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Abstract: Atmospheric fine particles (PM2.5) have been found to be harmful to the environment
and human health. Recently, remote sensing technology and machine learning models have been
used to monitor PM2.5 concentrations. Partial dependence plots (PDP) were used to explore the
meteorology mechanisms between predictor variables and PM2.5 concentration in the “black box”
models. However, there are two key shortcomings in the original PDP. (1) it calculates the marginal
effect of feature(s) on the predicted outcome of a machine learning model, therefore some local effects
might be hidden. (2) it requires that the feature(s) for which the partial dependence is computed are
not correlated with other features, otherwise the estimated feature effect has a great bias. In this study,
the original PDP’s shortcomings were analyzed. Results show the contradictory correlation between
the temperature and the PM2.5 concentration that can be given by the original PDP. Furthermore, the
spatiotemporal heterogeneity of PM2.5-AOD relationship cannot be displayed well by the original
PDP. The drawbacks of the original PDP make it unsuitable for exploring large-area feature effects.
To resolve the above issue, multi-way PDP is recommended, which can characterize how the PM2.5

concentrations changed with the temporal and spatial variations of major meteorological factors
in China.

Keywords: PM2.5 concentration; machine learning; partial dependence plots (PDP);
geospatial visualization

1. Introduction

In recent years, due to the continuous increase in aerosols in developing countries, air
pollution has become more serious [1,2]. PM2.5 (the particulate matter with aerodynamic
equivalent diameter ≤ 2.5 µm) has become the main pollutant in the urban environ-
ment [3,4]. it contains a variety of toxic and harmful substances and can travel deeply into
the lungs and increase the risk of multiple diseases [5]. Since PM2.5 is a serious threat to
health, it should be monitored [6,7]. Understanding of causal and influential relation of
PM2.5 concentration and the diverse variables helps to control fine particles and improve
air quality. Many studies concern the PM2.5-variable relationships and investigate these
relations through their spatial distribution patterns [8,9]. Some previous researches analyze
PM2.5-meteorology relation via the temporal correlation [10,11]. However, the complicated
interaction between PM2.5 concentrations and the influencing factors cannot be described
well by linear correlation.

With the rapid development of remote sensing technology and machine learning
methods, satellite-based aerosol optical depth and machine learning model has been widely
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used to estimate large areas and high-resolution PM2.5 concentrations [12]. These mod-
els can handle the complex nonlinear relationship between all predictor variables and
PM2.5 concentration, so they can generate more accurate and detailed PM2.5 concentration
distribution [13–16]. Based on such “black box” model with good performance, the pre-
vious studies try to explore the underlying mechanisms between predictor variables and
PM2.5 concentration.

Among interpretable machine learning methods, partial dependence plot (PDP) [17]
gets much attention for its superior performance. Previous studies use PDP to investigate
the effects of individual features, including temperature, aerosol optical depth (AOD) and
winds, on the predicted PM2.5 concentrations [18–21]. It can demonstrate the quantitative
nonlinear relationships among variables. However, there are two key shortcomings to
PDP: (1) it calculates the marginal effect of feature(s) have on the predicted outcome of a
machine learning model, therefore some local effects might be hidden. A typical case is
that surface winds substantially affect PM2.5 concentration, but the PDP shape of winds
is almost a horizontal line [14]. The horizontal line means PM2.5 concentration does not
vary with changes in winds, which is not the truth. However, because the increase [22] and
reduce [23] effects of PM2.5 concentration could cancel each other out among regions in
China. (2) it requires that the feature(s) for which the partial dependence is computed are
not correlated with other features, otherwise the estimated feature effect has a great bias.
When the independent assumptions are not satisfied, the PDP will create data points that
do not exist in reality. This allows the PDP to give opposite interpretation results for the
same feature.

In this study, the contradictory relationship between PM2.5 and temperature is drawn
from the original PDP (hereinafter referred to as one-way PDP) and the spatiotemporal
heterogeneity of PM2.5-AOD relationship cannot be displayed well by one-way PDP. All
results indicate there are uncertainties in the use and interpretation of one-way PDP and
it is unsuitable for exploring large-area feature effects. To address the above shortcom-
ings, the one-way PDP is expanded to multi-way PDP, which can reveal the regional
and seasonal characteristics in the feature effects on PM2.5 concentrations quantitatively.
Through embedded geospatial-temporal joint code (GTJC) [14], it can explore the multiple
relationships between predictor variables and PM2.5 concentrations, i.e., the associations
between meteorological factors, spatiotemporal factors and PM2.5 concentrations. With the
visualization of multi-way PDP, variation details of PM2.5 concentration with temperature
and AOD are analyzed and discussed. The results of this study suggest that multi-way
PDP can give a relatively reliable relation between input features and model predictions.

2. Data

In order to better estimate PM2.5 concentrations, four kinds of variables are used as the
input data of the model, i.e., satellite aerosol products, Human activity proxies, geographic
factors and meteorological re-analysis data.

