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Abstract: The high-precision regional geoid model provides important fundamental geospatial infor-
mation for developing and applying many disciplines. Deterministic and stochastic modifications
are applied to Stokes’s and Hotine’s formulas of geoid modeling to reduce errors. Based on the
Experimental Geopotential Model 2019 (XGM2019), this paper used Stokes’s and Hotine’s formulas
to analyze the variation of global root mean square error (RMSE) with modification parameters for
two deterministic (Wong and Gore; and Vaníček and Kleusberg) and three stochastic modifications
(biased, unbiased, and optimum). Taking the quasigeoid refinement of Jilin Province as an example,
the global RMSE, approximate geoid undulation, and additive corrections were calculated. The
parameter analysis and the global RMSE calculation showed that the variation of the modification
limits and the terrestrial gravity data error variance had a centimeter-level effect on the global RMSE.
In contrast, the impact of the integration radius was relatively small. The stochastic modifications
were better than the deterministic ones in calculating the global RMSE. The global RMSE of Hotine’s
formula was smaller than that of Stokes’s, and its unbiased and optimum modifications reached
the minimum value of 12.9 mm. The validation of XGM2019 and the refined quasigeoid based
on the high accuracy GPS/leveling points showed that the standard deviation (STD) of XGM2019
was 5.8 cm in Jilin Province, and the refined optimal quasigeoid model was 2.9 cm. Stokes’s and
Hotine’s formulas provided the same accuracy in the study area. In the western plain area, the
accuracy of the deterministic modifications was 2.0 cm, which was about 0.4 cm higher than that
of the stochastic modifications. In the eastern mountainous area, the stochastic modifications were
better than the deterministic ones, and the accuracy was about 3.2 cm. Stokes’s and Hotine’s formu-
las based on deterministic and stochastic modifications significantly improve the accuracy of the
XGM2019. The deterministic and stochastic modifications show millimeter-level differences in plain
and mountainous areas.

Keywords: geoid refinement; Stokes’s formula; Hotine’s formula; deterministic and stochastic modifications

1. Introduction

The geoid is the gravitational equipotential surface that coincides with the global
tideless mean sea surface and extends into the interior of the continents [1]. In the spherical
approximation, Stokes’s formula combines global gravity anomaly data with kernel func-
tions to integrate for geoid modeling [2]. It is a challenge to obtain global gravity data, and
gravity data within a certain radius of the calculation point are used to participate in the
calculation, resulting in missing gravity signals outside the radius and causing truncation
errors. Molodensky et al. proposed a modification of Stokes’s formula by combining
terrestrial gravity data with the global geopotential model (GGM) [3], where the terrestrial
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gravity data and GGM provide the short-wavelength and long-wavelength components,
respectively, to reduce the truncation error.

Several deterministic and stochastic modifications to Stokes’s formula are proposed.
The deterministic approaches consider the truncation error, and the terrestrial gravity data
and the global geopotential model error are ignored. The main deterministic modification
methods have Molodenskii [3], Wong and Gore [4], Meissl [5], Heck and Grüninger [6],
Vaníček and Kleusberg [7], Vaníček and Sjöberg [8], and Featherstone [9]. Sjöberg proposed
biased, unbiased, and optimum stochastic modifications to Stokes’s formula [10–12]. The
stochastic modifications simultaneously consider the error in truncation, the terrestrial grav-
ity data, and the global geopotential model. The least squares (LS) are applied to calculate
the modification parameters to minimize the expected global mean square error (MSE).

Sjöberg proposed the least squares modification of Stokes’s formula with additive
corrections (LSMSA) [13], which used the terrestrial gravity anomaly as the integration
term and adopted the stochastic least squares modification methods with the additive
corrections to calculate the geoid height. Featherstone gave a combination of deterministic
and stochastic modifications [14], using stochastic modifications when the error variance
is reliable, and, vice versa, the deterministic modifications are recommended. Ellmann
compared two deterministic and three stochastic modification methods for Stokes’s for-
mula [15], and the results showed no significant differences between the deterministic and
stochastic modifications. Stokes’s formula’s deterministic and stochastic modifications
have been widely used in geoid modeling [16–21].

As the solution of the geodetic second boundary value problem, Hotine’s formula
is also applied to geoid modeling [22]. Hotine’s formula uses the integration term of
gravity disturbances calculated from the ellipsoidal heights. The modification of Hotine’s
formula is similar to Stokes’s Jekeli-derived Molodensky-type truncation coefficients of
Hotine’s formula [23]. Vaníček et al. [24], Rapp [25], Alberts and Klees [26], and Changyou
Zhang proposed the deterministic modifications to the Hotine’s formula [27]. Novák [28],
Sjöberg, and Eshagh et al. used airborne gravity data for geoid modeling based on Hotine’s
formula [29], and Featherstone summarized the deterministic, stochastic, and hybrid
modifications to Hotine’s formula and their practical applications [30].

Märdla proposed the least squares modification of Hotine’s formula with additive
corrections (LSMHA) and used part of Northern Sweden in Europe as the study area for
geoid modeling [31]; the results showed that there were no significant differences between
the LSMHA and LSMSA. Işık et al. applied the LSMHA and LSMSA methods to calculate
the Colorado geoid based on airborne and terrestrial gravity data [32]. Sakil et al. adopted
the LSMHA method for geoid modeling using gridded and non-gridded gravity data [33].
Abbak et al. provided a scientific software package for the LSMHA method [34].

