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Abstract: The main objective of the presented study was to verify the potential of the Sentinel-5
Precursor (S-5P) Tropospheric NO2 Column Number Density (NO2 TVCD) to support air pollution
monitoring in Poland. The secondary objective of this project was to establish a relationship between
air pollution and meteorological conditions. The ERA-5 data together with the NO2 TVCD product
and auxiliary data were further assimilated into an artificial intelligence model in order to estimate
surface NO2 concentrations. The results revealed that the random forest method was the most
accurate method for estimating the surface NO2. The random forest model demonstrated MAE
values of 3.4 µg/m3 (MAPE~37%) and 3.2 µg/m3 (MAPE~31%) for the hourly and weekly estimates,
respectively. It was observed that the proposed model could be used for at least 120 days per year
due to the cloud-free conditions. Further, it was found that the S-5P NO2 TVCD was the most
important variable, which explained more than 50% of the predictions. Other important variables
were the nightlights, solar radiation flux, road density, population, and planetary boundary layer
height. The predictions obtained with the proposed model were better fitted to the actual surface
NO2 concentrations than the CAMS median ensemble estimations (~15% better accuracy).

Keywords: Sentinel-5P; TROPOMI; NO2; surface concentration; air pollution; ERA5; Copernicus;
meteorological conditions; machine learning; artificial intelligence

1. Introduction

Air pollution is a global threat leading to huge impacts on human health and ecosys-
tems. One of the most dangerous pollutants in the atmosphere is nitrogen dioxide (NO2). It
is responsible for respiratory diseases, cardiovascular diseases, lower self-cleaning airway
capacity levels, weakening of the immune function of the lungs, asthma, and many oth-
ers [1,2]. According to a report by the European Environment Agency (EEA), there were
55,000 premature deaths due to NO2 across Europe in 2018 [3]. Moreover, high nitrogen
concentrations damage ecosystems due to eutrophication and acidification (together with
sulfur dioxide, SO2). This in turn leads to changes in species diversity (reduced levels of
existing species and invasions of new ones), as well as to increased concentrations of toxic
metals in water and soils [3,4]. In this respect, it is important to monitor the spatiotemporal
distribution of NO2 in order to detect and mitigate high concentrations of this pollutant
in the atmosphere. Other air pollutants such as PM2.5 and PM10 are monitored more than
NO2, especially in Poland. To mitigate this problem, other data sources are needed apart
from the in situ measurements. This creates a strong demand for satellite data that allows
for timely information gathering on air pollution.

Remote sensing data obtained from space-borne sensors can be used to assess the
spatiotemporal distribution of NO2 at the global scale. The Ozone Monitoring Instru-
ment (OMI) onboard the National Aeronautics and Space Administration (NASA) Aura
satellite has been providing daily air pollution data from 2004 at the global scale [5,6].
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On the basis of the data provided by the OMI, Jamali et al. [7] found that the globally
tropospheric vertical column density (TVCD) of NO2 featured a slightly increasing trend
(0.004·1015 mol/cm2/yr) for the period 2005–2018. The highest increase in NO2 was ob-
served over India (0.04·1015 mol/cm2/yr) and the highest decrease was observed over
Japan (−0.049·1015 mol/cm2/yr). Generally, at the global scale, a statistically significant
linear trend was observed over ca. 62% of the Earth, out of which ca. 54% was positive
and ca. 8% was negative [7]. In the study performed by Krotkov et al. [8], NO2 TVCD data
from the OMI were analyzed over the most polluted areas around the world. It was found
that the NO2 tropospheric columnar concentrations decreased over the eastern USA by
40% and by 5% over Eastern Europe. On the other hand, increases were observed over
China (ca. +5%; however, the trend was expressly negative from 2011), the Middle East
(ca. +20%), and India (ca. +50) [8]. Negative trends were observed over eight European
cities, including Athens, Bucharest, Lisbon, Paris, Rome, Rotterdam, Berlin, and Madrid,
for the period 2005–2014 [9]. Georgoulias et al. [10] studied NO2 TVCD trends derived
from the records of four satellite sensors, namely the Global Ozone Monitoring Experiment
(GOME) sensor onboard the second European Remote Sensing satellite (ERS-2), the Global
Ozone Monitoring Experiment 2 (GOME-2) sensor onboard Meteorogical Operation A
(Metop-A), the GOME-2 sensor onboard Meteorogical Operation B (MetOp-B), and the
Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY)
sensor onboard the Environmental Satellite (Envisat). The key findings from this study
related to negative trends observed during the twenty-one years (1996–2017) over the most
industrialized and highly populated regions of the well-developed countries and positive
trends over developing regions [10]. In contrast to Jamali et al. [7], Georgoulias et al. [10]
claimed that linear trends are not reliable on a global scale for a such long period [10].

The major advancement in satellite observations of NO2 was the TROPOspheric
Monitoring Instrument (TROPOMI) instrument mounted onboard the Sentinel-5 Precursor
satellite (Sentinel-5P, S-5P) launched by the European Space Agency [11]. NO2 atmospheric
pollution has been even more threatening since the COVID-19 pandemic started, and many
scientific studies have elaborated on this topic. In this respect, reduced NO2 levels in 2020
were reported by Bauwens et al. [12] at the global and regional scales. They analyzed
NO2 TVCD data over 33 cities all over the world, and only over 1 city (Isfahan) did the
atmospheric NO2 concentration increase during the pandemic [12]. It was claimed that the
reason for this increase was related to ignoring COVID-19 restrictions in Iran [12].