2.1. Station PM2.5 Observation

The hourly PM2.5 data are collected from the air quality monitoring network which
is administrated by the China National Environment Monitoring Center (CNEMC, http:
//www.cnemc.cn/, accessed on 1 April 2022). The observation station network is shown in
Figure 1a and a total of 1701 monitoring points are located in 367 cities in China. The Beijing-
Tianjin-Hebei, Yangtze River Delta, Sichuan Basin, and Pearl River Delta are compared
as representatives of urban agglomerations in different geographical contexts. PM2.5
observations obtained from air quality monitoring stations from 2015 to 2019 and processed
into the daily average. The time series of daily average PM2.5 of all sites is shown in
Figure 1b. The daily average PM2.5 data is matched to the grid cells of other features they
fall in.

http://www.cnemc.cn/
http://www.cnemc.cn/
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(a) The spatial distribution of monitoring sites

(b) Scatter plot of the daily average PM2.5 concentrations and daily average AOD

Figure 1. (a) The spatial distribution of monitoring sites. The monitoring stations are illustrated
as points and the color of the scattered point indicates the average of the PM2.5 concentration
(µg m−3) from 2015 to 2019. (b) Scatter plot of the daily average PM2.5 concentrations (µg m−3) and
daily average aerosol optical depth (AOD) of all observation sites from 2015 to 2019. The PM2.5

concentrations have notable seasonal variations, but the fluctuation of AOD is relatively flat.

2.2. Satellite Aerosol Products

The aerosol optical depth (AOD) is physically related to PM2.5, since it measures
the reduction effect of aerosol on the light in the entire atmospheric column [24]. Thus,
the daily AOD products (MCD19A2) based on Multiangle Implementation of Atmospheric
Correction (MAIAC) [25] are taken as main predictors in this study. It comes from Moderate
Resolution Imaging Spectroradiometer (MODIS) and can be accessed at Distributed Active
Archive Center (DAAC, https://lpdaac.usgs.gov/products/mcd19a2v006/, accessed on
1 April 2022). A comparison based on AErosol RObotic NETwork (AERONET) AOD
shows that the retrieval accuracy of MAIAC AOD is higher than other common retrieval
algorithms (MODIS Dark Target/Deep Blue) [26].

2.3. Human Activity Proxies

Human activity proxies include the land use cover (LUC) and nighttime light (NTL)
products, which come from MODIS MCD12Q1v006 data [27] and the Suomi NPP VIIRS [28].
The distribution of urban and built-up Lands can be reflected from the land use parameters
and the NTL products can provide population density information. So the emission sources
caused by human activities can be inferred [29].

https://lpdaac.usgs.gov/products/mcd19a2v006/
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2.4. Geographic Factors

Geographic factors are used to describe the surface topography, including the digital
elevation model (DEM) product and the normalized difference vegetation index (NDVI)
data. The vegetation cover and terrain can be important influencing factors affecting
the cross-regional transport of PM2.5 [12]. Thus, the Shuttle Radar Topography Mission
(SRTM) DEM product [30] and the MODIS MOD13A3data [31] are collected to describe the
transmission conditions.

2.5. Meteorological Re-Analysis Data

The variations of meteorological conditions can also affect the increase or decrease of
PM2.5 concentration [32]. The ERA5 reanalysis products [33,34] provided hourly meteoro-
logical data. We collected 8 variables from it, including boundary layer height (BLH), 2 m
temperature (TEM), 2 m dew point temperature (Td), surface pressure (SP), total precipi-
tation (PRE), evaporation (ET), 10 m U-components of wind (U) and 10 m V-components
of wind (V). Combined with TEM, Td and SP, the relative humidity (RH) values were
calculated. The wind direction (WD) and wind speed (WS) are converted from the 10m
U-components and 10m V-components of wind.

In order to build a more reliable model to explain, a more rigorous data cleaning was
performed in this study. If a sample is missing any of the features, it will be removed from
the dataset. The observations with an abnormal value of features will also be considered
invalid samples. Table 1 summarizes the abnormal criteria and the statistics of collected
features. The PM2.5 observation lasts for 12 h without change and will be considered
an invalid observation. For extending the coverage of data, the each AOD of Terra and
Aqua are averaged at every grid point. The hourly data of PM2.5 concentrations and
meteorological data are averaged into daily values to match the time resolution of AOD data.
The spatial resolution of all datasets is unified with AOD products by bilinear interpolation.

Table 1. Statistics of collected features after data cleaning, including unit, range, mean, and standard
deviation values.

Variable Abbreviation Unit Range Mean STD

PM2.5 PM2.5 µg/m3 [1, 500] 48.08 34.30
Aerosol optical dept AOD – [0.01, 2.00] 0.35 0.26
Land use cover LUC – [2, 17] – –
Night light NTL W cm−2sr−1 [0, 100] 25.37 17.07
Elevation DEM m [0, 4517] 403.23 646.33
Normalized difference vegetation index NDVI – [0, 0.97] 0.28 0.14
Boundary layer height BLH m [18.56, 2782.63] 514.01 265.24
2m air temperature TEM K [239.37, 313.25] 285.33 10.44
Relative humidity RH % [1.74, 99.97] 47.20 18.67
Surface pressure SP kpa [55.71, 104.51] 96.65 7.48
Total precipitation PRE mm [0, 30] 2.28 5.17
Evaporation ET mm [−6.75, 0.45] −1.32 1.22
Wind direction WD degress [0, 365] 179.84 103.05
Wind speed WS m/s [0, 9.98] 1.93 1.27

