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Abstract: A neural network-based object detection algorithm has the advantages of high accuracy
and end-to-end processing, and it has been widely used in synthetic aperture radar (SAR) ship
detection. However, the multi-scale variation of ship targets, the complex background of near-shore
scenes, and the dense arrangement of some ships make it difficult to improve detection accuracy.
To solve the above problem, in this paper, a spatial cross-scale attention network (SCSA-Net) for
SAR image ship detection is proposed, which includes a novel spatial cross-scale attention (SCSA)
module for eliminating the interference of land background. The SCSA module uses the features at
each scale output from the backbone to calculate where the network needs attention in space and
enhances the features of the feature pyramid network (FPN) output to eliminate interference from
noise, and land complex backgrounds. In addition, this paper analyzes the reasons for the “score
shift” problem caused by average precision loss (AP loss) and proposes the global average precision
loss (GAP loss) to solve the “score shift” problem. GAP loss enables the network to distinguish
positive samples and negative samples faster than focal loss and AP loss, and achieve higher accuracy.
Finally, we validate and illustrate the effectiveness of the proposed method by performing it on SAR
Ship Detection Dataset (SSDD), SAR-ship-dataset, and High-Resolution SAR Images Dataset (HRSID).
The experimental results show that the proposed method can significantly reduce the interference of
background noise on the ship detection results, improve the detection accuracy, and achieve superior
results to the existing methods.

Keywords: object detection; deep learning; synthetic aperture radar (SAR); spatial cross-scale attention
(SCSA); global average accuracy loss (GAP loss)

1. Introduction

Synthetic aperture radar (SAR) is a microwave sensor based on the scattering char-
acteristics of electromagnetic waves for imaging, which has a certain cloud and ground
penetration capability to detect hidden targets. This characteristic makes it suited for
marine monitoring, mapping, and military applications. With the continuous exploitation
of marine resources, the monitoring of marine vessels based on SAR images has received
increasing attention. SAR image object detection aims to automatically locate and iden-
tify specific targets from images and has important application prospects in defense and
civil fields such as target identification, target detection, marine development, and terrain
classification [1–4].

The development of SAR image ship detection methods can be divided into two
stages [5]: traditional detection methods represented by constant false alarm rate (CFAR)
algorithms and deep learning methods represented by convolutional neural networks. The
constant false alarm rate algorithm adaptively adjusts the threshold value using statistical
models and sample selection strategies. It has been widely used due to its constant false
alarm rate and low complexity. For example, the bilateral CFAR algorithm [6] takes into
account the intensity distribution and spatial distribution when selecting thresholds to
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improve the accuracy of detection. The two-parameter CFAR [7] uses log-normal as the
statistical model with more accurate parameter estimation and achieves better detection
performance in a multi-target environment. The modified CFAR algorithm proposed in
the paper [8] uses variable guard windows to improve its detection performance for the
multi-scale scene. Li et al. [9] propose an adaptive CFAR method based on intensity and
texture feature fusion attention contrast mechanism to suppress clutter background and
speckle noise with better performance in complex backgrounds and multi-target marine
environments. The above CFAR algorithms rely on the land-segmentation algorithm in the
nearshore scene, while the adaptive superpixel-level CFAR algorithm [10] is based on the
superpixel segmentation method, which does not require additional land-segmentation
algorithm, and its detection performance is still reliable in near-shore scenarios. However,
these algorithms are based on the modeling of clutter statistical features, which are more
sensitive to the complex shoreline, ocean clutter, and coherent scattering noise, with low
detection accuracy and poor generalization [5]. Currently, deep learning is the mainstream
research direction due to its excellent feature extraction capability and end-to-end training
process, which is gradually replacing the traditional methods.

In the field of target detection, deep learning methods based on convolutional neural
networks have developed rapidly due to the translation invariance and weight-sharing
properties of convolution. The existing target detection methods based on convolutional
neural networks can be divided into two-stage and one-stage methods. The two-stage
network first generates the proposed region in the first stage and then performs classifi-
cation and correction of the proposed region in the second stage. This method has higher
detection accuracy and better detection for small targets, such as region-convolutional
neural network (R-CNN) [11], Fast R-CNN [12], Faster R-CNN [13], Sparse R-CNN [14], etc.
The one-stage network does not need to generate proposed regions and directly outputs
the classification and location results of the target. Although the accuracy of the one-stage
network is generally lower than that of the two-stage network, they have higher detec-
tion speed and simple training steps, such as YOLO series [15–22], single shot detection
(SSD) [23], RetinaNet [24], fully convolutional one-stage object detection (FCOS) [25], etc.

