude measurement errors is more concentrated on the
target altitude because the horizontal distance between the UAV and the target is much
smaller than the vertical distance. Finally, the distance error of our method with eight
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images is smaller than that of the one-shot method, because the distance error contains the
three-dimensional errors.
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(d) Distance error.

Figure 9. Geolocation errors under different measurement errors of attitude.

Then, we assumed that only the position has Gaussian measurement error in the UAV’s
navigation state, and then compared the performance of the proposed framework and the
one-shot method. Specifically, we set σz = 1m, ..., 5m, respectively, and σx = σy = σz. In
the comparisons, we compare the three-dimensional geolocation errors and the distance
error, as shown in Figure 10. The same conclusion can be obtained; that is, our method
can greatly mitigate the impact of Gaussian measurement errors on the geolocation results
due to the using of the historical measurement data. The difference is that our method
with eight images is better than the one-shot method in terms of z coordinate. There
are two reasons for this phenomenon. On the one hand, the influence of UAV’s position
measurement error is greater than that of attitude measurement error for the one-shot
method. On the other hand, the proposed framework can mitigate the negative influence
of Gaussian measurement error by using weighted least-squares. In terms of distance error,
our method is superior to the one-shot method, no matter whether four images or eight
images are used.

After that, we assume that both the position and the attitude angle have Gaussian
measurement error in the UAV’s navigation state, and then compare the performance of
the proposed framework and the one-shot method. Specifically, we set σz = 1m, ..., 5m,
σψ = 1◦, ..., 5◦, respectively, and σx = σy = σz, σψ = σθ = σϕ. It can be seen in Figure 11
that our method with eight images has better mitigation effects on the negative influence
of various Gaussian measurement errors. In this experiment, the assumption of measure-
ment errors is consistent with most application scenarios. Even if the yaw-angle bias is
not considered, the proposed framework is better than the one-shot method in practical
applications.
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Figure 10. Geolocation errors under different measurement errors of position.

In addition to the Gaussian measurement errors, the yaw-angle biases provided by
the low-quality sensors also affect the geolocation results. Therefore, we assume that the
navigation state has both Gaussian measurement errors and yaw-angle biases, and compare
the performances of the proposed method and the one-shot method at different yaw-angle
biases. In detail, we set σψ = σθ = σϕ = 2◦ and σx = σy = σz = 3m. The yaw-angle biases
δψL, δψR of the left and right UAVs are set as (34). We set δψ0 to 10, 15, 20, 25, and 30,
respectively, and then compared the performances of the two methods. It is shown in
Figure 12 that the geolocation accuracy of the one-shot method is greatly reduced when
there is bias in yaw-angle measurement, and as the yaw-angle measurement bias increases,
the geolocation accuracy of the one-shot method becomes lower and lower. Compared
with the one-shot method, the accuracy of our method does not change significantly as
the yaw-angle measurement bias increases. This is because our method can estimate the
yaw-angle bias through the iterations between the estimation of the target’s altitude and
the parameter regression to avoid the negative impact of the yaw-angle measurement bias
on geolocation accuracy. However, in terms of z-coordinate error, the accuracy of both
methods has no obvious change as yaw-angle bias increases. There are two reasons for this
phenomenon. On the one hand, the one-shot method assumes that the distance between
the UAV and the moving target is known and the yaw-angle measurement error has little
impact on the target’s altitude estimation. On the other hand, the proposed framework can
eliminate the negative influence of the yaw-angle biases by utilizing the iterations between
the processes of altitude estimation and parameter regression.
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In conclusion, we first verified the effectiveness of the proposed corresponding-point-
matching method, target altitude estimation method, and yaw-angle bias estimation
method in the simulation environment. In addition, we conducted a lot of simulation
experiments to verify the effectiveness and robustness of the proposed framework, and the
simulation experiments showed that the geolocation results of the proposed framework
are more accurate and stable under Gaussian measurement errors and yaw-angle biases
compared with the commonly used one-shot method.
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Figure 11. Geolocation errors under different measurement errors of attitude and position.
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Figure 12. Cont.
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Figure 12. Geolocation errors under different yaw-angle biases.

3.2. Evaluation in Real Environment

A real indoor experiment has also been performed to further validate the proposed
framework. The UAVs used in this experiment were a laboratory product designed by our
group, as shown in Figure 13a. A camera waws installed vertically downward on each UAV,
so the attitude of the camera could be known from the attitude of the UAV. The two UAVs
tracked the moving target, as shown in Figure 13b, and transmitted their pose information
and target images to the ground station in real time. The two UAVs and the ground station
were run in the ROS system, and the precise position and attitude information of the UAVs
were provided by VICON (a motion capture system).

(a) UAV with vertically downward camera (b) Moving target geolocation scene

Figure 13. Realistic experimental environment.

The important experimental parameters are shown in Table 5. The results of the
realistic experiment are shown in Table 6. A total of 147 geolocation estimates were
performed while the UAVs were tracking the moving target. Each geolocation needed to
use eight images, among which, the distance between two adjacent images should satisfy
Tre ≥ 0.25 m. This shows that our method successfully achieved the geolocation of the
moving target, and the absolute mean errors of the three coordinates were 0.035, 0.034, and
0.159 m, respectively. When taking advantage of eight images for geolocation, the FPS was
22, which still meets the real-time requirements.