The satellite NO2 column number density or tropospheric column number density is
a different physical quantity than the ground concentration expressed in parts per million
(ppm) or µg/m3. The physical relation between both quantities is usually complicated due
to the vertical variability of NO2 concentrations. A vertical profile of NO2 depends on many
factors, including the weather conditions, emissions, and chemical reactions. However, it is
known that the satellite NO2 TVCD is related to the surface concentrations, as the main NO2
sources are related to human ground activities and the lifetime of NO2 is short, which in
turn precludes transportation at long distances [13–15]. Since the launch of the OMI in 2004,
many studies on the modeling of NO2 concentrations at the surface have been conducted
by assimilating various NO2 TVCD satellite products. Sentinel-5P data have also been used
to estimate this kind of pollution. The research performed by Griffin et al. [16] over the
Canadian Oil Sands revealed a linear relationship between the TROPOMI NO2 TVCD and
ground mass concentration of NO2 characterized by a Pearson correlation coefficient (R)
of 0.67 [16]. A higher R coefficient (0.85) was observed by Zheng et al. [17], who studied
monthly means of NO2 derived from Sentinel-5P and in situ measurements for different
districts in China. Analogously, Cerosimo et al. [18] used the monthly mean S-5P NO2
TVCD product to retrieve the surface NO2 concentrations over Italy. However, in this study,
the authors did not average the measurements over the districts and used measurements
from single stations instead, as opposed to Zheng et al. [17]. Cerosimo et al. [18] reported
values of R2 = 0.85 (TROPOMI NO2 vs. ground concentration) over the north of Italy
and R2 = 0.71 over the south of Italy. In addition, Cerosimo et al. [18] also performed an
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analysis on non-averaged data that revealed values of R2 = 0.50 over the south of Italy and
R2 = 0.42 over the north of Italy. A similar coefficient of determination (R2 = 0.48 for hourly
data and R2 = 0.77 for annual data) was found by Jeong and Hong [19] for surface NO2
concentrations retrieved from the S-5P TVCD NO2 product over South Korea. Due to an un-
deniable relationship between atmospheric concentrations of pollutants and meteorological
conditions [20–24], as well as anthropogenic factors [23,25–28], they are often assimilated
into the ML-based NO2 retrieval models together with satellite NO2 products. In this
respect, the study carried out by Kim et al. [29] over the north of Italy, Switzerland, Austria,
and southeast France, based on the XGboost method [30], revealed different agreements
between the modeled NO2 concentrations and in situ measurements, depending on the av-
eraging interval, i.e., R2~0.45 for hourly data, R2~0.55 for daily averaged data, and R2~0.60
for weekly and monthly averaged data [29]. Kim et al. [29] found that the S-5P TVCD
NO2 product had a relative impact of 12% on the estimation of surface NO2 concentrations.
Only traffic emissions had a higher impact (14,8%). Other predictors that influenced the
surface NO2 values by more than 10% were the time of day (11.5%) and planetary boundary
layer height (PBLH: 11.4%) [29]. Wang et al. [31] employed five machine learning methods
for the estimation of surface NO2 atmospheric concentrations over China based on NO2
TVCD data together with ancillary data (land cover, normalized difference vegetation index
(NDVI), road density, and population density). Wang et al. [31] reported values of R2 = 0.72
for light gradient boosting (Light-GBM) [32], R2 = 0.68 for the XGBoost method [30],
R2 = 0.57 for the random forest (RF) method [33], R2 = 0.55 for the deep belief network (DBN)
method [34], and R2 = 0.43 for the BPNN (back propagation neural network) method [35].
The surface NO2 was predicted by Chan et al. [36] using the S-5P TVCD, planetary bound-
ary layer height, digital elevation model (DEM), air temperature, wind speed, relative
humidity, precipitation, and incoming shortwave radiation flux at the surface level as
predictors. They used an artificial neural network (ANN) algorithm [37] that featured
a correlation value of R2 = 0.64 [36]. Analogously, Kim et al. [29] studied the impact of
each predictor on the accuracy of the surface NO2 estimation. Chan et al. [36] also found
that the S-5P NO2 TVCD was the most significant variable when estimating surface NO2
concentrations [36]. From the perspective of inconsistent results in surface NO2 modeling
and the different impacts of the explanatory variables (e.g., meteorological, anthropogenic)
reported by the aforementioned studies, it is necessary to conduct consecutive studies to
better define the limitations in the modeling of atmospheric NO2 concentrations based on
satellite data, meteorological conditions, and anthropogenic factors. This challenge was the
main motivation to conduct this study and to address the following research questions:

• How much does the accuracy of surface NO2 modeling improve if the S-5P TCVD
NO2 product is assimilated into a model?

• What are the impacts of the meteorological conditions and anthropogenic factors on
the NO2 modeling results?

• What are the impacts of the temporal averaging of NO2 retrievals and in situ measure-
ments on the overall accuracy?

• Which machine learning models provide the most accurate NO2 estimations?
• What was the accuracy of the latest S-5P TROPOMI TCVD NO2 product version 2.3.1

released on 16 December 2021 [38]?

The main objective of this study was to verify the potential of a machine learning
(ML) approach based on the NO2 TVCD Sentinel-5P satellite product generated by the
European Space Agency (ESA) to support air pollution monitoring in Poland. In this
respect, the surface atmospheric NO2 concentration modeled by means of the ML algo-
rithm was validated against in situ measurements provided by the Chief Inspectorate of
Environmental Protection (GIOS). The secondary objective of the study was to establish
a relationship between NO2 air pollution (based on Sentinel-5P products) and the ERA5
meteorological reanalysis provided by the European Center for Medium-Range Weather
Forecasts (ECMWF).
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The analyses were performed for two temporal aggregation levels, namely hourly and
weekly data, to determine the impact of the temporal averaging. Furthermore, several ML
algorithms were tested together with a simple linear regression model to select the most
robust method. Ultimately, the impacts of the explanatory variables on the model results
were analyzed to determine the most significant variables.

This manuscript is structured into five sections. The Section 1 provides a compre-
hensive literature overview on the modeling of surface atmospheric NO2 concentrations.
Section 2 provides descriptions of the data used within the study, as well as the methodol-
ogy for the data processing, analysis, and validation. Section 3 provides the results of the
conducted analysis. Section 4 provides a discussion of the acquired results, while Section 5
concludes the conducted study.

2. Materials and Methods
2.1. Study Area

Poland was used as the study area to develop a NO2 retrieval algorithm and to analyze
the spatial distribution of NO2. The climate in Poland is temperate. It is oceanic in the
northwest and more continental towards the southeast. The average temperature in summer
is ca. 20 ◦C, while in winter it is ca. −1 ◦C [39]. The topography of Poland has a latitudinal
belt-like layout, with a young glacial landscape (with a belt for part of the country and lake
districts) in the northern part of the country, an old glacial landscape in some parts, and a
belt of highlands and mountains on the ground. The lowlands cover 91.3% of the area, the
highlands 5.6%, and the mountains 3.3%, of which 0.2% are high mountains [40]. The above
factors all make Poland a perfect representative of a temperate climate zone. Moreover,
other Central and Eastern European countries are facing similar problems and challenges
related to air quality as Poland. There is a similar annual mean mass concentration of NO2
in Poland of 15.6 µg/m3 to the other countries of the region, e.g., Czechia with 15.5 µg/m3,
Croatia with 13.8 µg/m3, Slovakia with 14.8 µg/m3, Hungary with 17.0; µg/m3, Serbia
with 17.3 µg/m3, and Slovenia with 14.5 µg/m3 [3].

2.2. Materials

The modeling of the surface NO2 mass concentration presented in this study was
based on in situ NO2 measurements, the Sentinel-5P TVCD NO2 product, the ERA-5
meteorological reanalysis from the Copernicus Climate Change Service (CCS), and various
ancillary datasets, such as for the nightlight intensity derived from the Visible Infrared
Imaging Radiometer Suite (VIIRS) satellite instrument, population density, road density,
and DEM. The study covered the period from 1 July 2018 to 30 July 2021.

2.2.1. NO2 Tropospheric Vertical Column Density (NO2 TVCD) Product Retrieved from
Sentinel-5P Satellite TROPOMI Measurements

The Sentinel-5P satellite was launched on 13 October 2017 as part of the Copernicus
Earth Observation Program. The S-5P mission supports the global monitoring of the at-
mosphere and air quality using TROPOMI. The TROPOMI instrument consists of four
spectrometers measuring radiation in the ultraviolet (270–320 nm), visible (310–500 nm),
near-infrared (675–775 nm), and shortwave infrared (2305–2385 nm) electromagnetic spec-
trums. At the beginning of the mission, the spatial resolution of the TROPOMI products
was 3.5 km × 7 km, while currently (December 2022) it is 3.5 km × 5.5 km. The width of
the swath is 2600 km, which allows for daily monitoring of the atmosphere at the global
scale. The spectral resolutions of the TROPOMI products vary from 1 nm in the UV band
through to 0.5 nm in the VIR and NIR bands and 0.25 nm in the SWIR band [11].