Based on the above studies, this paper applies two deterministic and three stochastic
modifications to Stokes’s and Hotine’s formulas. The terrestrial gravity data are used as the
integration term to refine the quasigeoid of Jilin Province. In the modeling, we reasonably
analyze the selection of modification parameters according to the global RMSE values.
The study region is divided into plain and mountainous areas, following the topographic
differences, in order to explore the influence of topography on the modeling of different
integration formulas and all types of modifications.

2. Motivation and The Study Objective

This study aimed to contribute with the numerical assessment of five different modifi-
cation methods for Stokes’s and Hotine’s formulas by computing a number of quasigeoid
models of the Jilin Province, China. High-precision regional quasigeoid plays a vital role in
practical engineering applications, earth science research, etc. In past studies, deterministic
and stochastic modifications have been widely used for geoid refinement. Meanwhile, the
development of Global Navigation Satellite System (GNSS) also provides the possibility
for the application of Hotine integration. In order to make the experiments richer, we
conducted the comparison between different integration formulas and different modifi-
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cation methods at the same time and chose the same modification parameters as much
as possible to make the comparison results more reliable. The means of the expected
global RMSE and evaluation by the GPS/leveling points make the selection of the best
modification method. Through this experiment, we expect to establish a high-precision
quasigeoid model for Jilin Province and provide some reference for geoid modeling by
different modification methods.

3. Data and Methods
3.1. Study Area and Data

Jilin Province (40.9◦–46.3◦N, 121.6◦–131.3◦E) is located in the central part of Northeast
China (Figure 1), with a total area of about 187,400 km2. The topography of Jilin Province
gradually rises from west to east, with a maximum elevation of about 2667 m and an
average elevation of about 405 m, showing a significant difference in height between the
east and west. The study area was divided into plain and mountainous regions based on
the topographic discrepancies. The average elevation of the plain and mountainous areas
is about 170 m and 600 m, respectively.
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Figure 1. GPS/leveling points’ distribution in Jilin Province, China.

The choice of GGM plays an essential role in geoid refinement. The XGM2019 model
was released in 2019 with the degree and order fully expanded to 2159 and a resolution
of about 5 min, performing globally more consistently than many other models [35]. The
model consists of three main data sources: the GOCO06s model composed of satellite
gravity data, the 15-minute ground gravity anomaly dataset provided by the US National
Geospatial-Intelligence Agency (NGA), and the 1-minute augmentation dataset derived
from topography.

The terrestrial gravity data cover the 0.5◦ range outside the study area, which is
referenced to the China Geodetic Coordinate System 2000 (CGCS2000) datum. The terres-
trial gravity measurements are dense in the western parts, whereas the data are sparsely
distributed in the eastern parts of the study area. The free-air gravity anomalies of the
discrete gravity points are not smooth enough for direct interpolation. We used complete
Bouguer, topographic, and isostatic correction and performed a gridding process to obtain
a 2.5′ × 2.5′ free-air gravity anomaly grid. The gravity-disturbance grid was generated
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from gravity anomaly, using an existing geoid model (XGM2019 gravity field model up to
2190 degree/order) according to Equation (1), which has no ellipsoidal height information.

δg− ∆g =
2T
R
≈ 0.3086N, (1)

The SRTM3 digital elevation model (DEM) was used in the calculation of the influence
of topography on the geoid. In the Chinese region, the SRTM3 data elevation accuracy is
overall higher than 1:250,000 DEM [36]. The 77 high-precision GPS/leveling points were
used to evaluate the geoid modeling in and around Jilin Province, including 41 in plain and
36 in mountainous areas. The GPS/leveling points use the CGCS2000 national geodetic
coordinate system and the 1985 national height datum of China as horizontal and vertical
datum, respectively, with ±1.0 cm accuracy in horizontal and vertical.

3.2. Geoid Modeling

The geoid height is calculated from the Stokes’s formula as follows [37]:

N =
R

4πγ

x

σ
S(ϕ)∆gdσ, (2)

where R represents the mean Earth radius; γ is the normal gravity on the reference
ellipsoid; ϕ is the geocentric angle; ∆g is the gravity anomaly; dσ is the surface element of
the unit sphere σ; and S(ϕ) is the Stokes’s function expressed as a series of the Legendre
polynomial, Pn(cosϕ), over the sphere [37]:

S(ϕ) = ∑∞
n=2

2n + 1
n− 1

Pn(cosϕ), (3)

The geoid heights calculated from Hotine’s formula is performed analogously to
Stokes’s formula as follows [22]:

N =
R

4πγ

x

σ
H(ϕ)δgdσ, (4)

and
H(ϕ) = ∑∞

n=2
2n + 1
n + 1

Pn(cosϕ), (5)

where δg is the gravity disturbance, and H(ϕ) is the Hotine’s function.
The calculation of the geoid using Equations (2) and (4) requires global coverage of

gravity data, which are difficult to obtain. Therefore, the integration range is limited with a
small domain, σ0, surrounding the computation point. Moreover, considering the influence
of external topography and other factors on the geoid, the modeling equation is shown as
follows [13]:

N̂ = Ñ + δNCOMB + δNDWC + δNATM + δNELL, (6)

where Ñ is the approximate geoid undulation, δNCOMB is the combined topographic
effect, δNDWC is the combined downward continuation effect, δNATM is the combined
atmospheric effect, and δNELL is the combined ellipsoidal effect.