Since the release of the SAR ship detection dataset (SSDD) by Li et al. [26] in 2017,
SAR image ship detection based on convolutional neural networks developed rapidly, and
subsequently in, 2019 and 2020, Wang et al. [27] and Wei et al. [28] released the SAR-Ship-
Dataset and High-Resolution SAR Images Dataset (HRSID), respectively. Additionally, in
2021, Zhang et al. [29] corrected the mislabeling of the initial version of the SSDD and used a
standardized format, which further facilitated the development of the field. In recent years,
Shi et al. [30] proposed a feature aggregation enhancement pyramid network (FAEPN) to
enhance the extraction capability of the network for multi-scale targets, taking into account
the quality of classification and regression when assigning positive and negative samples.
Cui et al. [31] proposed a dense attention pyramid network (DAPN), which used dense
connectivity in the feature pyramid network (FPN) to obtain richer semantic information
about each scale and used a convolutional block attention module (CBAM) to enhance
the features. Zhang et al. [32] proposed a quad-feature pyramid network (Quad-FPN) to
extract complex multi-scale features, and then replaced non-maximal suppression (NMS)
with soft non-maximal suppression (soft-NMS) to improve the detection of densely aligned
targets. Li et al. [4] proposed an attention-guided balanced feature pyramid network (A-
BFPN), which contained an enhanced refinement module (ERM) for reducing background
interference and a channel attention-guided fusion network for reducing confounding
effects in mixed feature maps. Different from the above-mentioned anchor-base network,
Zhu et al. [33] proposed a novel anchor-free network based on FCOS for SAR image target
detection, in which a deformable convolution (Dconv) and an improved residual network
(IRN) were added to optimize the feature extraction capability of the network. Wu et al. [34]
proposed the instance segmentation-assisted ship detection network (ISASDNet), with a
global reasoning module, which achieved good performance in instance segmentation and
object detection. Wang et al. [35] used intersection over union (IoU) K-means to solve the
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extreme aspect ratio problem and embedded a soft threshold attention module (STA) in
the network to suppress the effects of noise and complex backgrounds. Tian et al. [36]
employed an object characteristic-driven image enhancement (OCIE) module to enhance
the variety of datasets and explored the dense feature reuse (DFR) module and receptive
field expansion (RFE) module to increase the network receptive field and strengthen the
transmission of information flow. Wei et al. [37] adopted a high-resolution feature pyramid
network (HRFPN) to make full use of the information in the high-resolution and low-
resolution features and proposed a high-resolution ship detection network (HR-SDNet) on
this basis.

In order to further improve the detection accuracy of the network, in this paper, a new
anchor-free spatial cross-scale attention network (SCSA-Net) is proposed, which contains
a novel spatial cross-scale attention (SCSA) module that enhances features at different
scales while mitigating the interference generated by complex backgrounds such as land.
In addition, to solve the “score shift” problem of average accuracy loss (AP loss), this paper
improves AP loss and proposes global average accuracy loss (GAP loss). Three widely
used datasets are used to experimentally validate the proposed methods and confirm their
effectiveness.

The main contributions of our work are as follows:

1. A novel cross-scale spatial attention module is proposed, which consists of a cross-
scale attention module and a spatial attention redistribution module. The former
dynamically adjusts the position of network attention by combining information from
different scales. The latter redistributes spatial attention to mitigate the influence of
complex backgrounds and make the ship more distinctive.

2. We analyze the reasons why AP loss generates the “score shift” problem and propose
a global average accuracy loss (GAP loss) to solve it. Compared to traditional methods
using focus loss as the classification loss, training with GAP loss allows the network
to optimize directly with the average precision (AP) as the target and to distinguish
between positive and negative samples more quickly, achieving better detection
results.

3. We propose an anchor-free spatial cross-scale attention network (SCSA-Net) for ship
detection in SAR images, which reached 98.7% AP on the SSDD, 97.9% AP on the SAR-
Ship-Dataset and 95.4% AP on the HRSID, achieving state-of-the-art performance.

The remainder of this paper is organized as follows: the second section introduces the
proposed method; the third section describes the experiments and analysis of the results;
the fourth section discusses and suggests future work; finally, the fifth section summarizes
this paper.

2. Methods

This section describes SCSA-Net for SAR ship detection, which contains the overall
architecture of SCSA-Net, the spatial cross-scale attention module, and GAP loss.