The NO2 TVCD product is generated by the Royal Netherlands Meteorological Insti-
tute (KNMI) by means of DOMINO [41,42] and Quality Assurance for Essential Climate
Variables (QA4ECV) [43] algorithms. These methods share three common steps:

1. The NO2 slant column densities are retrieved from the measured radiance and irradi-
ance spectra using the differential optical absorption spectroscopy (DOAS) method;
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2. The separation of tropospheric and stratospheric columns, i.e., their conversion to
tropospheric and stratospheric slant columns;

3. The conversion of tropospheric and stratospheric slant columns into tropospheric and
stratospheric vertical column densities [42,44].

The vertical profiles of NO2 are calculated for the center of a pixel featuring a spatial
resolution of 1◦ × 1◦ and are based on the chemistry transport model (CTM)—TM5-
MP [44,45]. Finally, the filtering of the cloud cover is performed using the Fast Retrieval
Scheme for Clouds from the Oxygen A-Band (FRESCO-S) algorithm [46].

Within this study, the reprocessed Sentinel-5P TROPOMI NO2 product (S5P-PAL) was
used (version 2.3.1), which covers the period from 1 July 2018 to 30 June 2021 [38]. The
NO2 TVCD values are expressed in mol/m2. The NO2 TVCD, acquisition time, and quality
flag (qa_value) data were obtained using Climate Data Operator (CDO) software [47] and
scripts written in the R programming language based on the raster package [48], ncdf4
package [49], and rgdal package [50].

This allowed us to filter the NO2 TCVD values, with the data qa_values > 0.75, as
suggested by van Geffen et al. [44] and Ialongo et al. [14] being used. Consequently, the
majority of the cloudy pixels (cloud radiance fractions > 0.5) and pixels covered by snow or
ice were removed [51].

2.2.2. In Situ Air Quality Measurements

The NO2 surface mass concentration was obtained from the Chief Inspectorate of
Environmental Protection (GIOS). The GIOS provides hourly averages of measurements
recorded every 10 s at a height of 2 m a.g.l. The number of stations where NO2 is measured
is constantly changing, as some new ones are added and some old ones are discontinued.
In this respect, 136 locations were selected featuring NO2 measurement records collected
since 2018. Further, stations classified as transport (roadside) and industrial stations were
excluded from the analysis because traffic-related and industrial-related pollutants can
vary substantially within a few meters, and such stations are not representative of a large
satellite footprint [36,52,53]. Thus, the data from 116 stations, including 20 non-built-up
stations, 12 suburban stations, and 84 urban stations, were used within this study [40]. The
spatial distribution of the stations in Poland measuring atmospheric NO2 concentrations is
dominated by urban areas, as there are only few background stations in Poland (Figure 1).

Due to the high daily variability of NO2 [54,55], the hourly means provided by GIOS
were linearly interpolated to the time of the S-5P image acquisition.

2.2.3. Meteorological Data

The meteorological conditions have a great impact on the air quality [20–24,29,30];
thus, they were also used as explanatory variables to predict the NO2 concentrations in
this study. In this respect, the following meteorological variables were analyzed: the air
temperature (T), dew point temperature (DT), atmospheric pressure (P), surface incoming
solar radiation accumulated over one hour (RAD), U zonal wind component (U WIND), V
meridional wind component (V WIND), and PBLH. The T and DT were used to calculate
the relative humidity (RH), while the U WIND and V WIND were used to calculate the wind
speed (WS) and wind direction (WD). These datasets were retrieved from the ERA5-Land
Hourly reanalysis model provided by the European Center for Medium-Range Weather
Forecasts (ECMWF) at the 0.1◦ × 0.1◦ spatial resolution [56]. The meteorological data,
excluding PBLH, were retrieved using the Google Earth Engine (GEE) [57], while the PBLH
data were obtained using an R programming language script using the ecmwfr package [58].
The ERA5-Land data were linearly interpolated to the time of the S-5P acquisition in order
to reduce temporal inconsistencies between meteorological and satellite data. Then, linearly
interpolated datasets were spatially downscaled to the 3.5 km × 5.5 km spatial resolution
using bilinear interpolation [59–61].
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The meteorological datasets were used to derive the zonal atmospheric circulation in-
dex values over Poland according to the classification method proposed by Lityński [62–64].
In this respect, the values for sea-level pressure from the NCEP/NCAR (National Centers
for Environmental Prediction/National Center for Atmospheric Research) reanalysis were
used. The circulation types (CT) were distinguished using 3 main indices (zonal, Ws; merid-
ional, Wp; cyclonicity index, Cp), which in turn were subdivided into 27 circulation types.
The Ws and Wp were calculated based on differences in atmospheric pressure between
zones at 40◦–65◦N and 0◦–35◦E, while the Cp was the atmospheric pressure over the node
nearest to Warsaw (52.5◦N, 20◦E) subtracted by 1000 hPa [62–64]. Over the years, the
synoptic maps used by Lityński were replaced by NCEP/NCAR reanalysis data [65–67].

2.2.4. Ancillary Data

NO2 emissions are greatly related to anthropogenic activities [13–15,68,69]. In this
respect, it was necessary to add anthropogenic explanatory variables to train the NO2
retrieval model, such as population density, road density, and satellite data on the intensity
of nightlights. In order to obtain information about the population density, the Global
Human Settlement Layers (GHSL) dataset was used for the year 2015. This dataset con-
tains the population density expressed as the number of people within a 250 m × 250 m
spatial grid [70]. Additionally, the intensity of nightlights was used, as it corresponds
well with socioeconomic dynamics [71–73]. This dataset consists of nighttime radiance
imagery acquired by the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night
Band (DNB) [74,75]. These two datasets were extracted from the GEE [57] at a spatial
resolution of 464 m × 464 m. The road density was derived from the OpenStreetMap
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dataset [76]. The population density and road density were calculated as the sum of people
within a 3.5 × 5.5 grid and the road density was calculated as the total length of the roads
within a grid.

Following recommendations from studies on NO2 modeling [29,30], the digital el-
evation model (DEM) from the Shuttle Radar Topography Mission (SRTM) featuring a
30 m × 30 m spatial resolution [77] was used in this study. The information on the terrain
elevation was extracted from the GEE [57].

Ultimately, the surface atmospheric NO2 concentrations from the CAMS (Copernicus
Atmosphere Monitoring Service) reanalysis were used to benchmark the NO2 retrieval
models proposed within this study. The CAMS dataset covers the period from 10 November
2018 to 30 June 2021 and consists of an ensemble median of 11 CAMS models considered as
the best-fitted to real concentrations among other models [78,79]. The temporal resolution
of the CAMS ensemble median is 1 h, while the spatial resolution is 1 km× 1 km. Estimates
are provided at 10 vertical levels (surface, 50 m, 100 m, 250 m, 500 m, 750 m, 1000 m, 2000 m,
3000 m, 5000 m). The data are provided for Europe only [80]. In contrast to other data, the
CAMS ensemble median NO2 estimates were not resampled to the resolution of Sentinel-5P
pixels so as not to distort the comparable results.

2.3. Methods
2.3.1. Modeling of Surface NO2 Mass Concentration

In order to predict the surface NO2, we used the datasets mentioned in Section 2.2. In
this respect, the NO2 TVCD, T, P, RAD, WS, PBLH, NIGHTLIGHT, POPULATION, ROADS
DENSITY, and ELEVATION were included in the models. Moreover, the atmospheric
circulation data (CT), as a categorical factor, were included in the machine learning methods.