3.2.1. Approximate Geoid Undulation

The approximate geoid undulation based on Stokes’s formula is as follows [12]:

Ñ =
R

4πγ

x

σ0
SL(ϕ)∆gTdσ +

R
2γ ∑M

n=2 bn∆gGGM
n , (7)

and
SL(ϕ) = S(ϕ)−∑L

n=2
2n + 1

2
snPn(cosϕ). (8)
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The first term of Equation (7) corresponds to the near zone component of the geoid, and
the other term indicates the far zone component. SL(ϕ) is the modified Stokes’s function,
∆gT is the terrestrial gravity anomaly, L is the upper limit of the harmonics to be modified
in Stokes’ function, M is the upper limit of the truncation degree of the gravity field model,
sn is the modification parameter, bn is the modification parameter of the GGM gravity
anomaly, and ∆gGGM

n is the Laplace harmonics of the gravity anomaly that is calculated as
follows [38]:

∆gGGM
n =

GM
a2

( a
r

)n+2
(n− 1)∑M

m=−n CnmYnm(θ, λ), (9)

where a is the equatorial radius of the reference ellipsoid, r is the geocentric radius, Cnm is
the GGM coefficient, and Ynm is the fully normalized surface spherical harmonics.

The approximate geoid undulation of Hotine’s formula is calculated as follows [31]:

Ñ =
R

4πγ

x

σ0
HL(ϕ)δgTdσ +

R
2γ ∑M

n=2 bnδgGGM
n , (10)

HL(ϕ) = H(ϕ)−∑L
n=2

2n + 1
2

snPn(cosϕ), (11)

δgGGM
n =

GM
a2

( a
r

)n+2
(n + 1)∑M

m=−n CnmYnm(θ, λ), (12)

where HL(ϕ) is the modified Hotine’s function, δgT is the terrestrial gravity disturbance,
and δgGGM

n is the Laplace harmonics of the gravity disturbance.

3.2.2. Deterministic Modifications

The deterministic modification gives modification parameters to reduce truncation
errors. The WG modification is the removal of the lower degree part of the original
kernel function and renders modeling formulas less sensitive to low-frequency errors in
the terrestrial gravity signal by partially filtering them out [30]. The WG modification of
Stokes’s and Hotine’s formulas is calculated as follows [4,24]:

SL(ϕ) = S(ϕ)−∑L
n=2

2n + 1
2
· 2
n− 1

Pn(cosϕ), (13)

HL(ϕ) = H(ϕ)−∑L
n=2

2n + 1
2
· 2
n + 1

Pn(cos ϕ), (14)

The VK modification combines the WG and Molodensky modifications, intending to
minimize the upper bound of the truncation error in the least squares sense [15]. We take
T = L in this paper, and the formulas are given as follows [7,27]:

SL(ϕ) = S(ϕ)−∑L
n=2

2n + 1
2
·
(

2
n− 1

+ tn

)
·Pn(cos ϕ), (15)

HL(ϕ) = H(ϕ)−∑L
n=2

2n + 1
2
·
(

2
n + 1

+ tn

)
·Pn(cos ϕ) (16)

where tn represents the modification coefficients determined from the solution of a set of
linear equations.

Modification parameter bn is calculated as follows [15]:

bn = sn + QL
n , (17)

QL
n = Qn −∑L

k=2
2k + 1

2
skenk, (18)

where QL
n and Qn are the modified and unmodified Molodensky-type truncation coefficient,

respectively. The coefficients Qn and enk are calculated by the formulas given by Jekeli and
Paul [23,39].
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The WG and VK modification parameter sn values are shown in Table 1 [15]:

Table 1. Deterministic modification parameter Sn.

Parameters
Stokes’s Formula Hotine’s Formula

WG VK WG VK

Sn
2

n−1
2

n−1 + tn
2

n+1
2

n+1 + tn

3.2.3. Stochastic Modifications

The stochastic least squares modifications (biased, unbiased, and optimum) determine
the modification parameters sn and bn by taking the minimum value according to the global
MSE. The global MSE is differentiated with respect to each sn (n = 0, 1, 2, ..., L) and equated
to zero as follows [40]:

∑L
r=0 akrsr = hk, k = 2, 3 . . . . . . L, (19)

where akr is the element of the design matrix, and hk is the element of the observable vector.
Their calculations differ in different modification types, as detailed in Märdla [41].

The linear system of Equation (19) can be written in matrix form as follows:

AS = H, (20)

The modification parameter sn was approximately estimated by the least squares.
In the biased modification, it can be calculated directly. For the unbiased and optimum
modification, parameter sn is calculated by using Singular Value Decomposition (SVD) to
solve the ill-conditioned problem of linear equations [42].

The bn values of three stochastic least squares modifications are shown in Table 2.
There is no calculation difference of bn in the Stokes’s and Hotine’s formulas.

Table 2. Stochastic modification parameter Sn.

Parameters Biased Unbiased Optimum

bn sn sn + QL
n

(sn+QL
n)cn

cn+dcn

where cn and dcn are the gravity signal degree variances and GGM error degree variances, respectively, calculated
with reference to Ellmann and Märdla [31,40].