2.1. Overall Architecture of SCSA-Net

The main framework of SCSA-Net is depicted in Figure 1. FCOS [25] is chosen as the
baseline, which is one of the most representative one-stage anchor-free detectors. Following
the FCOS, the ResNet-50 is used as the backbone of SCSA-Net for feature extraction and
the FPN is employed to solve the multi-scale target detection problem. Additionally, a new
spatial cross-scale spatial attention module is added to the network, which dynamically
enhances the FPN output features based on the backbone output features. The enhanced
feature is then forwarded to the class-box subnet for classification and regression.
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Figure 1. Overview of our proposed SCSA-Net. It consists of four sections: the backbone of the 
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net. 
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Figure 1. Overview of our proposed SCSA-Net. It consists of four sections: the backbone of the
SCSA-Net, feature pyramid network (FPN), spatial cross-scale attention module, and class-box subnet.

2.2. Spatial Cross-Scale Attention Module

In the offshore scenes of SAR images, the network usually performs well because of
the large distinction between sea level clutter and ship targets. However, in the near-shore
scenes of SAR images, the land portion of the background is complex and the network
easily confuses ship targets with smaller islands and land backgrounds having similar ship
shapes. This leads to false alarms and missed detections. The spatial cross-scale attention
module is proposed to reduce the interference of land-to-ship targets. It consists of two
parts, the cross-scale attention module, and the spatial attention redistribution module. The
cross-scale attention module determines the regions requiring attention at each scale, while
the spatial attention redistribution module redistributes the attention regions at each scale
spatially to locate more accurate attention regions.

2.2.1. Cross-Scale Attention Module

The structure of the cross-scale attention module is shown in Figure 2. The multi-head
attention module is used to extract the attention regions of each scale more accurately. To
be more intuitive, the formula in [38] is quoted as:

MultiHead(Q, K, V) = Concat(head1, . . . , headn)WO

where headi = so f t max

( (
QWQ

i

)
(KWK

I )
T

√
dk

)(
VWV

i
) (1)

where Wi
Q ∈ Rdmodel×dk , Wi

K ∈ Rdmodel×dk , Wi
V ∈ Rdmodel×dv , and WO ∈ Rdv×dmodel are the

projection matrices, where dk and dv are the dimensions of K and V respectively, and dmodel
is the dimension of the multi-head attention module. In this paper, the multi-head attention
inputs of Q, K, and V are the same, so we simplify MultiHead(Q, K, V) to MultiHead(X)
when Q = K = V = X.

The features from the last residual block of i-th stage in ResNet-50 are Mi ∈ RCi×Hi×Wi ,
i = 3, 4, 5 where Ci, Hi, Wi indicate the channel number, spatial height, and width, respec-
tively. First, the convolution of size 1 is used in Mi to obtain Xi ∈ R256×Hi×Wi , i = 3, 4, 5 in
order to reduce the channel dimension. Then, the maximum pooling layer is used to down-
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sample Xi to obtain X′i to reduce the computing cost Xv
i
= V

(
X
′
i

)
∈ R256×(H5·W5), i = 3, 4, 5

denotes the vectorization function, and X
′
i = V−1(Xv

i
)
∈ R256×H5×W5 denotes its inverse

function. The enhanced feature Ai ∈ R256×H5×W5 , i = 3, 4, 5 are calculated as:

Ai =

{
V−1( MultiHead

(
V
(
X′i
)))

, i = 5
V−1( MultiHead

(
V
(
X′i + Ai+1

)))
, i = 3, 4

(2)
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Figure 2. The structure of the cross-scale attention module.

2.2.2. Spatial Attention Redistribution Module

The structure of the spatial redistribution model is shown in Figure 3. First, using a
deformable convolution and concatenation on Ai to obtain Ac ∈ R(256·3)×H5×W5 . Then Ac is
fed into the convolution layer and SoftMax activation layer to obtain As ∈ R5×H5×W5 . The
Asj ∈ R1×H5×W5 denotes the feature map of the j-th channel in the As, where Asj , j = 3, 4, 5
are considered as attention weights only on the j-th scale, except that some regions possibly
will be interesting or suppressed at all scales, such as common features of ship targets or
land areas that do not contain targets. For this reason, As1 and As2 are respectively used
as the weights that require attention and suppression at all scales. Then, the redistributed
attention weight Si ∈ R1×H5×W5 can be formulated as:

Si = Asi + As1 − As2 (3)Remote Sens. 2023, 15, x FOR PEER REVIEW 6 of 25 
 

 

 Spatial Attention Redistribution Module

C
on

v

so
ftm

ax

Ac
As

S3

S4

S5

A5

A4

A3 DConv

DConv

DConv

 
Figure 3. The structure of the spatial attention redistribution module. 

