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Abstract: Net ecosystem productivity (NEP) is an important indicator for estimating regional carbon
sources/sinks. The study focuses on a comprehensive computational simulation and spatiotemporal
variation study of the NEP in the Yellow River basin from 2000 to 2020 using NPP data products
from MODIS combined with a quantitative NEP estimation model followed by a comprehensive
analysis of the spatiotemporal variation characteristics and dynamic procession persistence analysis
based on meteorological data and land use data. The results show that: (1) The total NEP in the
Yellow River basin had an overall increasing trend from 2000 to 2020, with a Theil–Sen trend from
−23.37 to 43.66 gCm−2a−1 and a mean increase of 4.64 gCm−2a−1 (p < 0.01, 2-tailed). (2) Most
areas of the Yellow River basin are carbon sink areas, and the annual average NEP per unit area
was 208.56 gCm−2a−1 from 2000 to 2020. There were, however, substantial spatial and temporal
variations in the NEP. Most of the carbon source area was located in the Kubuqi Desert and its
surroundings. (3) Changes in land use patterns were the main cause of changes in regional NEP.
During the 2000–2020 period, 1154.24 t of NEP were added, mainly due to changes in land use, e.g.,
the conversion of farmland to forests and grasslands. (4) The future development in 83.43% of the
area is uncertain according to the Hurst index dynamic persistence analysis. In conclusion, although
the carbon−sink capacity of the terrestrial ecosystem in the Yellow River basin is increasing and
the regional carbon sink potential is increasing in the future, the future development of new energy
resources has regional uncertainties, and the stability of the basin ecosystem needs to be enhanced.

Keywords: net ecosystem productivity (NEP); spatiotemporal variation; dynamic analysis;
land use/cover change (LUCC); yellow river basin

1. Introduction

The carbon cycle in terrestrial ecosystems is a complex environmental process and
one of the core elements of global change research, and there have been many studies on
quantifying it and the influencing factors of terrestrial ecosystems. The analysis of carbon-
cycling processes in terrestrial ecosystems and their response to the climate and other
factors is focused mostly on the study of net primary productivity (NPP) [1–3]. Research
on the terrestrial carbon cycle has started to shift to research on net ecosystem productivity
(NEP). The size of the NEP is more representative of long-term carbon storage across the
ecosystem than plant biomass itself. Therefore, NEP is a better indicator of an ecosystem’s
ability to reduce anthropogenic carbon emissions [4].

NEP represents the net accumulation of carbon in ecosystems, that is, the difference
between carbon fixed by photosynthesis and carbon lost to respiration in ecosystems. It
is an indicator that can be used for quantifying the carbon sequestration capacity and
carbon source/sink intensity of ecosystems through experimental observations and model
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estimations. Experimental observation methods include methods such as the ecological
inventory method [5], assimilation box measurement method [6], and eddy covariance
method [7]. The ecological inventory method quantifies ecosystem carbon pools through
long-term location observations, soil censuses and forestry resource inventories. The ad-
vantages are clarity, directness, and technical simplicity, but the accuracy depends on
accurate measurements of soil and vegetation carbon contents. The box method uses dif-
ferent boxes to seal soil and vegetation to obtain a measure of gas exchange by measuring
changes in gas concentration in the box over time. This method enables the measurement
of autotrophic respiration, heterotrophic respiration, and total primary productivity, thus
simulating the carbon exchange flux between land and atmosphere. The eddy covariance
method is a micrometeorological observation technique used to calculate carbon seques-
tration in ecosystems by measuring the eddy transfer rate of carbon dioxide above the
vegetation canopy.

Ecological process models [8] are based on physiological ecological processes and
simulate energy flow to obtain the NEP. At present, ecological process models are widely
used to simulate NEP. For example, the Biome-BGC model [9] has advantages in realizing
vegetation responses to climate change, and the SIPNET [10] model estimates the responses
of NEP in the context of regional climate change. In contrast, remote sensing technology is
used to form a carbon-cycle model based on spatial information by coupling the informa-
tion of various parameters (e.g., NDVI (Normalized Difference Vegetation Index), FPAR
(Fraction of absorbed Photosynthetically Active Radiation), and APAR (Absorbed Photo-
synthetically Active Radiation)) obtained from satellite images with traditional ecological
carbon models. Fang et al. [11] used multisource remote sensing data to simulate the annual
average carbon uptake in Chinese ecosystems, and the results showed that the annual
average uptake in Chinese ecosystems from 1981 to 2000 was from 0.096 to 0.106 PgCa−1.
Much of the research on factors influencing NEP in terrestrial ecosystems has focused on
temperature [12], precipitation [13], soil moisture [14,15], and vegetation type [16–18], and
most studies have found that precipitation correlates with NEP in terrestrial ecosystems to
a greater degree than temperature [13,19–22].

As a major energy supply base and core economic area in China, the Yellow River
basin plays a significant role in promoting environmental protection and high-quality
development in the Yellow River basin as well as achieving the ‘dual carbon goals’ (China’s
national strategy of achieving a carbon peak (2030) and carbon neutrality (2060)) [23]. Most
of the upper and middle reaches of the Yellow River basin are located in arid and semiarid
areas of China [24], and the ecological environment is very sensitive and fragile [25].
In the context of long-term interference from climate change and high-intensity, large-
scale human development and construction activities [26], the overall and systematic
ecological degradation of the basin is prominent [25]; examples include the decline of
natural grassland and wetland functions in the upper reaches [27], the severe soil erosion
in the middle reaches [28], the numerous legacy problems in the downstream beaches, and
the severe shrinkage of wetland areas in the estuarine delta [29,30]. The carbon balance of
the Yellow River basin has a direct bearing on the realization of the “dual carbon” goals in
China and has been the focus of much scholarly attention. Zhao et al. [31] applied a machine
learning prediction model to predict these emissions and analyzed the influencing factors
of carbon emissions in the Yellow River basin from the perspective of regional differences.
Tian et al. [32] analyzed the temporal and spatial change processes of NPP in the Yellow
River basin from 1981 to 2020 and its response to meteorological factors. These studies
were limited to small areas of the Yellow River basin [29,33] or were focused on vegetation
cover, NPP, NDVI, EVI (Enhanced Vegetation Index), etc. [34]. Carbon consumption by
soil heterotrophic respiration has not been considered, and there has been less research on
basin-scale NEP.