Four kinds of methods were used:

• Linear regression with one independent variable (LM)—NO2 TVCD;
• Multiple linear regression with several independent variables (MLM)—NO2 TVCD, T, P,

RAD, WS, PBLH, NIGHTLIGHT, POPULATION, ROADS DENSITY, and ELEVATION;
• Random forests with several independent variables (RF)—NO2 TVCD, T, P, RAD, WS,

PBLH, NIGHTLIGHT, POPULATION, ROADS DENSITY, ELEVATION, and CT;
• Radial kernel support vector machine with several independent variables (SVM)—NO2

TVCD, T, P, RAD, WS, PBLH, NIGHTLIGHT, POPULATION, ROADS DENSITY, ELE-
VATION, and CT.

Prediction analyses were performed for two periods: hourly data (for hours of each
available S5-P image) and weekly data (weekly averaged data). Each variable was averaged
to the weekly mean.

One parameter was chosen to point out outliers within the dataset and exclude them:

• Stations measuring surface NO2 closer than 100 m from the road (2 stations;
1024 observations; 2% of all observations).

According to Section 2.2.2, transport stations were excluded from the analysis [36,52,53].
However, there were still stations located close to the roads within the dataset. Due to
the excessive noise concentrations over the stations next to the roads (and defined as
background stations), these were also excluded from the dataset [81].

After excluding the outliers, the datasets consisted of 50,099 hourly observations
and 13,765 weekly observations, having been reduced by 1024 observations (2%) and
994 observations (7%), respectively.

In order to perform prediction activities, the dataset was divided into two parts: a
training dataset used for the training model and a test dataset used for validation. The
training dataset consisted of data for January, March, May, July, September, and November,
while the testing dataset consisted of data for February, April, June, August, October, and
December. Due to our approach, the models were trained and validated over datasets that
differed from each other. The training dataset and testing dataset included 22,678 (45%)



Remote Sens. 2023, 15, 378 8 of 25

and 27,421 (55%) hourly observations, respectively, and 7126 (52%) and 6639 (48%) weekly
averages, respectively.

To obtain information about the availability of useful S-5P observations, we counted
the number of observations characterized by qa_values > 0.75 for each pixel within the
study area. Only data for 2019 and 2020 were chosen for the observation analysis as they
were the only fully covered years in the study’s analysis period.

2.3.2. Validation methodology

The results obtained from the formulated predictions models were validated using the
following statistical parameters:

• R-squared (R2):

R2 = 1− ∑(yi − ŷi)
2

∑(y1 − y)2 (1)

• Mean squared error (MSE):

MSE =
1
n ∑n

i=1(yi − ŷi)
2 (2)

• Root mean squared error (RMSE):

RMSE =

√
1
n ∑n

i=1
(yi − ŷi)

2

n
(3)

• Bias:

BIAS =
1
n ∑n

i=1(yi − ŷi) (4)

• Mean absolute error (MAE):

MAE =
1
n ∑n

i=1|yi − ŷi| (5)

• Mean percentage absolute error (MAPE):

MAPE =
1
n ∑n

i=1
|yi − ŷi|

yi
(6)

Here, yi is the actual value, ŷi is the predicted value, y is the mean for the actual values,
and n is the number of observations.

Considering that the data used for prediction purposes were expressed in various
units, we performed the normalization before the modeling. We used standardization
feature scaling in order to bring all values into the common scale:

z =
x−
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The variables’ importance for the random forest model was calculated with the ran-
domForest package created for the R programming language, and the variables’ contribu-
tion was expressed by the mean increase in MSE, divided by a measure of the variability
(%IncMSE), which was calculated as follows:

1. Compute the model’s MSE;
2. For each variable in the model:

(a) Permute the variable;
(b) Calculate the new model MSE according to the variable permutation;
(c) Take the difference between the model MSE and new model MSE;

3. Collect the results in a list;
4. Rank the variables’ importance according to the %IncMSE values, whereby the greater

the value, the more important the variable [83].

This method is considered more reliable than the decrease in node impurity [84,85].

2.3.4. Determining the Variability of the NO2 TVCD and Surface NO2 with Respect to the
Meteorological Conditions and Anthropogenic Factors

There were verified changes in the surface concentrations of NO2 and NO2 TVCD
due to different meteorological conditions (T, PBLH, P, WS, WD, CTYPE), as well as
anthropogenic and geographical factors (nightlights and population). The means of the
NO2 pollution levels (surface and columnar) were calculated for the following intervals:

• 2 ◦C for T;
• 250 m above ground for PBLH;
• 2 m/s for WS;
• N, S, E, W, SE, SW, NW, and NE for WD;
• 27 types of atmospheric circulations;
• 20 nW/cm2/sr for NIGHTLIGHT;
• People/km for POPULATION.

3. Results
3.1. Numbers of Observations

First of all, the limitations of using satellite S-5P data due to cloud coverage were verified.
As mentioned in Section 2.2.1, only available observations for 2019 and 2020 were calculated.

The numbers of cloud-free observations over Poland depended on the location. The
highest numbers of such observations were observed both in 2019 and 2020 over the south-
western part of Poland (170–180 observations in 2019, 190–200 observations in 2020) and
over the southeastern part of Poland (150–160 observations in 2019 and 190–200 obser-
vations in 2020). The lowest numbers of cloud-free observations were noticed over the
northern part of Poland near the Baltic Sea area, where only 130–140 observations were
noted in 2019 and 2020. Additionally, the area near the northeastern border was character-
ized by low numbers of cloud-free images; there were 130–140 cloud-free observations in
each year (Figure 2a,b). Thus, the frequency rates of cloud-free pixels within the borders of
Poland were similar in 2019 and 2020. For each part of Poland, it was possible to obtain
data for at least one-third of the year. For the areas in the southern part of Poland, it was
even possible to obtain data for more than half of the year.

3.2. Modeling of Surface NO2 Mass Concentration

The modeling of the surface NO2 was the main objective of the study. The results and
validation of estimated surface NO2 mass concentrations based on satellite, meteorological,
and other data are listed in Section 2.2.

Firstly, a linear model with one independent variable—NO2 TVCD—was used to
estimate the surface NO2 mass concentrations (LM-S5P). The results demonstrated that
R2 = 0.32 with MAE and MAPE values of 4.9 µg/m3 and 48.4% for the hourly estimates,
respectively. LM-S5P was the only model with an RMSE higher than 7.00 µg/m3 for
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these measurements. The accuracy of the model was absolutely unsatisfactory. The re-
sults were slightly better for the weekly averages. LM-S5P gave results of R2 = 0.33,
RMSE = 6.2 µg/m3, MAE = 4.3 µg/m3, and MAPE = 42.4% (Table 1). However, it was
decided to develop a model with more independent variables.
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Table 1. Statistics of prediction of NO2 surface mass concentration with use of various tech-
niques: LM-S5P—Linear regression with one independent variable (NO2 derived by Sentinel-5P);
MLM—Multiple linear regression with several independent variables; RF—Random forest;
SVM—Support Vector Machine.