2.3. Global Average Precision Loss 
2.3.1. Average Precision Loss 

In the object detection task, average precision (AP) is an important criterion for the 
detection result. The range of AP is , the closer the AP is to 1, the more accurate the 
detection result is and the closer the AP is to 0, the worse the detection result is. The main 
optimization goal of the object detection task is to make the AP as close to 1 as possible. 
Based on this goal, AP loss was proposed by Chen et al. [39]. With a large number of 
samples, AP loss can achieve better performance than focal loss because it allows the net-
work to be optimized directly for the AP, and is not affected by a large number of true 
negative samples [39]. To be more intuitive, the formula of AP loss in [39] is quoted as: 

  

(6)

where  is the classification score of the box  output by the network without the sig-
moid function, and each  will be assigned a label  (label −1 for not 
counted into the AP loss).  and  are the set of positive and 
negative samples, respectively, and  is the size of set . Further, Chen et al. [39] give 
a formula for the gradient  of  to address the problem that  is non-differentia-
ble in the backpropagation process. 

   
(7)

where  and  is an indicator function that equals to 1 only if the sub-
script condition holds (i.e., ), otherwise 0. 

2.3.2. Global Average Precision Loss 

Figure 3. The structure of the spatial attention redistribution module.

Finally, Si are reshaped by upsampling into S′i ∈ R1×Hi×Wi used to enhance features
Fi, i = 3, 4, 5 from FPN. Following the idea of FCOS, to further improve the detection
capability of large-scale targets, we use a series of convolutions of stride 2 and size 3 for the
enhanced features of F5 to obtain feature maps F6 and F7 with larger receptive fields.

F6 = Conv(F5 · BD(S5)) (4)

F7 = Conv(ReLU(F6)) (5)
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where BD() means broadcast operation, Conv() means a convolution with a kernel size of
3, a stride of 2, and a padding of 1.

2.3. Global Average Precision Loss
2.3.1. Average Precision Loss

In the object detection task, average precision (AP) is an important criterion for the
detection result. The range of AP is [0, 1], the closer the AP is to 1, the more accurate the
detection result is and the closer the AP is to 0, the worse the detection result is. The main
optimization goal of the object detection task is to make the AP as close to 1 as possible.
Based on this goal, AP loss was proposed by Chen et al. [39]. With a large number of
samples, AP loss can achieve better performance than focal loss because it allows the
network to be optimized directly for the AP, and is not affected by a large number of true
negative samples [39]. To be more intuitive, the formula of AP loss in [39] is quoted as:

LAP = 1
|P| ∑

i∈P

∑
j∈N

H(sj−si)

1+ ∑
j∈P,j 6=i

H(sj−si)+ ∑
j∈N

H(sj−si)

where H(x) =


0, x < −δ

x
2δ + 0.5, −δ ≤ x ≤ δ

1, δ < x

(6)

where si is the classification score of the box bi output by the network without the sigmoid
function, and each bi will be assigned a label ti ∈ {−1, 0, 1} (label −1 for not counted
into the AP loss). P = {i|ti = 1} and N = {i|ti = 0} are the set of positive and nega-
tive samples, respectively, and |P| is the size of set P. Further, Chen et al. [39] give a
formula for the gradient gi of si to address the problem that LAP is non-differentiable in
the backpropagation process.

gi = ∑
j

Lji · yji −∑
j

Lij · yij

where Lij =
H(sj−si)

1+ ∑
j∈P,j 6=i

H(sj−si)+ ∑
j∈N

H(sj−si)

(7)

where ∀i, j, yij = 1ti=1,tj=0 and 1 is an indicator function that equals to 1 only if the subscript
condition holds (i.e., ti = 1, tj = 0), otherwise 0.

2.3.2. Global Average Precision Loss

Chen et al. [39] point out that training with AP loss has the problem of “score shift”.
That is, although the AP of each of the two images is high, the AP may become lower if
the two images are put together, because the scores of the positive or negative samples of
the two images may be in different ranges, and the score of negative samples on one of the
images may be higher than the score of positive samples in the other image. Chen et al. [39]
avoid this situation through minibatch training but it still exists in two different batches.
The main reason for the “score shift” is that AP loss only deals with those positive samples
that have smaller scores than the negative samples and those negative samples that have
larger scores than the positive samples. If the score of a positive sample is larger than all
the negative samples, then its gradient gi will be 0. Similarly, if the score of a negative
sample is smaller than all the positive samples, then its gradient will also be 0. This leads to

the fact that once the score of a sample jumps out of the range rk =

(
max
i∈Nk

(si,k), min
j∈Pk

(
sj,k

))
in the k-th batch, then its gradient of AP loss will become 0 unless the region changes so
that it is included again, and when min

j∈Pk

(
sj,k

)
> max

i∈Nk
(si,k), the gradient of AP loss for all

samples will become 0. Thus, the greater the difference in rk, the more serious the problem
of “score shift”. In addition, in the early stage of the training, the scores of positive and
negative samples are very close to each other, which will result in a small range of rk.