3.2.4. Additive Corrections

In the geoid modeling using the Stokes’s and Hotine’s formulas, it is assumed that
the topography and atmospheric masses do not exist above the geoid, and the shape of the
Earth is approximated as a sphere. Based on these assumptions, additive corrections need
to be incorporated. Here, additive corrections of Hotine’s formula are introduced.

The combined topographic effect includes direct and indirect effects of topography
and is calculated as follows [42]:

δNCOMB = −2πGρ

γ

(
H2 +

2H3

3R

)
, (21)

where ρ is the mean topographic mass density, and H is the elevation of the topography.
The combined downward continuation effect is computed by using the following [31,41]:

δNDWC = δN(1)
DWC(P) + δN(1), f ar

DWC (P) + δNL(2)
DWC(P), (22)

where

δN(1)
DWC(P) =

δg(P)
γ

HP +
Ñ
rP

HP −
1

2γ

∂δg
∂r

∣∣∣∣
P

H2
P, (23)
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δN(1), f ar
DWC (P) =

R
2γ ∑M

n=0

(
sn + QL

n

)[( R
rP

)2
− 1

]
δgGGM

n , (24)

and

δNL(2)
DWC(P) =

R
4πγ

x

σ0
HL(ϕ)

(
∂δg
∂r

∣∣∣∣
P

(
HP − HQ

))
dσ0, (25)

where rP = R + HP is the spherical radius of the computation point, and ∂δg
∂r

∣∣∣
P

is the
vertical gradient of gravity disturbance and calculated as follows [43]:

∂δg
∂r

∣∣∣∣
P
=

R2

2π

∫
σ0

δgQ − δgP

l3
0

dσ0 −
2
R

δg(P), (26)

where l0 is the spatial distance between the computation point and the running point.
The combined atmospheric effect is computed by using the following [44]:

δNATM = −GRρa

γ

x

σ0
HL(ϕ)Hdσ0, (27)

where ρa is the atmospheric mass density at sea level.
The combined ellipsoidal effect can be adopted [34]:

δNELL =
[(

0.0036− 0.0109sin2 ϕ
)
δg + 0.005Ñcos2 ϕ

]
QL

0 , (28)

where QL
0 is the zero term of Molodensky-type truncation coefficients.

3.3. Error Propagation

The approximate geoid undulation is calculated by combining terrestrial gravity data
with GGM in geoid modeling. However, the GGM coefficients and the terrestrial gravity
data contain noise, which propagates into the computed geoid undulations. Considering
the noise, Equation (7) can be expressed in spectral form as follows [15]:

Ñ = c ∑∞
n=2

(
2

n− 1
−QL

n − s∗n

)(
∆gn + εT

n

)
+ c ∑M

n=2 bn

(
∆gn + εS

n

)
, (29)

and

s∗n =

{
sn, 0 ≤ n ≤ L
0 , otherwise

, (30)

where εT
n and εS

n denote the spectral errors of the terrestrial and GGM-derived gravity
anomalies, respectively.

According to the spectral form of the true geoid undulation, N = c ∑∞
n=2

2∆gn
n−1 , the

global MSE of the Stokes’s formula for geoid modeling is as follows [12]:(
δÑ
)2

= c2 ∑M
n=2 b2

ndcn + c2 ∑nmax
n=2

(
b∗n −QL

n − s∗n
)2cn + c2 ∑nmax

n=2
( 2

n−1 −QL
n − s∗n

)2
σ2

n (31)

and

b∗n =

{
bn, 0 ≤ n ≤ M
0 , otherwise

, (32)

where δÑ = Ñ−N. The right side of the equation in order represents the error contribution
due to GGM, truncation, and terrestrial gravity data; and σ2

n represents the terrestrial gravity
anomaly error degree variances, which were calculated with reference to Ellmann [39].
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The global MSE of Hotine’s formula is similar to Stokes’s formula and is given as
follows [31]:(

δÑ
)2

= c2 ∑M
n=2 b2

ndcn + c2 ∑nmax
n=2

(
b∗n −QL

n − s∗n
)2cn + c2 ∑nmax

n=2
( 2

n+1 −QL
n − s∗n

)2
σ2

n (33)

4. Results
4.1. Parameters of Geoid Modeling

The accuracy of the geoid modeling is affected by the modification limits, integral
radius and terrestrial gravity data error variance. The choice of the modification limit M is
directly related to the quality of the long wavelength component of the GGM calculation
in the geoid, and the modification limit L minimizes the value of the modified formula
outside the integration radius. Both high and low limits have been applied in the geoid
modeling for modification limits M and L. The integral radius and the terrestrial gravity
data error variance impact the geoid’s short wavelength component. This study gave an
integration radius of 0.5 degrees.

4.1.1. Modification Limits

We chose the appropriate modification limits M and L based on the global RMSE. In
the stochastic least squares modifications, the modification limit M is taken to be equal to L
by default. Taking the terrestrial gravity data error variance as 1 mgal2 and the modification
limits M = L, the global RMSE variation of Stokes’s formula for different modification limits
M and L are shown in Figure 2.
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Figure 2. The global RMSE obtained by different modification limits.

There was no significant discrepancy between the Stokes’s and Hotine’s formulas,
reaching a maximum of about 1 cm when the modification limits were small and decreasing
to 1 mm as the limits increased.