Surface NO2 Mass Concentration Estimations [µg/m3]

MEAN MIN MAX SD 1st Q 3rd Q

Testing dataset (n = 27,241) 10.1 <0.1 111.4 8.9 4.4 13.1

Training dataset (n = 22,678) 10.4 <0.1 100.6 8.6 4.4 12.9

METHOD R2 MSE RMSE
[µg/m3]

Bias
[µg/m3]

MAE
[µg/m3]

MAPE
[%]

Hourly measurements

LM-S5P 0.32 53.2 7.3 0.1 4.9 48.4
MLM 0.45 43.1 6.6 0.4 4.2 42.1

RF 0.53 34.8 5.9 <0.1 3.7 37.2
SVM 0.54 37.7 6.1 1.0 3.7 36.9

METHOD R2 MSE RMSE
[µg/m3]

Bias
[µg/m3]

MAE
[µg/m3]

MAPE
[%]

Weekly averages

LM-S5P 0.33 38.1 6.2 0.1 4.3 42.4
MLM 0.49 29.0 5.4 0.2 3.6 35.5

RF 0.60 23.1 4.8 −0.1 3.1 30.8
SVM 0.59 24.3 4.9 0.8 3.2 31.2



Remote Sens. 2023, 15, 378 11 of 25

The second approach involved multilinear regression with ten variables (MLM).
The estimates were more accurate in comparison with LM-S5P. We observed values of
R2 = 0.45, RMSE = 6.6 µg/m3, MAE = 4.2 µg/m3, and MAPE = 42.1% for the hourly data and
R2 = 0.49, RMSE = 5.4 µg/m3, MAE = 3.6 µg/m3, and MAPE = 35.5% for the weekly aver-
ages (Table 1). This method allowed us to verify the influence of each variable in the model.
A detailed description of the impact of the variables is given in Section 3.3.

To improve the model and make it possible to include categorical data, a machine
learning approach was used. Firstly, estimates were calculated with the use of the random
forest (RF) method. This approach achieved R2 values higher than 0.50 for the hourly
data and 0.60 for the weekly averages. The MAE declined to 3.7 µg/m3 for the hourly
measurements and to 3.1 µg/m3 for the weekly averages, which corresponded to 37.2%
and 30.8%, respectively (Table 1). This model was more accurate, especially for the group of
high predicted values but low actual values. For the LM-S5P model and MLM, the observed
estimates were in the range of ca. 40–80 µg/m3, while the actual values were lower than
10 µg/m3 (Figure 3a,b). The RF method handled these measurements and predicted them
with higher accuracy (Figure 3c). Additionally, the group of estimations between the black
line and red line (Figure 3,b), which corresponded to actual values > 50 µg/m3 (Figure 3a,b),
was predicted with higher accuracy using the RF approach for the hourly data as well as
for weekly averages (Figure 3c,g). Therefore, it seems that the RF method was less sensitive
for non-typical actual surface NO2 mass concentrations, which compounded the results of
the LM-S5P and MLM method.
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The second machine learning approach used for modeling purposes was the radial kernel
support vector machine (SVM). The results and accuracy were very similar in comparison with
the RF model at R2 = 0.54, RMSE = 6.1 µg/m3, MAE = 3.7 µg/m3, and MAPE = 36.9% for the
hourly estimates and R2 = 0.59, RMSE = 4.9µg/m3, MAE = 3.2 µg/m3, and MAPE = 31.2%
for the weekly averages (Table 1). Significant differences in estimates between the RF
and SVM methods were observed within the interval ranges of 70–90 µg/m3 for the
actual (ground-based observation) values and 30–50 µg/m3 for the predicted values
(Figure 3c,d,g,h). The predictions calculated using the SVM method were slightly higher.

Figure 3 shows that all of the models overestimated the surface NO2 mass concentra-
tions during relatively clean conditions (NO2 values less than approximately 10 µg/m3)
and underestimated the values during pollution events.

To sum up, the development of the linear model into a more complex model requiring
more computing power was justified. The multilinear model revealed significantly better
estimation accuracy than the linear model with one independent variable (ca. 6%), while
the machine learning approaches were ca. 5% more accurate than the multilinear model (for
the hourly observations). For the weekly averages, the tendencies were similar. The MLM
model was ca. 7% more accurate than the LM-S5P model, while the RF and SVM estimates
had accuracy values higher than ca. 5% in comparison with the MLM model. Therefore,
the SVM method was a little bit more accurate for hourly estimates, while the RF method
was more accurate for weekly averages (Table 1). However, one approach was chosen for
further investigation—the RF model (for hourly and weekly data). This was decided due
to the very low differences between the SVM and RF models, which actually may have
been random and due to the lower bias for the RF model (<0.1. µg/m3 and −0.1 µg/m3

for hourly and weekly predictions, respectively) (Table 1). Moreover, computing estimates
using the RF method is faster and requires a computer with less computing power, which
makes the method more applicable for further studies.

The distribution and magnitude of differences between the predicted NO2 mass
concentrations (RF model) and actual surface NO2 concentrations are shown in Figure 4.
A perfect fit would be described by points placed strictly on the red line. Figure 4 allows
for easy visualization and interpretation of how many values are underestimated (points
below the red line) and overestimated (over the red line). In this study, the differences were
characterized by an asymmetric distribution. The magnitude of the underestimations was
higher than the magnitude of the overestimations (Figure 4). For the hourly estimates, this
trend is even more evident, as the tails are bigger and deviate more from the perfect fit
(red line). Differences higher than 50 µg/m3 can even be observed (Figure 4a), while for
the weekly averages a poor number of differences higher than 30 µg/m3 can be noticed
(Figure 4b). Additionally, the increase in overestimations is less smooth and the peaks are
higher, at ca. 30 µg/m3 for hourly and ca. 15 µg/m3 for weekly estimates (Figure 4).
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Considering that the function for the estimations was fitted above the perfect fit for
actual values lower than ca. 10 µg/m3 and under the perfect fit for actual values higher
than ca. 10 µg/m3 (Figure 3c,g), it was decided to verify the bias within the quartiles
defined by the actual surface NO2 mass concentrations. It was found that the proposed
random forest model overestimated the results, with 2.5 µg/m3 and 2.2 µg/m3 bias rates
for hourly and weekly predictions within the first quartile (Table 2), which was 4.4 µg/m3

(Table 1). Even if the bias rates show a high relative difference, it has to be emphasized
that a NO2 mass concentration of ca. 4–5 µg/m3 is still a very low level of air pollution.
Whether or not the model was biased at ca. 2–2.5 µg/m3, the results still showed a very
low level of NO2. The estimates within the second and third quartiles were less biased at
1.7 µg/m3 and 1.3 µg/m3 for the hourly and weekly NO2 mass concentrations, respectively
(Table 2). This is extremely important because it was the most frequent observed level of
NO2 pollution. It also corresponds well to Figure 3c,g, where the perfect fit and modeled
fit are the closest around the values defined by the second and third quartiles (Table 2).
The highest bias rates were observed within the fourth quartile, which were −5.1 µg/m3

and −4.0 µg/m3 for the hourly and weekly predictions, respectively (Table 2). Therefore,
these underestimations for the high actual values of the NO2 mass concentrations were
considered the most serious problem within the proposed model. Such results are expected,
while satellite columnar observations tend to average the pollution data in comparison
to one-level (surface) concentration. Therefore, all models underestimated the range of
surface concentrations of NO2. Since this was also a problem that had occurred within the
other studies, this issue was analyzed and is discussed in Section 4.

Table 2. Bias [µg/m3] for estimations performed by RF model within the quartiles both for hourly
measurements and weekly averages.