Remote Sens. 2023, 15, 350 7 of 23

Therefore, training with AP loss can only produce a very small gap in the positive and
negative samples, leading to poor results.

To solve the above problem, we propose a global average precision loss (GAP loss).
First, to make the range rk of each batch similar, we calculate the mean value of positive
and negative sample scores for multiple batches and take them into account separately
when calculating Lij. Thus, the formula for Lij becomes as follows, while for more intuition
we divide Lij into LP

ij
for
{

i, j
∣∣ti = 1, tj = 0

}
and LN

ij
for
{

i, j
∣∣ti = 0, tj = 1

}
.

LN
ij =

H
(
sj − si

)
1 + ∑

j∈P(k),j 6=i
H
(
sj − si

)
+ ∑

j∈N(k)
H
(
sj − si

) + H
(

sj − s(k)P

)
1 + ∑

j∈P(k),k 6=i
H
(

sj − s(k)P

)
+ ∑

j∈N(k)
H
(

sj − s(k)P

) (8)

LP
ij =

H
(
sj − si

)
+
∣∣∣N(k)

∣∣∣·H(s(k)N − si

)
1 + ∑

j∈P(k),j 6=i
H
(
sj − si

)
+ ∑

j∈N(k)
H
(
sj − si

)
+

∣∣∣∣∣N(k)

∣∣∣∣∣·H(s(k)N − si

) (9)

where P(k) and N(k) are the set of positive and negative samples in the k-th batch, respec-
tively.

∣∣∣P(k)
∣∣∣ and

∣∣∣N(k)
∣∣∣ is the size of set P(k) and N(k). s(k)P and s(k)N are the exponentially

weighted averages of the positive and negative sample scores of multiple batches and are
calculated as follows:

s(k)P = βs(k−1)
P + (1− β)

1∣∣P(k)
∣∣ ∑

i∈P(k)

si (10)

s(k)N = βs(k−1)
N + (1− β)

1∣∣N(k)
∣∣ ∑

i∈N(k)

si (11)

Compared with Equation (7), the extra term in the Equation (8) is equivalent to
adding

∣∣∣P(k)
∣∣∣ additional positive samples with a score of s(k)P to the set of positive samples.

Likewise, Equation (9) adds
∣∣∣N(k)

∣∣∣ additional negative samples with score s(k)N to the set

of negative samples. In this way, the rk of each batch will contain both s(k)N and s(k)P , thus
alleviating the problem of “score shift”. We then added additional terms to the gradient gi
to allow the sample to still obtain a non-zero gradient even if it jumps out of rk, and the
gradient of GAP loss is calculated as follows:

g′i = ∑
j

(
LN

ji +
((

LN
ji

)γ
+ 1
)
· Sigmoid(si)

γ
)
· yji −∑

j

(
LP

ij +
((

LP
ij

)γ
+ 1
)
· (1− Sigmoid(si))

γ
)
· yij (12)

Taking positive samples as an example, positive samples with small activation values
and large LP

ij will obtain a larger value of g′i when LP
ij is not zero compared to gi, while as LP

ij
is equal to zero, positive samples will obtain a non-zero gradient based on their activation
values, thus allowing the network to focus on those difficult positive samples with small
activation values and large LP

ij, while not “ignoring” those simple samples that jump out
at rk.

3. Experiment

In this section, we first introduce the experimental datasets, evaluation metrics, and
implementation details. Then, we conducted an ablation study to analyze SCSA-Net.
Finally, we compare other recent methods with several examples.

3.1. Datasets

1. Official-SSDD (SSDD): Currently, the SSDD [26] dataset published in 2017 is the most
widely used in the SAR ship detection field. Subsequently, Zhang et al. published the
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updated official SSDD dataset of the SSDD dataset in 2021 [29], which corrected the
wrong labels in SSDD and provided richer label formats. The official SSDD dataset
contains complex backgrounds and multi-scale offshore and inshore targets. Most of
the images are 500 pixels wide, and the SSDD has a variety of SAR image samples
with resolutions ranging from 1 m to 15 m from different sensors of RadarSat-2, Terra
SAR-X, and Sentinel-1. The average size of ships in SSDD is only ~35 × 35 pixels. In
this paper, we refer to Official SSDD as SSDD for convenience.