In the global RMSE variation, the WG provided a similar error to the VK modification,
and the unbiased and optimum modifications remain consistent. With increasing modi-
fication limits, the global RMSE of all modifications showed a decreasing tendency, and
stochastic modifications declined significantly faster than deterministic modifications when
the modification limits were less than 200. The global RMSE tended to change steadily as
the limits increased to 400, and WG and optimum modifications generated the maxi-mum
and minimum error values, respectively. The final values are shown in Table 3. The global
RMSE of stochastic modifications was about 1.3 cm, which is significantly lower than the
deterministic modifications of approximately 2.9 cm.
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Table 3. The global RMSE of each modification method (mm).

Formula WG VK Biased Unbiased Optimum

Stokes 28.8 28.7 14.5 13.0 13.0
Hotine 28.8 28.7 13.9 12.9 12.9

In geoid modeling, the integral range is restricted to a specific radius, causing a
shortage of gravity signals. This influence can be reduced by using a larger modification
limit M. However, an excessive limit, M, may introduce extra GGM potential coefficient
errors. Combined with the global RMSE variation in Figure 2, we took the stochastic
modification limit M = L = 450 in the subsequent geoid modeling.

When the modification limits were taken as M = L, the global RMSE of the deterministic
modifications had a larger global RMSE and lower geoid modeling accuracy than the
stochastic modification. To improve the modeling accuracy and facilitate a comparison
with stochastic modifications, limit M of the deterministic modifications was set the same
as that of the stochastic modifications. The global RMSE variation of Stokes’s formula for
deterministic modifications with different modification limits (L) is shown in Figure 3.
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Figure 3. The global RMSE obtained by different modification limits (L) of deterministic modifications.

The global RMSE variation of Hotine’s formula was similar to that of Stokes’s. There
was no stable trend for the error of the deterministic modification as the limit L increased.
The global RMSE decreases up to 160 to reach the minimum value and then increases slowly.
Therefore, the limits M = 450 and L = 160 of deterministic modifications for subsequent
analysis and geoid modeling.

4.1.2. Integral Radius

For different modification methods, there are other trends of global RMSE variation
with the integral radius. Choosing a suitable integral radius can maximize the use of
terrestrial gravity data and ensure the accuracy of geoid modeling simultaneously. We took
the terrestrial gravity data error variance as 1 mgal2 to research the effect of the integral
radius on the global RMSE. The variation of the global RMSE with the integral radius is
shown in Figure 4.
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The global RMSE of VK modification produced a similar variation to the WG modi-
fication, and we only show the WG modification instead. Both deterministic and biased
modifications oscillated at a small integration radius. With the increase of integration
radius, more terrestrial gravity data are involved in the geoid calculation, and the global
RMSE of each modification decreases and stabilizes.

Among all the modifications, the global RMSE of Hotine’s formula was smaller than
that of Stokes’s formula, which was more evident in the biased modifications, where the
difference reached about 2 mm, and less than 1 mm in the remaining modifications. The
main reason for this discrepancy is the calculation of the truncation error term. Substituting
the bn of biased modification, the truncation error becomes c2 ∑nmax

n=2
(
QL

n
)2cn. At degrees

less than M, there is a relatively significant difference of QL
n between Stokes’s and Hotine’s

formula, which increases with integral radius, leading to a more considerable of global
RMSE in the biased modification. For the other modifications, the bn value and the small
GGM error degree variances, dcn, caused no significant difference between Stokes’s and
Hotine’s formulas.

The integral radius was taken as 0.5◦, and the difference between the global RMSE
and steady value was less than 3 mm. From a theoretical point of view, it could be desirable
to consider the integral radius to be as large as possible. We defined the integral radius as
0.5◦, combining global RMSE and terrestrial gravity data utilization.

4.1.3. Terrestrial Gravity Data Error Variance

The terrestrial gravity data error degree variance needs to be determined in the
stochastic least squares modifications modeling and the calculation of the global RMSE.
The accuracy of the measured terrestrial gravity data is not uniform in the study area, and
terrestrial gravity data error variance is replaced by a constant. We took the terrestrial
gravity data error variance as 0, 1, 4, and 9 mgal2, respectively, to study its effect on the
global RMSE. The result is shown in Figure 5.



Remote Sens. 2023, 15, 376 11 of 19Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 19 
 

 

 

Figure 5. The global RMSE obtained by different terrestrial gravity data error variances: (a) WG 

modification, (b) biased modification, (c) unbiased modification, and (d) optimum modification. 

(Black line, Stokes’s formula; red line, Hotine’s formula). 

The results in Figure 5 showed that the global RMSE increased accordingly as the 

terrestrial gravity data error variance increased. The global RMSE contained only the trun-

cation error and the GGM potential coefficient error when the terrestrial gravity data error 

variance was taken as 0 mgal2, and the stochastic modifications’ values were significantly 

smaller than the deterministic modifications’ values. Compared to the deterministic mod-

ifications, stochastic modifications have a small value of truncation and GGM potential 

coefficient error. 

The global RMSE of unbiased and optimum modification was smaller than the biased 

and deterministic modification, and this tendency is more pronounced as terrestrial grav-

ity data error variance increases. Compared to other type modifications, the modified 

truncation coefficient, 𝑄𝑛
𝐿 , of the biased ones has a larger difference between Stokes’s and 

Hotine’s formula, which increases with the rise of terrestrial gravity data error variance, 

causing a relatively large discrepancy in the global RMSE. In the subsequent geoid mod-

eling, we took the terrestrial gravity data error variance as 1 mgal2. 