Table 5. Experimental parameters.

Number
of Images

Flight
Altitude

Flight
Speed σψ σz δψ L δψR

8 2.8 m 0.26 m/s 2◦ 0.2 m 10◦ −10◦
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Table 6. Geolocation results.

Coordinate MAE (m) STD (m) MAX (m)

X 0.035 0.029 0.125
Y 0.034 0.025 0.104
Z 0.159 0.113 0.446

The geolocation path of the realistic is shown in Figure 14. The black path represents
the actual position of the moving target obtained from VICON. The yellow path represents
the position of the moving target obtained from our method. It can be seen that the path
obtained by our method is undulating due to the influence of Gaussian measurement
error of the UAV’s navigation state. The above-mentioned simulation experiments have
demonstrated that our method can mitigate the effects of Gaussian measurement errors by
utilizing the historical measurements.

X(m)

3
2

1
0

1
2

3
Y(m)

3
2

1
0

1
2

3

Z(m)

3

2

1

0

1

2

3

Ground truth
Ours[images=8]

(a) Front view

X(m)

3

2

1

0

1

2

3

Y(m)

3

2

1

0

1

2

3

Ground truth
Ours[images=8]

(b) Vertical view

Figure 14. Paths of geolocation.

The simulated and realistic experiments show that the proposed framework imple-
ments the function of geolocating the moving target using only UAV vision and does not
rely on the accurate AHRS. Compared with the commonly used one-shot method, the
proposed framework can mitigate the effects of measurement errors in a UAV’s position
and attitude by using multiple measurement data and estimating the yaw-angle biases.

4. Discussion

In order to solve the problem that Gaussian measurement errors and system measure-
ment errors of UAV state will lead to a decline in moving-target geolocation accuracy, we
proposed a moving-target geolocation framework based on two UAVs. Our method uses a
two-step strategy to obtain the final result. The accuracy of the final result depends on three
aspects: the matching accuracy for the corresponding points, the accuracy of estimating
target altitude, and the accuracy of estimating yaw-angle biases. It can be seen in the
experimental results shown in Figure 8 and Table 1 that the proposed corresponding-point-
matching method and error-corresponding-point-filtering method can enable historical
measurement data to be used to estimate the current position of a moving target. In the
subsequent processing step, our method obtains the final result through multiple iterations
between target altitude estimation and yaw-angle bias estimation. The experimental results
shown in Tables 2 and 3 demonstrate that our method can estimate the target altitude
and yaw-angle biases, and the more measurement data are used, the more accurate the
estimated target altitude and yaw-angle biases will be. Even so, due to the influence of
Gaussian measurement errors, it is still difficult for the proposed framework to accurately
estimate the yaw-angle biases, which will be one of the directions of our future exploration.
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After that, we evaluated the geolocation performance of the proposed method. For
Gaussian measurement errors, obtaining more measurement data is the most effective
method to mitigate the influence of Gaussian measurement errors. However, we do not
simply increase the number of UAVs to obtain more observation data. If so, the cost will
be higher and the system will be extremely complex. Our strategy is to have historical
measurement data used to estimate the current position of the moving target through
corresponding point matching. From the experimental results in Figures 9–11, we can see
that our method can mitigate the influence of Gaussian measurement errors very well. In
contrast, the one-shot method is easily affected by the Gaussian measurement error because
it can only use one measurement datum. For yaw-angle biases, our strategy is to eliminate
the negative impact of yaw-angle biases through multiple iterations between target altitude
estimation and yaw-angle bias estimation. The experimental results in Figure 12 show
that our method can greatly mitigate the impact of yaw-angle biases on geolocation results
compared with the one-shot method, which does not consider yaw-angle biases. It is worth
noting that Zhang et al. [24] also considered the influence of yaw-angle biases on target
geolocation, but their method assumes that the target is stationary. Unlike this, our method
can be applied to moving-target geolocation.

In practical applications, the state measurement error of UAV is an important factor
affecting the geolocation accuracy of moving-target tracking. The experimental results show
that the proposed method can effectively mitigate the influence of UAV state measurement
error on moving-target geolocation accuracy. However, the limitation of our method is that
corresponding point matching requires the use of image background information, which
is difficult to achieve in some scenes with simple background information (such as the
geolocation of a moving target on the sea). Therefore, our next research plan is to develop a
more general geolocation method.

5. Conclusions

In this paper, we explored the problem of moving-target geolocation based on a
UAV platform with low-quality navigation state sensors. Our aim was to mitigate the
influences of Gauss measurement errors and yaw-angle measurement bias from low-
quality sensors on the moving-target geolocation accuracy. For this challenge, we proposed
a vision-based moving-target geolocation framework using dual UAVs, which can use
historical measurement data to estimate the yaw-angle biases of two UAVs and mitigate
the impact of Gaussian measurement errors. The results of the simulations and realistic
experiments demonstrate that the proposed framework has higher geolocation accuracy
than the traditional one-shot based method.

The framework proposed in this paper is only applicable to single target geolocation
scenarios. However, multi-target geolocation based on the UAV platform is also one of the
urgent needs in practical applications. Therefore, in future work, we will develop a more
general geolocation method.
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