1st Q 2–3rd Q 4th Q

Hourly
measurements 2.5 1.7 −5.1

Weekly averages 2.2 1.3 −4.0

3.3. Variables’ Importance

With respect to Table 3, for the hourly estimates, the most important variable for the
prediction of surface NO2 mass concentrations was NO2 TVCD obtained from S-5P. It
explained 57% of the model’s results. The second most significant variable was PBLH,
which explained 7% of the results. RAD, WS, ROADS, and NIGHTLIGHT were the other
variables that explained at least 5% of the results, at 6%, 6%, 6%, and 5%, respectively. The
rest of the meteorological factors, T and P, explained less than 5% of the results. However,
they were still statistically significant (p-value < 0.05). POP explained 3%. Therefore, 57%
of the model’s results were explained by the TROPOMI data, 23% were explained by
the meteorological data (T, P, WS, RAD, PBLH), and 14% by the anthropogenic factors
(NIGHTLIGHT, POP, ROADS); 1% was explained by the elevation and 6% by an intercept.

Table 3. Variables’ coefficients used for multilinear regression.

Variable S5P T P RAD WS PBLH NIGHTLIGHT POP ROADS ELEVATION INTERCEPT

Coefficient
hourly

0.62
(57%)

−0.01
(1%)

−0.03
(3%)

−0.06%
(6%)

−0.07
(6%)

−0.08
(7%)

0.05
(5%)

0.03
(3%)

0.06
(6%)

0.01
(1%)

0.07
(6%)

Coefficient
weekly

0.69
(53%)

−0.04
(3%)

−0.04
(3%)

−0.06
(5%)

−0.07
(5%)

−0.10
(8%)

0.06
(5%)

0.04
(3%)

0.08
(6%)

0.01
(1%)

0.10
(8%)

The increases in the TVCD of NO2, nightlights, population, road density, and elevation
gave rise to increased surface NO2 mass concentrations, while the increases in temperature,
pressure, radiation, wind speed, and PBLH caused decreased surface NO2 mass concen-
trations. To sum up, it seems that the meteorological factors were favorable to decreases
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in surface NO2 values. In contrast, anthropogenic factors increase the surface NO2 mass
concentration (Table 3).

Very similar results were obtained for the weekly averages. Here, 53% of the model’s
results were explained by the S-5P data. Again, the second most important variable was
BLH (8%). Generally, the meteorological data expressed 24% of the model’s results, while
14% was expressed by anthropogenic factors. Additionally, 1% of the predictions were
determined by the elevation and 8% by the intercept (Table 3).

An investigation of the variables’ importance within the RF model was conducted
and the results are expressed as % changes in the MSE. Because the RF model allows for
using categorical data, it was possible to verify the impacts of factors such as the circulation
type (CT).

For the hourly measurements, just like with the multilinear approach, the most impor-
tant variable for the RF model was the S-5P TVCD of NO2. The decrease in accuracy when
excluding S-5P from the model was 27%. The next most significant variable was NIGHT-
LIGHT (19% decrease in accuracy). The other variables that decreased accuracy by at least
15% when excluded from the model were PBLH (16%) and ROADS (15%). Beside PBLH,
the meteorological factor that affected the accuracy the most was RAD (14% decrease in
accuracy). POP was almost as important (an almost 14% decrease in MSE). When excluding
other factors from the RF model, the accuracy decreased by less than 10% (T, 9%; WS, 7%;
ELEVATION, 5%; P, 4%). The lowest impact on the model accuracy was for CT; removing
CT from the model increased the MSE by 3% (Figure 5a). Thus, it seems that no additional
factor such as CT influenced the quality of the RF model in comparison with the MLM
model except for the method itself. In contrast with their importance within the MLM
model, the anthropogenic factors (NIGHTLIGHT, ROADS, POP) were more important for
the RF approach (Table 3).
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Slightly different results were revealed for the weekly averages. TVCD of NO2 and
NIGHTLIGHT were again the most important factors (23% and 13% decreases in accuracy,
respectively, when excluded from the model). On the other hand, RAD and POPULATION
were more important than ROADS (13% and 11% decreases in accuracy, respectively). Still,
PBLH had a significant impact on the model (12% increase in MSE when excluded). Again,
T, WS, ELEVATION, and P were the least important with 5%, 3%, 3%, and 2% decreases
in accuracy, respectively (Figure 5b). It is worth mentioning that the impacts of WS and P
were lower for the weekly averages estimations than the hourly estimations, while with the
MLM approach, the opposite was true (Table 3). Regardless, according to their importance
and influence on the MSE, two groups of variables are emphasized for the RF model (both
for the hourly and weekly data):

• Those with an impact higher than or equal to 10% on the changes in MSE: S5P, NIGHT-
LIGHT, PBLH, ROADS, RAD, and POP;
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• Those with an impact lower than 10% on the changes in MSE: T, P, WS, ELEVATION,
and CT.

3.4. Changes in NO2 TVCD and Surface NO2 Mass Concentration in Respect to Meteorological
Conditions and Other Factors

The changes in NO2 TVCD and surface NO2 mass concentration values were verified as
indicators of pollution in each interval defined for each meteorological or anthropogenic factor.

A decrease in air temperature implied a decrease in air pollution (TVCD of NO2 as
well as surface NO2). Starting at −4–0 ◦C, the surface NO2 fell consistently to 24–28 ◦C
and then it increased until the last interval (Figure 6a). The slight increase starting from
24–28 ◦C was supposedly induced by photochemical reactions that started to occur with the
high solar radiation flux and high air temperature [86]. In contrast, the surface NO2 mass
concentration stopped rising at the 8–12 ◦C range and then fell further at 24–28 ◦C. Just like
the surface NO2, it increased again in the next two intervals. On average, the surface NO2
concentration dropped by 0.8 µg/m3 in each subsequent interval, while the NO2 TVCD
concentration dropped by 0.7 × 105 µmol/m2 in each subsequent interval. The biggest
changes were noticed for the 20–24 ◦C range, which were −2.2 µg/m3 for the surface NO2
and −2.4 × 105 µmol/m2 for the TVCD of NO2. The first interval (below −4 ◦C) seemed
to be out of sync because there was a poor number of observations (lower than 1% of all
observations). For the same reason, it was hard to unequivocally interpret results for the
>32 ◦C interval (Figure 6a).

The meteorological parameter with the greatest effect on air pollution was PBLH
(Section 3.3). A trend of decreasing air pollution with increasing PBLH values was observed.
This can be explained by deeper convective mixing of the air pollution emitted at the surface.
One exception was the first interval (0–250 m a.g.) for the TVCD of NO2; however, only
1.5% of all observations were covered within this interval. The average decrease in the
surface NO2 mass concentration was 2.7 µg/m3 with PBL at elevations higher than 250 m,
while the average decrease in the TVCD of NO2 was 1.3 × 105 µmol/m2 with PBL at
elevations higher than 250 m (Figure 6b).

A significant decrease in air pollution was also observed with increasing wind speed.
The surface NO2 mass concentration decreased by 1.5 µg/m3 on average with a WS increase
of 2 m/s, while the columnar density decreased by 1.8 × 105 µmol/m2. The greatest drops
were observed between the first and second intervals at 2.7 µg/m3 and 2.1 × 105 umol/m2,
respectively. There was a greater decrease between 8–10 m/s and >10 m/s for the satellite
NO2 values; however, only 0.1% of all observations were collected under such conditions
(Figure 6c).

There were also observed differences in surface NO2 and NO2 TVCD values for differ-
ent advections. This was confirmation that the air is cleaner during northern advections.
This is caused by the movement of relatively clean Atlantic air masses from the north and
the inflow of more polluted air masses from the south. Additionally, the eastern wind
direction was more favorable for lower TVCD and surface NO2 values than the western
advections (Figure 6d). As was mentioned previously, NO2 is mostly generated by human
activities, and beyond the western border of Poland there are many human settlements. On
the other hand, beyond the eastern border there are more forests, arable lands, grasslands,
and wetlands.