3. Methodology
3.1. Overview

Figure 2 shows the workflow for exploring features-PM2.5 relation in this study. First,
the relationship of PM2.5 and predictors is fitted by the gradient boosting decision tree
(GBDT) model and geospatial-temporal joint codes (GTJC) model, respectively. Then,
the built “black box” model is interpreted by permutation feature importances and partial
dependence plots (PDP). The permutation feature importance is used to determine features
of interest. The PDP can tell how PM2.5 concentrations change quantitatively with a certain
amount of variation of selected features based on the built model. Finally, the interpretation
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results of the GBDT model and GTJC model are visualized and compared. The detail of
each method will be separately described in the rest of this section.

Figure 2. The workflow for exploring features-PM2.5 relation, including model building, model
interpretation and results analysis. Two models, geospatial-temporal joint codes (GTJC) and gradient
boosting decision tree (GBDT) were built and interpreted by partial dependence plots (PDP). The cal-
culation step of one-way PDP is illustrated in model interpretation. The interpretation results are
visualized by multi-way PDP.

3.2. Model Building
3.2.1. Gradient Boosting Decision Tree Model

The gradient boosting decision tree (GBDT) [35] is a commonly used machine learning
model for PM2.5 concentration estimation [36–38]. The results of GBDT are a combination
of the output of weak learners. Each added weak learner will fit the residual between the
target and the model output in the previous stage. In PM2.5 concentrations estimation,
the input data of GBDT model x include [AOD, LUC, NDVI, DEM, NTL, TEM, SP, WS,
WD, BLH, PRE, ET, RH] and the target y is PM2.5 concentrations.

3.2.2. Geospatial-Temporal Joint Codes Model

The relationship between PM2.5 concentrations and input data of GBDT, especially
AOD, is spatial and temporal non-stationary [39]. The geospatial-temporal information is
required by the model, otherwise the model would assume that all input data occurred at
the same time and place. Therefore, geospatial-temporal joint codes (GTJC) [14] is applied
to this study to help the model capture the spatiotemporal patterns. The day of the year
(DOY), latitude (φ) and longitude (θ) of the given sample are converted to temporal codes
(TC) and geospatial codes (GC) by a specific coding method, which has been described in
Equation (1) and Figure 3.

TC =

[
tx
ty

]
=

 cos
(

2π DOY
T

)
sin
(

2π DOY
T

) , GC =

 gx
gy
gz

 =

 R sin θ cos ϕ
R sin ϕ

R cos θ cos ϕ

. (1)

Here, T is 365 or 366 and R is the radius of the Earth. R is set to 1 for normalization in
the experiment. The day of the year (DOY) and the latitude (φ) and longitude (θ) of the
given sample are converted into polar coordinates and spherical coordinates, respectively.
TC and GC essentially are spatiotemporal information of the given sample in Cartesian
coordinates; tx and ty and gx, gy and gz are the transformed coordinates.

The GTJC will be coupled with the observed data and this model is named the GTJC
model. It should note that the difference between the GBDT model and the GTJC model is
the absence or presence of GTJC as input.
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(a) Temporal codes (b) Geospatial codes

Figure 3. Illustration of the (a) temporal codes (TC) and (b) geospatial codes (GC), which will be
input as variables to the GTJC model.

3.2.3. Hyperparameter Selection

The model is built with scikit-learn [40]. Classification-and-regression-trees (CART) [41]
is employed as the weak learner. PM2.5 concentration is estimated by CART through the
following 5 steps: (1) Randomly sample 66% input data from the training data set for
fitting the individual weak learners and randomly select 4 features for determining the best
split; (2) The input data was assigned to two branches D1 and D2 based on a random split.
This split was generated by selecting one arbitrary number a between the maximum and
minimum of one feature A in step 1; (3) Calculate the squared error of D1 and D2, where c1,
c2 is average of PM2.5 concentrations in D1 and D2, respectively. Repeat step 2 to find the
best feature A and split point a to minimize squared error; (4) Repeat step 2, 3 on D1 and D2
until the depth of the tree reaches 10; (5) The mean value of PM2.5 concentrations of input
data in the leaf node will be taken as the estimated PM2.5 concentrations. The final model
was constructed by 22,994 CART. The learning rate was set to 0.05 to shrink the contribution
of each CART.

The most commonly used 10-fold cross-validation (10-CV) is adopted to evaluate the
reasoning ability of the model [42–44]. For measuring the performance of regression, three
quality metrics are used, i.e., determination coefficient (R2), mean absolute error (MAE),
and root-mean-square error (RMSE).

3.3. Model Interpretation
3.3.1. Permutation Feature Importance

The feature importance can be measured by the decrease of the model score when
this feature is randomly shuffled, which is also known as Permutation feature importance.
In this study, the number of random shuffles is set to 10 times and the model score is
measured by the mean squared error.