2. SAR-Ship-Dataset: SAR-Ship-Dataset was released by Wang et al. [27] in 2019. It
contains 43,819 images with 256 × 256 image sizes, mainly from Sentinel-1 and
Gaofen-3. SAR ships in SAR-Ship-Dataset are provided with resolutions from 5 m to
20 m, and HH, HV, VV, and VH polarizations. Same to their original reports in [27],
the entire dataset is randomly divided into training (70%), validation (20%), and test
dataset (10%).

3. High-Resolution SAR Images Dataset (HRSID): The HRSID proposed by Wei et al. [28]
is constructed by using original SAR images from the Sentinel-1B, TerraSAR-X, and
TanDEM-X satellites. The HRSID contains 5604 images of 800 × 800 size and 16,951
ship targets. These images have various polarization rates, imaging modes, imaging
conditions, etc. As in its original reports in [28], the ratio of the training set and the
test set is 13:7 according to its default configuration files.

3.2. Evaluation Metrics

In order to evaluate the detection performance quantitatively, the evaluation criteria
we used include the precision rate, recall rate, and average precision (AP). The calculation
method is as follows:

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

For a predicted box, if the IoU between it and the corresponding ground truth box
is greater than 0.5, then it is defined as true positive ( TP), otherwise, it is false positive (
FP). For a ground truth box, if there is no predicted box with its IoU greater than 0.5, it is
defined as a false negative ( FN). AP is defined as:

AP =
∫ 1

0
p(r)dr (15)

where p and r represents precision and recall at an IoU threshold of 0.5, and p() is a function
that takes r as a parameter, which is equal to taking the area under the curve.

3.3. Training Details

The ResNet-50 pre-trained on ImageNet is carried out to initialize our backbone. The
initial learning rate of the SGD optimizer is 0.01, which is divided by 10 at each decay step.
The number of image iterations per epoch is 16 K. All training processes are carried out on
a Tesla V100 GPU (32 G) server.

3.4. Ablation Study

To visualize the effect of GAP loss, we counted the mean curves of the classification
scores of positive and negative samples predicted by the network during the training phase,
as shown in Figures 4–6. The curves are the output of the network trained by focal loss,
AP loss, and GAP loss, respectively. To be more intuitive, the classification scores are
normalized by a sigmoid function to convert them into probabilities, which represents
the probability that the network considers the sample to be a ship. For positive samples,
it should be as close to 1 as possible, and for negative samples, it should be as close to
0 as possible. In the initial stage of training, the positive and negative sample scores of
the network prediction are in the range of 0.5. No matter what kind of loss is used for
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training, the negative sample scores can drop to 0 quickly, but only the positive sample
scores corresponding to the GAP loss can quickly increase to about 1. For the network
trained with focal loss and AP loss, the output positive sample score will first drop from 0.5
to approximately 0.17 and 0.04 before gradually increasing. Additionally, since the gradient
of AP loss for samples out of rk is 0, the average of the positive sample score corresponding
to the AP loss at the end of training can only reach about 0.1, such that the gap of scores
between positive and negative samples is relatively small, leading to poorer detection
results. The focal loss can gradually increase the positive sample score of the network to
about 0.9, but it is still lower than the positive sample score corresponding to the GAP loss.
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To evaluate the effectiveness of the SCSA module and GAP loss, we performed
ablation studies on SSDD, SAR-Ship-Dataset, and HRSID with different settings of SCSA-
Net, respectively. The results of the ablation study are shown in Table 1 and Figure 7. Firstly,
by adding the SCSA module, the performance of the network can be improved regardless
of the loss used in training. Second, since AP loss results in a smaller gap between positive
and negative sample scores, replacing the focal loss with AP loss results in a decrease in
AP, with or without the SCSA module. In contrast, direct replacement of focal loss with
GAP loss can improve AP with or without the SCSA module. Finally, using both the GAP
loss and SCSA modules achieved the best results on all three datasets, 98.7% AP on the
SSDD dataset, 97.9% AP on the SAR-Ship-Dataset dataset, and 95.4% AP on the HRSID
dataset, respectively.

Table 1. Ablation study of SCSA-Net on SSDD, SAR-Ship-Dataset, and HRSID.

Baseline Different Settings of SCSA-Net

Focal loss
√ √

AP loss
√ √

GAP loss
√ √

SCSA
√ √ √

SSDD 96.5 94.5 98.0 97.2 95.5 98.7
SAR-Ship-Dataset 96.1 95.4 97.0 96.3 95.8 97.9

HRSID 92.0 89.9 94.2 93.2 90.9 95.4
√

indicates that the corresponding item is used. The best results are bolded.