The dependence above was confirmed by the distribution of surface NO2 concentration
and NO2 TVCD with respect to the circulation types. Therefore, the pollution was higher
during southern and western circulations, while the lowest pollution was observed during
the northern and eastern circulations. Additionally, the pollution was higher during
gradientless circulations (suffix o) when the air masses were slack and air mixing was
obstructed (Figure 6e).
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As was already pointed out, the anthropogenic factors were also very significant for the
distribution of NO2 pollution. We found positive trends of 0.9 µg/m3 and 0.7 × 105 µmol/m2

increases in surface concentration and columnar NO2 density, respectively, with increases
in population density for the 10,000 people per pixel. However, these trends were not so
evident or constant. We observed an exception for the 70–80,000 people-per-pixel interval,
which was characterized by evident decreases in surface and columnar NO2. On the
other hand, it was hard to interpret these two last intervals due to the poor numbers of
observations, representing 1.8% and 0.9% of all observations, respectively. Moreover, it
was assumed that in such areas, there was a lot of residential construction and a lower road
density, positively influencing the NO2 emissions [23,29,31]. Regardless, a significant trend
of increasing NO2 was observed for growing populations (Figure 6g).

The nighttime radiance was the last analyzed variable with respect to changes in NO2
concentration and columnar density. The tendency of the two types of air pollution was pos-
itive for the surface NO2 but was negative for the TVCD. For the surface NO2, we observed
a 1.1 µg/m3 increase per 20 nW/m2/sr, while we observed an average 0.8 × 105 µmol/m2

decrease per 20 nW/m2/sr for TROPOMI NO2. However, poor numbers of observations
could lead to misleading conclusions. The last two intervals covered only 1.2% and 1.7%
of the total, respectively. If they were excluded from the analysis, the trends for both the
surface and satellite-measured NO2 would be positive (Figure 6f).

To sum up, changes in NO2 pollution, for both the surface mass concentration and
columnar density, were observed with respect to the different meteorological conditions
and anthropogenic factors. PBLH was the variable that was distinguished by the highest
change in air pollution through the intervals. It corresponded well with the RF model
and MLM model, which were strongly dependent on the PBLH. Additionally, lower air
temperatures implied higher air pollution. This corresponded well with the significant
impact on the model by the RAD, which was strictly connected to the temperature but also
connected to the PBLH. Furthermore, it was confirmed that the wind speed affected the
NO2 pollution. A higher wind speed implied a lower surface NO2 concentration and TVCD
of NO2. The analysis on the advections and circulation types confirmed that southern and
western advections implied higher levels of NO2. Finally, we affirmed the influence of
human activities and settlements, with higher population densities and higher radiance
levels due to nightlights being linked to increases in NO2.

4. Discussion

Chan et al. [36] performed similar research for Germany, which is quite climatically
similar to Poland. They found a value of R2 = 0.64 using a neural network approach.
However, they compared the daily averaged surface mass concentration of NO2 to the
daily averaged NO2 TVCD, so their result is not fully comparable with our results [36].
Chan et al. [36] also verified the impact of each variable on their model. Both our results
and their results show that the TVCD of NO2 is the most important variable when trying
to synergize satellite, meteorological, and geographical data in order to estimate surface
pollution concentrations. On the other hand, the second most important variable in the
mentioned study was elevation, which was one of the least important variables in our
model. It is supposed that Germany has a more varied topography, so that variable has
more influence. What is interesting is that in Chan et al.’s study, the impact of the PBLH
on the model was very low [36]. For the proposed RF model, the PBLH was the most
important meteorological variable for hourly estimates and the second one for weekly
estimates. This finding corresponds with the results reported by Kim et al. [29], who found
that the PBLH was the most important meteorological factor (4th most important of all
variables) in their model. In contrast, they claimed that the solar radiation influenced the
results least in their model, while for the proposed model it was as important as the PBLH.
However, for modeling purposes they used the hour and day of the year, for which the solar
radiation was a kind of derivative [29]. Thus, the influence of the solar radiation could be
explained by those two variables. The validation of the model performed by Kim et al. [29]
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showed a value of R2 = 0.59, which was similar to our results. Again, just like in our study
and Chan et al.’s study [36], the model proposed by Kim et al. [29] tends to underestimate
the surface NO2 for highly polluted days. However, they claimed that this was intentional
in order to optimize the predictions for mean concentrations [29]. In other studies, in which
only the NO2 TVCD was used to the estimate surface NO2, worse results were achieved,
including R2 = 0.45 in Griffin et al.’s study [16] and R2 = 0.48 in Jeong and Hong’s study [19].
In the only study on TROPOMI NO2 performed for Poland, Kawka et al. [87] compared
NO2 TVCD with surface NO2 concentrations estimated using the GEM-AQ model [88] with
the use of averaging kernels derived from the S-5P datasets [87]. They estimated monthly
averages, so their results cannot be compared with our results. However, it was pointed
out that the estimates were more accurate when PBLH data were added to the model [87].

Our estimates were also compared to estimates provided by the CAMS model for
the ensemble median of the models. Because of the availability of the CAMS data (over
a three-year rolling archive), a comparison was performed for the 10 November 2018–30
June 2021 period. In this respect, the MAE, MAPE, and R2 values of the RF model could be
different from the values in Section 3.2.

The comparison revealed that the proposed RF model estimated surface NO2 con-
centrations with ca. 15% better accuracy than the CAMS ensemble median model (ca.
1.5 µg/m3). The R2 for the RF model was 0.08 higher than the R2 for the CAMS model.
Both the RF model and CAMS model generally underestimated the NO2 surface mass
concentrations (Table 4).

Table 4. Comparison of RF and CAMS ensemble median models’ statistics.

R2 MAE [µg/m3] MAPE [%]

RF MODEL 0.54 3.9 40.0
CAMS 0.46 5.4 52.7

Figure 7 shows the spatial distribution and variability of the modeled surface NO2
concentrations obtained from the RF model (Figure 7a,c), which were developed within
the study, as well as the predictions derived from the CAMS model (ensemble median)
(Figure 7b,d). The overall distribution of the surface NO2 mass concentrations is quite
similar across the years and methods. The most polluted areas, around cities such as
Warszawa, Lodz, Katowice, Krakow, and Wroclaw, are distinguished by surface NO2
ca. concentrations of ca. 10 µg/m3 by both the RF and CAMS models. However, there
are differences over the other capital cities (smaller cities) such as Bialystok, Olsztyn,
Lublin, Rzeszow, and Gorzow Wielkopolski. In 2019 and 2020, the RF model (Figure 7a,c)
indicated a slightly higher NO2 level than the CAMS ensemble median (Figure 7b,d).
In Figure 7a,c, single pixels can be observed over these cities (which clearly differ from
the surrounding areas), which cannot be observed in Figure 7b,d. Moreover, the same
situation can be observed for Bydgoszcz and Torun in 2020. According to the RF model, a
mass concentration range of 4–6 µg/m3 NO2 was observed for these cities, while in the
neighborhoods it was 2–4 µg/m3. The CAMS ensemble median indicated that in Torun and
Bydgoszcz, as well as around these cities, the surface NO2 concentrations were 4–6 µg/m3.
At this point, it should be remembered that NO2 is strictly connected to human activities,
so the air pollution in the city should be higher than in the surrounding area. Thus, it is
claimed that the proposed RF model is more sensitive in estimating surface NO2 mass
concentrations over human settlements. On the other hand, the CAMS ensemble median
(Figure 7b,d) estimated higher surface NO2 concentrations than the RF model (Figure 7a,c)
over the area that starts from Warsaw and passes through Lodz, then reaches Katowice and
Krakow. This is where one of the busiest motorways in Poland is located. It seems that the
CAMS ensemble median is more sensitive to linear traffic emissions.
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capital cities of the voivodeships (NUTS-2).