3.3.2. Partial Dependence Plots

The partial dependence plots (PDP) is a method for interpreting black-box models [45].
It is defined as

f̂ j
(
xj
)
= Ex¬j

[
F
(
xj, x¬j

)]
=
∫

F
(
xj, x¬j

)
dP
(
x¬j
)
. (2)

where x is the instances in the dataset and j is the j-th feature that we want to know the
effect on the prediction f̂ j. ¬j are other features of the black-box model F. E is mathematical
expectation and P is probability. The partial function f̂ j(xj) shows the relationship between
j-th feature and the predicted targets.

The illustration of the calculation step of one-way PDP is shown in the model interpre-
tation of Figure 2. First, the selected features are combined with other features one by one
to build artificial datasets. Then, all artificial datasets are put into the ‘black box’ model
to estimate PM2.5 concentrations. The average of estimated PM2.5 concentrations will be
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taken as the partial dependence of the corresponding feature. The partial dependence is
estimated by marginalizing the predicted targets over the distribution of other features ¬j.
Therefore, PDP can directly show how the prediction variates change with the input feature.
However, as shown in Equation (2), the original PDP, i.e., one-way PDP, only shows the
average marginal effects and lost some local effects. In order to show the hidden local
effects and the detailed information, we expand PDP from one-way to multi-way. In the
calculation of two-way PDP, the selected feature needs to be pair-wise combined with TC
first, and then continue to follow the calculation steps of one-way PDP. Finally, to better
understand the feature effects of the selected feature, we trace back to corresponding the
day of year and visualize the partial dependence results. For three-way PDP, the selected
feature is combined with geospatial codes.

4. Results

This section presents the results of both the model performance and interpretation
methods. Section 4.1 shows the model performance. The relative importance of the
feature is demonstrated in Section 4.2. Section 4.3 investigates TEM-PM2.5 concentrations
relationship through comparing the one-way PDP of gradient boosting decision tree (GBDT)
model and geospatial-temporal joint code (GTJC) model and its annual variation presented
in the two-way PDP. Section 4.4 reveals the impacts of water vapor on the AOD-PM2.5
concentrations relationship via analysis of seasonal, regional and multi-way PDPs.

4.1. Model Performance

The results of sample-based 10-fold cross-validation are displayed in Table 2. The R2

value of gradient boosting decision tree without geospatial-temporal joint code (GTJC) is
0.82. The R2 value is increased to 0.85 after incorporating the spatial information. However,
with the aid of the temporal information, R2 is increased to 0.86. Compared with the general
gradient boosting decision tree model, the GTJC improves the prediction performance in
terms of both predictive quality and estimated uncertainty. The R2 of the GTJC model is
0.89. This result indicates that PM2.5 concentrations observed by sites across China could
be well explained by a combination of satellite-based aerosol products, geographic factors,
human activity, surface meteorological conditions, time variables and space variables in
the GTJC model.

Table 2. The mean and variance of sample-based 10-fold cross-validation results of gradient boosting
decision tree (GBDT), GBDT with geospatial codes, GBDT with temporal codes, and GBDT with
geospatial-temporal joint codes.

Method R2 RMSE (µg/m3) MAE (µg/m3)

Gradient boosting decision tree (GBDT) 0.8226 ± 0.0020 14.4435 ± 0.1551 9.6076 ± 0.0619
GBDT + geospatial codes 0.8532 ± 0.0021 13.1376 ± 0.1444 8.6060 ± 0.0593
GBDT + temporal codes 0.8639 ± 0.0016 12.6532 ± 0.1385 8.3633 ± 0.0596
GBDT + geospatial-temporal joint codes 0.8898 ± 0.0013 11.3814 ± 0.0993 7.4157 ± 0.0368

4.2. Relative Importance of Features

Variables with a larger value of permutation feature importance have a greater influ-
ence on the model. Figure 4a,b shows the permutation feature importance of the GTJC
model and GBDT model separately.

In the GTJC model, the temporal codes (TC) and geospatial codes (GC) are the two
most important features, whose importance values are 36.77% and 17.17%, respectively.
This is consistent with previous studies that PM2.5 concentrations vary drastically over
time and space [46–48], therefore, the estimation of PM2.5 concentrations across entire
China is highly depending on geospatial location and time period. Generally, in winter,
weather conditions are not in favor of the pollutants diffusion that can elevate the PM2.5
concentrations [49,50]. The emission amount is larger in northern China than in southern
China due to the distribution of industry and indoor heating [51,52]. These synchronously
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changing in pollution emission, weather conditions and PM2.5 concentrations make TC and
GC the most important factors in estimating PM2.5 concentrations. Besides the temporal and
geospatial codes, the top-4 important features also include aerosol optical depth (AOD), and
temperature (TEM). Other features have less contribution to the model, with an importance
lower than 10%.

(a) Feature importance of GTJC model
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Feature importance (%)
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(b) Feature importance of GBDT model

Figure 4. Permutation feature importances of (a) geospatial-temporal joint codes model (GTJC) model
and (b) gradient boosting decision tree (GBDT) model. The calculated feature importance values are
normalized to percentages and sorted in descending order of importance.