4.1.4. Modification Parameters 

The modification parameters 𝑠𝑛 and  𝑏𝑛 are essential for calculating the approximate 

geoid undulation, affecting the kernel function value and the degree of GGM contribution, 

respectively. Variations of the parameters are shown in Figure 6. 

Figure 5. The global RMSE obtained by different terrestrial gravity data error variances: (a) WG
modification, (b) biased modification, (c) unbiased modification, and (d) optimum modification.
(Black line, Stokes’s formula; red line, Hotine’s formula).

The results in Figure 5 showed that the global RMSE increased accordingly as the
terrestrial gravity data error variance increased. The global RMSE contained only the
truncation error and the GGM potential coefficient error when the terrestrial gravity data
error variance was taken as 0 mgal2, and the stochastic modifications’ values were signifi-
cantly smaller than the deterministic modifications’ values. Compared to the deterministic
modifications, stochastic modifications have a small value of truncation and GGM potential
coefficient error.

The global RMSE of unbiased and optimum modification was smaller than the biased
and deterministic modification, and this tendency is more pronounced as terrestrial gravity
data error variance increases. Compared to other type modifications, the modified trunca-
tion coefficient, QL

n , of the biased ones has a larger difference between Stokes’s and Hotine’s
formula, which increases with the rise of terrestrial gravity data error variance, causing
a relatively large discrepancy in the global RMSE. In the subsequent geoid modeling, we
took the terrestrial gravity data error variance as 1 mgal2.

4.1.4. Modification Parameters

The modification parameters sn and bn are essential for calculating the approximate
geoid undulation, affecting the kernel function value and the degree of GGM contribution,
respectively. Variations of the parameters are shown in Figure 6.
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The WG and VK modifications produced a similar variation to the biased modification
for the parameter sn. The biased modification parameter sn decreased rapidly and stabilized,
and the initial value of Hotine’s formula was smaller than that of Stokes’s formula. Unlike
the biased modification, unbiased and optimum modification parameters’ sn did not
stabilize at zero value; instead, they oscillated around it.

For the parameter bn, under the joint action of the parameter sn and the truncation
coefficient, QL

n , etc., all five modification methods had similar variations to the parameter sn
of the biased modification. The initial value of Hotine’s was smaller than Stokes’s formula.

The difference between the modified and original kernel functions is shown in Figure 7. The
modified kernel function decreased faster than the original kernel function and approached
the zero value more rapidly, which converged gradually after reaching a minimum value.
The stochastic modified kernel function changed faster than the deterministic one. The
difference between Stokes’s and Hotine’s kernel functions reached 20 in the original and
biased modifications and was less than 1 in the remaining modifications.

4.1.5. Expected Global RMSE

The expected global RMSE is used to compare different geoid modeling methods,
and their values are shown in Table 4, where δÑGGM, δÑTR, and δÑT represent the error
contribution due to the GGM, truncation, and terrestrial gravity data, respectively.

Table 4. The global RMSE of each modification method (mm).

Formula Error WG VK Biased Unbiased Optimum

Stokes

δÑGGM 4.51 4.41 8.73 6.90 6.98
δÑTR 6.97 6.75 6.74 3.05 3.08
δÑT 12.86 12.98 9.43 10.49 10.48
δÑ 15.31 15.28 14.51 12.97 12.96

Hotine

δÑGGM 4.51 4.40 7.80 6.94 6.93
δÑTR 6.95 6.73 5.44 3.02 3.05
δÑT 12.77 12.89 10.09 10.46 10.45
δÑ 15.22 15.19 13.86 12.91 12.91
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The global RMSE of Hotine’s formula was slightly smaller than that of Stokes’s formula,
and the differences between them were more evident in the biased modification. The
differences of sn and Qn

L between Stokes’s and Hotine’s formula in the biased one are larger
than in other modifications, resulting in higher discrepancies in the GGM and truncation
error. The truncation error and terrestrial gravity data error were effectively reduced in
the stochastic modifications, which had a smaller global RMSE than the deterministic
modification. The global RMSE of WG and VK modifications was equal and unbiased, and
optimum was better than that of the biased.

4.2. Accuracy Evaluation
4.2.1. Accuracy of XGM2019

We calculated the geoid heights of the XGM2019 model and obtained the maximum
and minimum values of 26.26 m and 4.12 m, respectively. There is a smooth variation in
the western plains area and a relatively drastic one in the eastern mountainous area.

We evaluated the accuracy of the XGM2019 model in the study area, using GPS-
leveling points; the results are shown in Table 5. The XGM2019 model had an error range
value of 24.65 cm and an accuracy of 5.40 cm in Jilin Province. In the plain area, the accuracy
is higher at 4.29 cm, and the error range is 21.97 cm. The accuracy is relatively poor in
mountainous areas, at 6.43 cm.

Table 5. Comparison of XGM2019 geoid heights with GPS/leveling-derived ones in different areas (cm).

Area Jilin Province Plain Area Mountainous Area

Max 12.86 11.15 12.86
Min −11.79 −10.23 −11.79

Range 24.65 21.37 24.65
STD 5.40 4.29 6.43
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The differences in gravity signal between the terrestrial gravity data and the XGM2019
model are shown in Table 6. The maximum and minimum values of terrestrial gravity sig-
nals were less than eight times and four times that of the STD. The terrestrial gravity signal
contains high-frequency information, and the STD is greater than the model gravity signal.