The model developed within this study is distinguished by its better accuracy (Table 4)
and spatial recognition for surface NO2 concentrations than the CAMS (ensemble median)
model (Figure 7). However, it must be remembered that the CAMS model provides data on
many pollutants. Moreover, the CAMS data are provided hourly. The RF model created
within the study is dependent on satellites, so it is impossible to predict surface NO2
concentrations every day using the described approach.

The proposed RF model is prone to similar aberrations as the models used in previous
studies; high surface NO2 mass concentrations are underestimated while very low values
(<5 µg/m3) are overestimated [29,31,36,87,89]. The previous studies did not indicate
specific reasons for this but pointed out that it was characteristic of the modeling of NO2
mass concentrations in itself. Underestimations of high values and overestimations of
low values were also observed for the ensemble median model estimates provided by
CAMS [90,91]. It is assumed that the main reason for the underestimations in the proposed
random forest model’s results is the underestimation of columnar values of NO2 provided
by the Sentinel-5P measurements, which was the most important variable within the
model. The underestimation of the columnar density is a widely known issue that has been
described many times since the launch of S-5P. It was described in studies on Sentinel-5P
NO2 concentrations [38,92]. Moreover, it was observed by Griffin et al. [16] in a study
performed over Canada, by Ialogno et al. [14] in a study performed over Finland, and
by Liu et al. [93] in a study performed over China. Thus, this issue has been observed
all over the world. Regarding the reasons for underestimations, these include the coarse
resolution of the a priori-derived profiles (1◦ × 1◦), aerosol impacts, uncertainties regarding
the cloud fraction [86], and the size of the TROPOMI resolution for the atmospheric mass
factor (AMF), which cannot resolve street-level variations in concentrations [94]. As such,
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algorithms dedicated to providing columnar NO2 concentrations from TROPOMI have
been developed. This was the motivation for reprocessing the Sentinel-5P TROPOMI
NO2 product (S5P-PAL) with the algorithm from version 2.3.1, which was supposed
to improve the accuracy of the NO2 column density estimates over the most polluted
areas [38]. Underestimations of the TVCD of NO2 had been also found for data derived
by the OMI [94–96] and GOME [97]. As a reason for the overestimation of low values,
it has been indicated that during clear-sky conditions, which are also relatively clean air
conditions, the AMF is underestimated and the NO2 TVCD is overestimated [98].

To sum up, the proposed model underestimates high values and overestimates surface
NO2 mass concentrations. The estimates for the second and third quartiles were quite
similar to the actual values. This corresponded well with the other studies and models. The
fact that the problem has appeared within studies using the TROPOMI as well as the OMI
and GOME means that the issue is caused by the satellite measurement itself, and not by
the method of prediction. In contrast to the previous studies, the factors with the greatest
effects on the estimates were different for the Polish study area. This led to the conclusion
that in different regions, different variables are the most significant for the surface NO2
mass concentrations.

5. Conclusions

This study aimed to estimate NO2 surface mass concentrations based on columnar
NO2 obtained from Sentinel-5P measurements, meteorological conditions, and anthro-
pogenic and geographical factors. Four approaches, including linear regression, multilinear
regression, and machine learning methods such as random forest (RF) and support vector
machine, were used to achieve the goal of this research. The estimations were performed
with respect to the time ranges (hourly and weekly).

It was found that the random forest (RF) and support vector machine (SVM) models
were the most accurate methods for estimating surface NO2 concentrations. However, the
RF model was chosen as the best solution as it was faster and required a computer with
less computing power, making it applicable for further usage. The RF model demonstrated
MAE values of 3.4 µg/m3 (MAPE~37%) and 3.2 µg/m3 (MAPE~31%) for the hourly and
weekly estimates, respectively (Section 3.2). It also has to be pointed out that the ground
measurements may have been influenced by some errors. In particular, the location of
a certain station may not be representative for the whole pixel area, in addition to the
significant NO2 equipment uncertainty. In fact, the proposed model may be more accurate
than is described by the statistics. Furthermore, it was observed that the RF model could
be used for at least 120 days per year due to the cloud-free conditions. However, areas
with ca. 180 days a year with favorable conditions for estimation were distinguished
(southern–western Poland) (Section 3.1).

The variables’ impact on the estimations was also verified. It was found that the
S-5P TVCD of NO2 was the most important variable, which explained more than 50%
of the predictions. Other important variables were the nightlights, solar radiation flux,
road density, population, and planetary boundary layer height (PBLH). The impact of
the PBLH was particularly significant, as suggested by Kawka et al. [87]. They used
only TROPOMI data, but they suggested using the PBLH in further research. The data
quantity of the proposed model was quite similar to previous studies performed for other
areas [16,19,29,36] (see Section 4). Importantly, the predictions obtained with the proposed
RF model were better fitted to the actual surface NO2 concentrations than the CAMS
median ensemble estimations (ca. 15% better accuracy), which suggested that the RF model
is more accurate for the area of Poland.

Changes in NO2 pollution, both in terms of the surface mass concentration and colum-
nar density, were observed with respect to various meteorological conditions. The most
significant changes were observed for the increase in PBLH when the air pollution de-
creased by 2.7 µg/m3 at 250 m (Figure 5b). Additionally, lower air temperatures and lower



Remote Sens. 2023, 15, 378 21 of 25

wind speeds implied higher air pollution. Moreover, western and southern advections as
well as atmospheric circulations were favorable to higher levels of NO2 (Section 3.4).

To conclude, the key findings of this research were as follows:

• There were at least 120 days per year when it was possible to perform model calcula-
tions for Poland using TROPOMI observations;

• The results revealed that the machine learning methods (RF and SVM) gave ca. 63%
accuracy for hourly estimations of NO2 and 69% accuracy for weekly averages;

• The implementation of meteorological and anthropogenic variables improved the
quality of the models. The MLM approach gave 6% (hourly) and 7% (weekly) lower
MAPE values than the LM-S5P approach, while the RF and SVM approaches gave
11% (hourly) and 12% (weekly) lower MAPE values than the LM-S5P approach;

• The planetary boundary layer height, solar radiation, nightlights, roads density, and
population influenced the estimations the most;

• The air temperature, wind speed, surface pressure, elevation, and type of atmospheric
circulation influenced the estimations the least;

• The trends for the surface NO2 and TVCD of NO2 were negative for increases in
air temperature, PBLH, and wind speed, while they were positive for increases in
population and nightlights;

• The RF model created within the study was better fitted to the actual values than the
CAMS ensemble median model.

The conclusions drawn from this study will be further used to improve the model and
to verify its accuracy for other areas. Our attention was paid to the issue of the station’s
representativeness. Thus, in further research, we will verify the station’s representativeness
with respect to the area of the TROPOMI pixel. In addition, information on the vertical
variability of the NO2 concentrations (especially at the PBL and above) could improve the
estimations of the surface concentrations. For this purpose, drone observations will be used
to determine the NO2 profiles and to improve our models.
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