In the GBDT model, the importance value of AOD is 28.2%, which is much greater than
that of other variables. This is because AOD is the total extinction of particulate matter in the
entire atmospheric column, thus physically connected with PM2.5 concentration. The other
input variables are the influencing factors of PM2.5 concentration. There, the contribution
of AOD to PM2.5 concentration estimation is much greater than other factors. It is worth
noting that the values of AOD do not discriminate the extinction for fine and coarse
particles. Moreover, AOD is for the whole atmosphere column, but PM2.5 concentration
is measured at the surface. Therefore, the AOD value does not strictly correspond to
changes in PM2.5 concentrations. This inconsistency can be shown in Figure 1b, which
may partially explain why the feature importance of AOD is falling lower than that of
geospatial-temporal joint codes. The other features with an importance value over 10 %
are DEM and BLH. In China, the altitude in the eastern plains is low and there will be
more human activities here. Thus, the PM2.5 concentration there is usually high. On the
Tibet Plateau in the west of China, the altitude is highest and the PM2.5 concentration is
the lowest [53]. The PM2.5-meteorology interactions are closely related to the variation in
boundary layer height, which determines the vertical structure and diffusion height of
PM2.5. There is very little space for dispersion of PM2.5 if the BLH is small. This results in a
higher PM2.5 concentration with the same amount of aerosol particles [54–56].

4.3. TEM-PM2.5 Concentrations Relationship Revealed by Multi-Way PDP

The entire China, the Beijing-Tianjin-Hebei, the Yangtze River Delta region, the Sichuan
Basin, and the Pearl River Delta region were selected as study areas to analyze the relation-
ship between PM2.5 and temperature (TEM). Figure 5 present the density scatterplots of
TEM and observed PM2.5 of those regions. In each subfigure, statistical results are attached
with the linear regression relation, the number of samples (N), the Pearson correlation
coefficient (Pearson’s r). In our dataset, the Pearson’s r calculated for these five regions are
all negative. The slopes of linear regressions are also negative.



Remote Sens. 2023, 15, 358 9 of 18

Figure 5. The density scatterplots of temperature (TEM) and observed PM2.5 in the whole of China,
the Beijing-Tianjin-Hebei, the Yangtze River Delta region, the Sichuan Basin and the Pearl River
Delta region. In each subfigure, statistical results are attached with the linear regression relation,
the number of samples (N), the Pearson correlation coefficient (Pearson’s r).

Figure 6 shows one-way PDP of TEM of the GBDT model and GTJC model across
China. The PDP of GTJC model over mainland China is similar to that over the four
regions, except for the difference in the range of estimated PM2.5 concentrations. All these
PDPs of GTJC show that the estimated PM2.5 concentrations increased with the rising
temperature. On the contrary, one-way PDPs of the GBDT model suggest that there is an
inverse relationship between TEM and PM2.5 concentrations. The negative TEM-PM2.5
relation given by the one-way PDP of the GBDT model is more consistent with the TEM-
PM2.5 relation demonstrated by the observed dataset in Figure 5.

Figure 6. the one-way partial dependence plots (PDP) of temperature (TEM) of GBDT model and
GTJC model. The black bars on the axes show the deciles of the feature values in the training data.

As stated in Section 3.2.2 that the difference between the GBDT model and the GTJC
model is the absence or presence of GTJC as input. Therefore, the GTJC is speculated to
be the reason for this discrepancy. The relation between TEM and PM2.5 concentrations
in the one-way PDPs is almost the same among the four regions and mainland China for
model with and without GTJC, respectively, suggesting the false relation is irrelevant to
geospatial codes and induced by temporal codes. The contradictory relationship given by
the one-way PDP will be analyzed and discussed in Section 5.1.

To further explore the relationship between TC, TEM, PM2.5, we expand PDP to two-
way to show how this relation variates with the day of the year. Two-way PDP in Figure 7a
displays the joint dependence of estimated PM2.5 concentrations on both TC and TEM.
Figure 7b,c presents the average of TEM and observed PM2.5 concentrations every month,
respectively.

As shown in Figure 7b, the temperature is high in summer and low in winter. In the
winter (i.e., December, January, and February.), the TEM is mainly distributed from 270 to
285 K. In the summer (i.e., June, July, August), the TEM reached 295 to 305 K. In Figure 7a,
when the TEM is between about 270 and 285 K, the estimated PM2.5 concentration range is
from 45.25 to 81.12 µg m−3. In the summer, when the TEM reached to the range between
295 and 305 K, and the estimated PM2.5 concentration changes from 33.29 to 45.25 µg m−3.
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The seasonal variation in TEM and estimated PM2.5 are diametrically opposed. There-
fore, estimated PM2.5 concentrations are inversely related with TEM in the annual cycle,
i.e., lighter pollution (higher TEM) in summer and heavier pollution (lower TEM) in win-
ter. In Figure 7c, the observed PM2.5 ranges from 22 to 100 µg m−3 in winter and 10 to
50 µg m−3 in summer. Similarly, the variation of observed PM2.5 concentration is contrary
to the variation of TEM. There is a negative correlation between observed PM2.5 and TEM.
This result is consistent with that of estimated PM2.5 concentrations. It should be noted that
the PM2.5 in Figure 7a is estimated by marginalizing the predicted targets over the distribu-
tion of unselected features. It will be different from the observed PM2.5 concentration.