Table 6. Statistics of terrestrial and XGM2019 model gravity anomalies and disturbances (mGal).

Mean STD

Terrestrial gravity anomalies 17.20 24.50
Terrestrial gravity

disturbances 22.17 26.16

Model gravity anomalies 16.86 21.14
Model gravity disturbances 21.59 22.36

4.2.2. Accuracy Comparison of Quasigeoid in Jilin Province

Based on the XGM2019 model, we used the deterministic and stochastic modified
Stokes’s and Hotine’s formulas to refine the quasigeoid of Jilin Province. After adding the
additive corrections, the results showed that the refined gravimetric geoid height had a
reduced range and was smoother overall than the approximate geoid undulation.

Among the additive corrections, the values of the combined topographic effect and
downward continuation effect were larger, reaching the decimeter level. In comparison,
there was a smaller value of the combined atmospheric and ellipsoidal effects, at about
the millimeter level. The additive corrections displayed consistency with the topographic
elevation, with a more significant number of corrections in the steep topography area and a
lower correction in the gentle topography area.

The study area used a normal height system with a quasigeoid datum. We adopted
GPS/leveling points as the control, performing least-squares combined with seven pa-
rameters fitting of the gravimetric geoid to obtain a fitted quasigeoid model adapted to
the area [45]. The 44 GPS/leveling points were evenly selected to participate in the fit-
ting, and the remaining 33 points were evaluated, including 18 in the plain and 15 in
mountainous areas.

∆N = NGPS−leveling
i − NGravimetre

i = aT
i x + εi, (34)

where

ai =



cosϕicosλi
cosϕisinλi

sinϕi
cosϕisinϕicosλi/Wi
cosϕisinϕisinλi/Wi

sin2 ϕi/Wi
1


, (35)

and
Wi =

(
1− e2sin2 ϕi

)1/2
, (36)

where e is the first eccentricity of the reference ellipsoid, and ϕi and λi represent the geodetic
latitude and longitude of GPS/leveling station. The results of the accuracy comparison in
Jilin Province are shown in Table 7.

The refined quasigeoid had a significant improvement in accuracy and error range
compared with the XGM2019 model, the maximum accuracy was improved by 2.5 cm,
and the error range was reduced by about 50%, making the stochastic modifications were
more noticeable.
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Table 7. Comparison of refined quasigeoid heights with GPS/leveling-derived ones in Jilin Province (cm).

Methods
Max Min Range STD

Stokes Hotine Stokes Hotine Stokes Hotine Stokes Hotine

WG 6.23 6.19 −8.93 −9.11 15.16 15.30 3.07 3.11
VK 6.30 6.10 −9.00 −9.02 15.30 15.12 3.08 3.10

Biased 5.01 4.81 −6.75 −7.41 11.76 12.22 2.87 2.86
Unbiased 4.56 4.58 −7.84 −8.05 12.40 12.63 2.86 2.90
Optimum 4.57 4.59 −7.79 −8.00 12.36 12.59 2.86 2.90

Each refined quasigeoid model achieved the same level of accuracy. The maximum
difference in accuracy between Stokes’s and Hotine’s formulas was less than 0.1 cm. More-
over, in the same integral formula, there was a maximum difference of 0.2 cm among the
modification methods. These differences were less than the GPS/leveling points accuracy
and did not provide substantial differences among the quasigeoid models.

Although the accuracy of the deterministic and stochastic modifications was essentially
the same throughout the study area, the error range of deterministic modifications was
significantly larger than that of the stochastic modifications. The STD reflects the error
outlier, and the phenomenon indicates that the error values of deterministic modifications
are more concentrated in zero values compared to stochastic modifications. This leads to
the possibility that the accuracy of deterministic modifications may be better than stochastic
modifications in some areas.

The differences between Stokes’s and Hotine’s formulas for calculating approximate
geoid undulation and combined downward continuation effect is shown in Figure 8, with
more minor differences in the remaining additive corrections. The difference increased with
the topography, millimeter level in the western plain area, and reached the centimeter level
in the eastern mountainous area, which could not be ignored in the geoid refinement. Com-
pared with the combined downward continuation effect, the differences in approximate
geoid undulation changed more smoothly.
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4.2.3. Accuracy Comparison of Refined Quasigeoid in Different Area

The results of accuracy comparison in plain and mountainous areas are shown in
Tables 8 and 9, respectively.
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Table 8. Comparison of refined quasigeoid heights with GPS/leveling derived ones in plain area (cm).

Methods
Max Min Range STD

Stokes Hotine Stokes Hotine Stokes Hotine Stokes Hotine

WG 2.90 2.93 −4.64 −4.69 7.54 7.63 1.99 1.99
VK 2.90 2.93 −4.59 −4.75 7.49 7.68 1.97 2.01

Biased 5.01 4.75 −5.84 −5.56 10.84 10.32 2.48 2.36
Unbiased 4.56 4.58 −5.52 −5.54 10.08 10.12 2.41 2.41
Optimum 4.57 4.59 −5.52 −5.54 10.09 10.12 2.41 2.41

Table 9. Comparison of refined geoid heights with GPS/leveling derived ones in mountainous area (cm).