Some visualization results of the ablation experiments on SSDD, SAR-Ship-Dataset,
and HRSID are shown in Figures 8–10, where Figure 8a–d–Figure 10a–d show the ground
truths, detection results of FCOS trained by focal loss, detection results of FCOS trained
by GAP loss, and detection results of FCOS with SCSA module trained by GAP loss,
respectively. The samples include different background states in the offshore, deep sea, and
moored in port, respectively. Since some of the ships have large noise and more complex
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nearshore backgrounds, the detection results of FCOS are easily affected by them, leading
to missed detections and false alarms, as shown in Figures 8, 9 and 10b. By training FCOS
with GAP loss, the scores of negative samples can be effectively reduced and the scores of
positive samples can be increased, resulting in better AP, as shown in Figures 8, 9 and 10c.
However, for some difficult samples, even training with GAP loss still cannot achieve good
results due to the limited expressiveness of the network. By adding the SCSA module,
the feature extraction capability of the network is improved, and the problem of missed
detection and false alarm in some near-shore scenes is effectively solved, as shown in
Figures 8, 9 and 10d.
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To further confirm the effectiveness of the SCSA module, we use different configu-
rations of the SCSA module in the network and train the network using GAP loss. The
detection results on SSDD, SAR-Ship-Dataset, and HRSID are shown in Table 2. The differ-
ence in settings is whether As1 and As2 are considered when calculating Si in the Equation
(3). The AP values of the results can be improved by using either As1 or As2 on the three
different datasets. By using As1 additionally in the calculation of Si, 0.096%, 0.187%, and
0.157% AP are improved on the SSDD, SAR-Ship-Dataset, and HRSID, respectively. By
using As2 in the calculation of Si, 0.116%, 0.195%, and 0.184% AP are improved on the
SSDD, SAR-Ship-Dataset, and HRSID, respectively. Additionally, the best detection results
can be achieved by using As1 and As2 together, with an improvement of 0.270%, 0.311%,
and 0.346% AP on the SSDD, SAR-Ship-Dataset, and HRSID, respectively.

Table 2. Results of different settings of SCSA module on SSDD, SAR-Ship-Dataset, and HRSID.

Different Settings of SCSA Module

As1

√ √

As2

√ √

SSDD 98.475 98.571 98.591 98.745
SAR-Ship-Dataset 97.571 97.758 97.766 97.882

HRSID 95.046 95.203 95.230 95.392
√

indicates that the corresponding item is used. The best results are bold.

3.5. Comparison with the Latest SAR Ship Detection Methods

To further demonstrate the advancement and superiority of our proposed method,
we experimentally validated with the latest SAR ship detection method using the SSDD,
SAR-Ship-Dataset, and HRSID, as shown in Tables 3–5. The proposed method achieves the
best results on all three widely used datasets. On the SSDD, ISASDNet+r101 [34] achieves
the highest 96.8% AP in the two-stage network, while the proposed SCSA-Net can achieve
98.7% AP, which is 1.9% AP improvement compared to ISASDNet+r101 [34] and 0.3% AP
improvement compared to the anchor-free network proposed by Zhu et al. [33] (Table 3). On
SAR-Ship-Dataset, SCSA-Net achieves 97.9% AP, which is 2.1% AP improvement compared
to the highest 95.8% AP in the two-stage network (Table 4). SCSA-Net achieves 95.4% AP
on HRSID (Table 5). As a one-stage network, SCSA-Net not only has the best performance
in the one-stage network but also exceeds that of the two-stage network.

Table 3. Comparison with the latest SAR ship detection methods on SSDD.

Methods AP

Two-stage

Faster R-CNN [13] 90.8
SER Faster R-CNN [40] 91.5

ISASDNet+r50 [34] 95.4
ISASDNet+r101 [34] 96.8
STANet-50+FPN [35] 95.7

Mask-RCNN(OCIE-DFR-RFE) [36] 92.1

One-stage

ResNet-50+Quad-FPN [32] 96.6
YOLOV3 (OCIE-DFR-RFE) [36] 68.8

ASAFE [30] 95.2
A-BFPN [4] 96.8

HR-SDNet [37] 89.4
Unnamed method * [33] 98.4

ours 98.7
* indicates that the authors of this paper did not name the proposed overall method. The best result is bold.
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Table 4. Comparison with the latest SAR ship detection methods on SAR-Ship-Dataset.

Methods AP

Two-stage

Faster R-CNN [13] 91.7
SER Faster R-CNN [40] 92.2

ISASDNet+r50 [34] 95.3
ISASDNet+r101 [34] 95.8

One-stage
ResNet-50+Quad-FPN [32] 94.4

HR-SDNet [37] 92.3
ours 97.9

The best result is bold.