(a) The two-way PDP of TEM

(b) The annual average of TEM

(c) The annual average of observed PM2.5

Figure 7. (a) The two-way partial dependence plots (PDP) of temperature (TEM) for the GTJC model.
The contour lines represent the average estimated PM2.5 concentrations (µg m−3). The black bars on
the axes show the deciles of the feature values in the training data. (b) Mean values of the TEM at a
monthly scale. (c) Mean values of the PM2.5 concentrations at a monthly scale. The error bar referred
to the standard deviation of the data set.

TEM in most regions of mainland China has a distinct annual cycle with hot summer
and cold winter due to its location in the northern temperate zone. Simultaneously, PM2.5
concentrations in summer stay at a low level because of the rainy weather and less emission
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compared with the heating season. This coincidentally seasonal variation in both TEM and
PM2.5 concentrations makes them have a natural inverse relationship on the yearly scale.
The negative TEM-PM2.5 concentrations relation is reflected by the one-way PDP of GBDT
model in Figure 6.

4.4. AOD-PM2.5 Concentration Relationship Revealed by Multi-Way PDP

As shown in Figure 8a,b, the one-way PDPs in different seasons and two-way PDP
shows seasonal changes of the AOD-PM2.5 relationship. For the same AOD value, the corre-
sponding PM2.5 concentration value varies greatly from winter to summer. A more reliable
AOD-PM2.5 concentration relationship for the individual region is revealed. However,
two-way PDP can visualize annual variations in PM2.5 concentrations more detailed and
intuitively with the changes in AOD across China.

(a) The one-way PDP of AOD in summer and winter

(b) The two-way PDP of AOD

Figure 8. (a) The one-way partial dependence plots (PDP) of aerosol optical depth (AOD) in the
Beijing-Tianjin-Hebei and the Sichuan Basin during summer and winter. The dotted line represents
the estimated PM2.5 concentration when AOD is 0.5. (b) The two-way PDP of AOD. The contour
lines on the subfigure (b) represent the average estimated PM2.5 concentrations (µg m−3). The black
bars on the axes show the deciles of the feature values in the training data.

The AOD-PM2.5 concentration relation in one-way PDPs are all positive for the whole
China, the Beijing-Tianjin-Hebei and the Sichuan Basin in both summer and winter, re-
gardless of whether there is a GTJC in the model. Note that different from the relation of
TEM-PM2.5 concentrations, PM2.5 concentrations are physically relative to AOD values.
The positive correlation of TEM-PM2.5 concentrations within the season is not the direct
relationship, but the regulated expression of the strengthened photochemical reaction and
secondary pollutants formation under higher environment temperature. However, PM2.5
concentration dose positively related to AOD because they are quantities representing
aerosol loading in the atmosphere.
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As the columnar integration of the extinction coefficient with altitude, satellite AOD
is affected by the atmospheric humidity since the uptake of water vapor can cause a
substantial increase of aerosol size and its extinction. Whilst PM2.5 is often measured under
a dry condition and less affected by the atmospheric humidity. Therefore, atmospheric
humidity difference may result in changes in AOD-PM2.5 relationship. Figure 9a shows the
probability density of relative humidity (RH) in Sichuan Basin and the Beijing-Tianjin-Hebei
during winter and summer. As we can see, there is a huge contrast in humidity between
the Sichuan Basin and the Beijing-Tianjin-Hebei. In winter, the RH in the Sichuan basin is
mainly distributed in 60 to 80% and it is 20 to 50% in the Beijing-Tianjin-Hebei.

With the distinct humidity contrast, the one-way PDP of both the GTJC model and the
GBDT model for the Sichuan Basin in winter is markedly different from that of the Beijing-
Tianjin-Hebei in winter. The deciles of AOD indicated that the AOD of Sichuan Basin (0.3
to 0.9) is greater than that of the Beijing-Tianjin-Hebei (0.1 to 0.7) in winter but the variation
range is smaller for PM2.5 concentrations over the Sichuan Basin in winter than that of
the Beijing-Tianjin-Hebei in winter. In GTJC model, the PM2.5 concentrations vary from
50 µg m−3 to 100 µg m−3 in the Sichuan Basin, which is smaller than that of Beijing-Tianjin-
Hebei (45 to 115 µg m−3). In GBDT model, the variation range for PM2.5 concentrations
of the Sichuan Basin is 35 to 110 µg m−3 and it is 40 to 120 µg m−3. The flatter of one-
way PDP means the variation of AOD results in weaker changes in the estimated PM2.5
concentrations. The larger AOD in winter is not necessarily due to the high concentration
of PM2.5, but due to the increased extinction effect by the hygroscopic of particles in higher
environmental humidity. This is in line with the situation that in the Sichuan Basin during
humid winter, changes in AOD may be more closely related to changes in water vapor
rather than variations in PM2.5 concentrations. Both the GBDT and GTJC models can
distinguish the impacts of water vapor on PM2.5-AOD relation.

the Sichuan Basin the Beijing-Tianjin-Hebei
Region

0

20

40

60

80

100

RH
 (%

)

Season
Winter
Summer

(a) The violin plot of RH (b) The three-way PDP

Figure 9. (a) The violin plot of relative humidity (RH). The dotted line on (a) represents the quartiles
of the RH distribution. (b) The three-way PDP of geospatial codes (GC) with respect to AOD.
The latitude and longitude are inversely transformed from GC. The vertical axis of the three-way PDP
is the selected feature, and the color represents the average estimated PM2.5 concentration (µg m−3).