Methods
Max Min Range STD

Stokes Hotine Stokes Hotine Stokes Hotine Stokes Hotine

WG 6.23 6.19 −8.93 −9.11 15.16 15.30 3.80 3.85
VK 6.30 6.10 −9.00 −9.02 15.30 15.12 3.82 3.82

Biased 4.36 4.81 −6.75 −7.41 11.11 12.22 3.21 3.26
Unbiased 3.12 3.12 −7.84 −8.05 10.96 11.17 3.16 3.23
Optimum 3.18 3.18 −7.79 −8.00 10.97 11.18 3.15 3.22

Compared to XGM2019, the deterministic and stochastic modifications improved the
accuracy in the plain area by a maximum of 2.3 and 1.9 cm, respectively. Stokes’s and
Hotine’s formulas provided the same level of accuracy in the one type of modification,
with a maximum difference of 0.1 cm. The deterministic ones were better than stochastic
modifications in accuracy and error range, with maximum differences up to 0.5 and 3.4 cm,
respectively. The WG and VK modifications had similar accuracy, and there were no
substantial differences among the stochastic modifications.

Compared to XGM2019, the deterministic and stochastic modifications improved
the accuracy in the mountainous area by a maximum of 2.6 cm and 3.3 cm, respectively.
The accuracy in mountainous regions was lower than that in plain areas, although the
accuracy values of each modification were more improved in mountainous regions than
in plain areas. Stokes’s and Hotine’s formulas provided the same level of accuracy in the
one type of modification. The stochastic modifications outperformed the deterministic
modifications in mountainous areas and improved accuracy and error range by up to
17% and 28%, respectively, compared to deterministic modifications. The WG and VK
modifications had similar accuracy, and there were no substantial differences among the
stochastic modifications in mountainous areas.

5. Discussion

Stokes’s and Hotine’s formulas are used to refine the quasigeoid, which can effectively
improve the original model’s accuracy. Based on XGM2019, we evaluated the accuracy
of Stokes’s and Hotine’s formulas by using five modified kernel functions for the case of
Jilin province. Considering that topographic undulation is an influential factor in geoid
refinement, we divided the study area into plain and mountainous regions for evaluation.

Across the study area, the accuracy evaluation results were consistent with the ones of
Ellmann [15] and Märdla et al. [31] and did not provide substantial discrepancies between
different integral formulas and modification methods. In contrast, the accuracy of deter-
ministic and stochastic modifications showed relatively significant differences in different
topographic areas, plain areas with a 0.5 cm difference, and 0.7 cm difference in high moun-
tain areas. Although the difference was smaller than the GPS/leveling points accuracy,
we preferred to make the following choices within the study area: using deterministic
modifications in plain areas and stochastic modifications in mountainous areas.

In the parameters’ selection of the deterministic modifications, the same approach as
the stochastic modifications was used in this paper, in which the modification parameters
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were selected according to the global RMSE taken as the minimum. The deterministic
modifications only considered the truncation error term in theory. However, we included
terrestrial data and model coefficient errors in selecting the modification limits and achieved
better accuracy in the refinement of the quasigeoid.

Stochastic modifications to refine the quasigeoid require evaluating the gravity signal
and error properties. This paper uses global models for calculating gravity signal or error
degree variance, which may not necessarily represent the area of interest. Moreover, the
GPS/leveling points used to evaluate the geoid model are distributed as evenly as possible
in the study area. Due to external factors such as topography, we could not access evenly
distributed GPS/leveling points. In future work, we will work on these aspects to refine
the quasigeoid model with higher accuracy.

GNSS provides a convenient approach for obtaining ellipsoidal heights. When refining
the geoid, there is no need to convert the ellipsoidal height to physical height. Hotine’s
formula can be used to convey an accuracy comparable to that of Stokes’s formula, enriching
the theory and practice of geoid refinement.

6. Conclusions

In this study, we used two deterministic modifications and three stochastic least
squares modifications of Stokes’s and Hotine’s formulas to calculate the expected global
RMSE, approximate geoid undulation, and additive effects to refine the quasigeoid of Jilin
province. The refined model was evaluated by GPS/leveling points. Based on the case
study in the area of Jilin Province, China, the conclusions can be summarized as follows:

1. In geoid modeling, the variation of the modification limits and terrestrial gravity
data error variance significantly affected the global RMSE, and the integral radius
variations had a relatively small influence. Using the same correction parameters, the-
oretically, Hotine’s formula modeling accuracy was better than Stokes’s formula, and
the stochastic modifications outperformed the deterministic ones, wherein unbiased
and optimum modifications had the best results.

2. GPS/leveling points were used to fit and evaluate each refined geoid model. Relative
to the original model, the refined quasigeoid accuracy was significantly improved.
Stokes’s and Hotine’s formulas provided the same accuracy in Jilin province, China.
Meanwhile, different types of modifications all exhibited the same level of accuracy
and did not differ significantly.

3. Although mountainous areas had a greater degree of refinement than plain areas, the
accuracy of the plain regions was still significantly better than that of mountainous
areas based on the XGM2019 model. Deterministic modifications outperformed
stochastic modifications in the plain areas. Suitable modification limits could improve
deterministic modification modeling accuracy. In the mountainous areas, where
measured terrestrial gravity data were less available, stochastic modifications were
preferred to deterministic modifications.
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