Table 5. Comparison with the latest SAR ship detection methods on HRSID.

Methods AP

Two-stage Faster R-CNN [13] 80.7
SER Faster R-CNN [40] 81.5

One-stage
ResNet-50+Quad-FPN [32] 90.9

HR-SDNet [37] 85.9
ours 95.4

The best result is bold.

It should be noted that some SAR ship detection algorithms compared in Tables 3–5
cannot be reproduced using the same experimental equipment, experimental environment,
and experimental parameters because there is no open-source code, so we directly quote
the relevant performance indicators in the corresponding papers. Our proposed method
achieves higher AP detection performance than the latest SAR ship detection methods.

To visualize the detection performance of different methods, Figure 11 shows the
comparison results of one-stage networks on SSDD (first three rows), SAR-Ship-Dataset
(rows 4 to 6), and HRSID (rows 7 to 9), where Figure 11a–d show the ground truths,
detection results of HR-SDNet [37], detection results of ResNet-50+Quad-FPN [32], and
detection results of SCSA-Net proposed in this paper, respectively. Additionally, Figure 12
shows the corresponding precision-recall curves (PR curves). As shown in Figure 11a–c,
in the near-shore scene, the network detects a low target score due to the interference of
the background, and it is easy to generate false alarms and missed detections. Compared
with other methods, SCSA-Net can alleviate this problem with higher classification scores
of targets in nearshore scenes, reducing false alarms and missed detections, as well as
obtaining better detection performance, as shown in Figure 11d. Meanwhile, HR-SDNet
and ResNet-50+Quad-FPN cannot effectively handle densely arranged targets in nearshore
scenes and are prone to miss-detection and treat multiple targets as one, as shown in rows
1, 2, and 5 of Figure 11b,c, while SCSA-Net possesses a stronger ability to handle such
targets than them, as shown in rows 1, 2, and 5 of Figure 11d.
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4. Discussion

The experimental results on SSDD, SAR-Ship-Dataset, and HRSID validate the effec-
tiveness of the proposed method in this paper. However, the horizontal rectangular box
detection method used by the proposed method cannot obtain the angle information of
the ship. The rotatable rectangular box can locate the ship target more accurately to reduce
the background information contained in the box and help to obtain the ship heading and
aspect ratio information. Therefore, the subsequent research direction is how to obtain
the rotation angle information of the ship to obtain a more accurate rotatable box and
further improve the detection performance. Additionally, as shown in Table 6, the SCSA
module added to the SCSA-Net accounted for 23.1% of the overall parameters, resulting
in a 26.6% drop in FPS. Although the SCSA module is effective in improving accuracy,
its impact on the amount of network computation and test speed cannot be ignored. Fur-
ther, although the one-stage network is less computationally intensive compared to the
two-stage network, it is still computing-heavy and difficult to deploy for some embedded
devices. Therefore, it is also the goal of our future work to accurately locate and remove
useless parameters from the network to reduce the parameter size and computation of the
model without affecting the accuracy.

Table 6. The number of parameters of each module and the testing speed of the network.

Backbone
(ResNet-50) FPN SCSA

Module
Class-Box

Subnet
Total

Param(M) FPS

Param(M) 23.45 3.87 9.61 4.74 - -

FCOS
√ √ √

32.06 30
SCSA-Net

√ √ √ √
41.67 22

√
indicates that the corresponding item is used.

5. Conclusions

In this work, a one-stage anchor-free SCSA-Net is developed to accurately detect ship
targets in SAR images. To improve the feature extraction ability of the network and reduce
the interference of nearshore background to the ship target, an SCSA module is proposed
to dynamically enhance the features in space. In addition, a GAP loss is proposed, which
enables the network to optimize directly with AP as the target, and solves the “score shift”
problem in AP loss, so that it can effectively improve the score of the predicted tar and
promote the detection accuracy of the network. We can conclude the experimental results
on SSDD, SAR-Ship-Dataset, and HRSID: (1) by using the SCSA module, the accuracy can
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be improved on all three datasets regardless of whether the training is performed using
focal loss, AP loss, or GAP loss. Its effectiveness is confirmed; (2) by using GAP loss for
training, the gap between the average classification scores of positive and negative samples
can be effectively widened, and the accuracy can be improved with or without the SCSA
module; (3) compared with other methods, the SCSA-Net proposed in this paper has higher
detection accuracy on all three datasets.

Future work: our future work will focus on reducing the computing scale of the
network without affecting its accuracy, and studying the application of arbitrarily ori-
ented objects.
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