The joint dependence of PM2.5 concentrations on geographical codes and AOD is pre-
sented with three-way PDP in Figure 9b. According to Figure 9b, the sensitivity of estimated
PM2.5 concentrations to AOD is higher in the north than that in the south of China. This
agrees well with the one-way PDPs in Figure 8a that the corresponding increase of PM2.5
concentration of a certain variation in AOD is smaller in South China than that in North
China. As analyzed above, the prime reason for this South–North contrast is that the higher
atmospheric water vapors in South China swell the AOD value by hygroscopic growth
of particles. Similarly, the East–West difference of the sensitivity of PM2.5 concentrations
to AOD in the three-way PDP is also mainly originated from the atmospheric humidity
difference between East and West regions in China. In addition, the higher fraction of cloud
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cover may introduce a large uncertainty into the AOD retrieval [57], leading to the less
sensitivity of estimated PM2.5 concentration to AOD variation over southern China.

5. Discussion
5.1. The Contradictory Relationship Shown in the One-Way PDP

As stated in Section 4.3, for the same feature, temperature, the one-way PDP will
give two opposed results since temporal codes. Here, Temporal codes are essentially
spatiotemporal information of the given sample in Cartesian coordinates and tx, tx are the
transformed coordinates. The daily average of PM2.5 concentrations, TEM, tx and ty are
shown in Figure 10. The PM2.5 concentrations have notable seasonal variations, with the
heaviest pollution in winter. The annual cycle is also substantial in TEM, but with the lowest
values of TEM in winter. The Pearson correlation coefficient of PM2.5 and TEM is −0.17.
Clearly, PM2.5 concentrations are negatively correlated with TEM from the perspective of
annual changes. The variation of TC, represented by tx and ty, has a very similar annual
cycle to that of PM2.5 concentrations. The Pearson correlation coefficients between PM2.5
and tx, ty are 0.34, 0.08, respectively. For better describe the relationship among TC, TEM,
and PM2.5, we claim that TC is positively correlated with PM2.5 even if TC consists of two
elements. The Pearson correlation coefficients between TEM and tx, ty are −0.78 −0.15,
respectively. It should be noted that TEM is physically determined by the seasonal changed
solar radiation. Therefore, the two input variables of TEM and TC are naturally strongly
correlated with each other.

Figure 10. Scatter plot of the daily average PM2.5 concentrations (µg m−3), temperature (TEM), tx

and ty of all observation sites from 2015 to 2019.
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As shown in Figure 2, TEM are combined with TC one by one to build artificial datasets
for estimating partial dependence. Based on the strong negative correlation of TEM and
TC, a paired combination is not suitable for these two features. Therefore, some data points
that do not exist in reality will be created, for example, extremely cold temperatures occur
in the summer. These data points will be involved in the estimation of the average of
PM2.5 concentrations.

For the complicated interactions between different factors, the extracted correlation
coefficient between two variables could be influenced significantly by other variables in the
ecosystem. In addition, correlation analysis between two variables in a complicated ecosys-
tem might lead to mirage correlations [58]. Similarly, it is unreliable to analyze complex
patterns learned by a “black box” model from the perspective of a feature, especially when
the selected feature has a strong correlation with other predictors.

The coincidentally seasonal variation in TEM, PM2.5 and TC cause a strong correlation
among them. However, the one-way PDP can only reveal the relationship between PM2.5
and a single feature. Furthermore, as shown in Figure 4a, TC has more influence on the
model compared to TEM. Thus, the relationship between TEM and PM2.5 given by one-way
PDP can be very partial. Actually, Christoph Molnar [45] indicates that the correlated
features would complicate the partial dependence analysis. The results in this study further
suggests the effect of the powerful feature with the output seems to cover up that of less
influential feature with the output.

Note that within a certain period, such as a time scale of months, seasons, etc.,
PM2.5 concentrations increase with the increase of TEM, according to the two-way PDP in
Figure 7a. The possible explanations are that more precursors of particles and secondary
pollutants are generated under high temperatures, since it promotes the photochemical
reaction in the atmosphere. Thereby resulting in the rise in PM2.5 concentrations within the
corresponding period [32].

5.2. The Single Perspective of One-Way PDP

The one-way PDP can only demonstrate the relationship between a single predictor
and target. In addition, the partial dependence is estimated by marginalizing the predicted
target over the distribution of unselected features, as shown in Equation (2). Therefore
some local effects might be hidden and quantifying the relationship from one-way PDP
may deviate from the actual local situation.

For example, the dotted line in Figure 8a,b represents the estimated PM2.5 concen-
tration when AOD is 0.5. It is 60 µg m−3 in the whole of China both in the GTJC model
and GBDT model when AOD is 0.5. However, in summer, the estimated PM2.5 concen-
tration of the GTJC model and GBDT model both is around 35 µg m−3 in Sichuan Basin
and 40 µg m−3 in the Beijing-Tianjin-Hebei. Those results in summer are lower than the
national average PM2.5 concentration. Meanwhile, in the winter, the estimated PM2.5 con-
centration of the GTJC model and GBDT model both reached 65 µg m−3 in Sichuan Basin
and 85 µg m−3 in the Beijing-Tianjin-Hebei. The PM2.5 concentrations estimated in winter
are higher than the national average. In terms of regions, the estimated PM2.5 concentration
also have slight differences.

These sub-regional and sub-seasonal results indicate that the PM2.5-AOD relationship
has spatiotemporal heterogeneity. The heterogeneous interactions might be hidden because
one-way PDP can only quantify the influence of individual factors in an average state.
However, the expanded multi-way partial dependence plots can visualize spatiotemporal
variations of PM2.5 concentrations more detailed and intuitively with the changes in selected
factors across China. As mentioned above, the drawbacks of the original one-way PDP
make it unsuitable for exploring large-area feature effect. To reveal the spatiotemporal
characteristics of feature effect, it is recommended to visualize the joint dependence in the
form of multi-way PDP.
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5.3. The Effect of Incorporating Spatial and Temporal Terms

The spatial and temporal variables are widely incorporated into PM2.5 concentrations
estimation models because they can address the spatiotemporal heterogeneities of the
PM2.5-AOD relationship [12]. The common forms of spatial and temporal terms include the
days of year [59], Unix Epoch time [21,60], Haversine [15], two-dimension smooth term of
geographical coordinate [61]. The geospatial-temporal joint codes [14] used in this study is
also one of the forms spatiotemporal variables. However, not all spatiotemporal variables
will affect the results of one-way PDP.

The time variable, days of the year, is converted into a cycle with a range of [0, 2π] in
this study to solve the problem of the time variable jumping from 365/366 on the last day
of a year to 1 on the first day of the next year. This conversion enables the time variable
variates seasonally, resulting in the strong correlation among TC, temperature and PM2.5
concentrations. Other PM2.5 concentration prediction models with temporal codes but
in the form of Unix Epoch time (number of seconds since 1 January 1970) get negative
TEM-PMPM2.5 concentrations relationship [21,60], verifying the above suppose that it is
the strong correlation between TC and temperature rather than TC itself that makes the
model get different TEM-PM2.5 concentrations relation.

Spatiotemporal variables can also make the one-way PDP more reliable in the case
of sparse data points. As shown in Figure 8a, in the summer of the Sichuan basin, AOD
is mainly distributed in the range of 0.1 to 0.6. It almost has no data points between 0.6
and 1.0. The estimated PM2.5 concentrations of the GBDT model changed by more than
15 µg m−3 when AOD changed from 0.1 to 0.6 and it is 8 µg m−3 in GTJC model. This is
where the two models’ one-way PDP differ most. When the distribution of data points
is sparse, the spatiotemporal variables can offer additional information to the model’s
decision. This is also why GTJC can improve the model’s ability.

6. Conclusions

The success of the machine learning model in estimating PM2.5 concentrations from
satellite remote sensing data has led to the pursuit of interpretability. Due to the high
spatiotemporal heterogeneity, understanding the relationship between predictors and
PM2.5 concentration remains challenging. To obtain a more reliable relation of temperature
(TEM) and AOD with PM2.5 concentrations, partial dependence plots (PDP) and their
extended forms are used to thoroughly explore the relationship of the prediction and input
features in the machine learning model.

Temperature is found to be inversely correlated with PM2.5 concentration in the one-
way PDP of the model without geospatial-temporal joint codes (GTJC) and in the annual
scale of the two-way PDP with GTJC. The comparison of one-way PDPs between the model
with and without GTJC suggests that the strong correlations of temporal codes with PM2.5
concentration and TEM lead to an artificial positive TEM-PM2.5 concentration relation.
Future studies need to use one-way PDP with caution because it is susceptible when the
input variables have a correlation. As recommended in this study, the extension of PDP
from one-way to two-way can clarify to some degree of the TEM-PM2.5 concentration
relation by visualizing its annual evolution.

For AOD-PM2.5 concentration relation, If we analyze the one-way PDP of the whole
of China, the distinct regional and seasonal characters would be hidden. From the perspec-
tive of obtaining empirical and numerical relationships, one-way PDP is not suitable for
exploring AOD-PM2.5 concentration relation over large-scale regions of high inhomoge-
neous. Therefore, we combine GTJC with the model and thus expand PDP to two-way and
three-way to dive into the details of seasonal and regional variations.

This study let us dive into the spatial and temporal characters of the relationship of
AOD, TEM and PM2.5 concentration. The results suggest that multi-way PDP can give a
relatively reliable relation between input features and model predictions than one-way PDP.
This further illustrates the important role of GTJC-based multi-way PDP in the analysis of
individual factor-PM2.5 concentration relationship. Therefore, it is recommended to use
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multi-way PDP to explain the “black box” model. In the future, the dependence of PM2.5
concentrations on interactions between meteorological factors is interesting and needs to
be further analyzed. It will contribute to the improvement of climate prediction with better
understanding of PM2.5 concentrations–multifactor relationship.
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