The aim of this research is to further clarify the spatial and temporal processes of the
carbon budget at the basin scale and to explore the evolutionary mechanisms. This paper
used remote sensing data to estimate the NEP due to the advantages of remote sensing
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technology, which has a macro-level range of detection and is less restricted by ground
conditions. The main objectives and innovations of this study are as follows: (1) to analyze
the spatiotemporal variation characteristics of NEP; (2) to identify the trends and dynamic
procession persistence of NEP; and (3) to analyze the relationship of NEP variations with
air temperature, precipitation, and land cover/use change—all in the Yellow River basin
during the 2000–2020 period. The results are intended to provide data and technical support
for the scientific assessment of the carbon sequestration capacity of Yellow River basin
ecosystems and the development of policies/measures to address climate change.

2. Study Area and Data
2.1. Study Area

The Yellow River basin is located between 96–119◦E and 32–42◦N, is approximately
1900 km long from east to the west, and is approximately 1100 km wide from north to south,
with a watershed area of approximately 79.5 × 104 km2 (Figure 1). The Yellow River basin
is vast, and the terrain is high in the west and low in the east. The upper reaches are in the
high mountain range area, and they are mostly high-altitude woodland; the middle reaches
include the Loess Plateau and Inner Mongolian Plateau, where the terrain is gentler with
woodland and grassland; the lower reaches are plains landscape, and there are aboveground
hanging rivers and a large proportion of arable land. The Yellow River basin is located
in the midlatitude region, with a temperate monsoon climate, interannual precipitation
variation, and spatial differences. The average annual precipitation is 400–600 mm, the
average annual temperature is approximately 10 ◦C, the region is an important ecological
barrier in northern China, and the basin serves as the main ecological corridor connecting
the Qinghai–Tibet Plateau, Loess Plateau, and North China Plain. Thus, the ecological
status of the basin is extremely important.
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2.2. Data

The NPP data came from the MOD17A3HGF.006 dataset (annual NPP dataset) which
was included in the Google Earth Engine (GEE) [35] platform database, with a resolution
of 500 m for 2000–2020 (https://doi.org/10.5067/MODIS/MOD17A3HGF.006, accessed
on 1 December 2021); image-related preprocessing was performed on GEE. Preprocessing

https://doi.org/10.5067/MODIS/MOD17A3HGF.006
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included calling the NPP dataset, converting units for NPP bands, clipping the image, and
downloading to local storage. The purpose of using the NPP dataset is to calculate NEP.

Please refer to the code for the specific preprocessing process (https://code.earthengine.
google.com/c9ea4ebf6adcec964ac9e3a50004d3c1, accessed on 1 December 2021).

Meteorological data (air temperature data and precipitation data) were obtained from
the National Earth System Science Data Center, National Science & Technology Infrastruc-
ture of China (http://www.geodata.cn/, accessed on 1 April 2022). The 1 km monthly
mean air temperature dataset and monthly precipitation dataset for China from 1901 to 2020
were published in Earth System Science Data by Associate Researcher Shouzhang Peng [36].
These data have been updated to 2020. Both temperature and precipitation data are in raster
format and were clipped and resampled to 500 m spatial resolution (consistent with NPP
data) using ArcGIS Desktop. These data were used to calculate heterotrophic respiration
and to conduct partial correlation analysis with NEP.

The land use data used were the “30 m annual land cover and its dynamics in China
from 1990 to 2019 data” published in Earth System Science Data by Prof. Jie Yang and Xin
Huang of Wuhan University [37]. These data have been updated to 2020 and made fully
public (https://zenodo.org/record/5210928#.YcZ_nWBByUk, accessed on 1 June 2022).

3. Methodology

The overall technical process is shown in Figure 2. First, the heterotrophic respiration
RH was calculated using the regression equation of soil microbial respiration carbon emis-
sions from Pei et al. [38] and combining the total annual precipitation with the average
annual temperature. On this basis, the NPP data of MODIS were captured and processed
using the GEE platform [35], and the NEP was calculated and mapped year by year in
combination with the NEP estimation model. Theil–Sen trend analysis [39,40] and the
Mann–Kendall test [41] were used to analyze the spatial and temporal dynamics of the
NEP and the trend degree [42]. We also used land use data and climate data to explore the
driving mechanism of NEP and used the Hurst index [43,44] and Theil–Sen trend degree
results to analyze the future development of NEP and complete the assessment of the future
carbon sink potential of the Yellow River basin.
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3.1. NEP Estimation Model

NEP was first proposed by Woodwell [45] as NPP minus the photosynthetic products
consumed by heterotrophic respiration (soil respiration):

NEP = NPP − RH

where NPP is net primary productivity and RH is heterotrophic respiration.
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NEP represents the net storage of carbon on a larger scale and can have positive or
negative values. When NEP is greater than 0, it indicates that the ecosystem is a carbon
sink, while values lower than 0 indicate that the ecosystem is a carbon source [46].

Soil microbial respiration carbon emissions were calculated from the regression equa-
tion of temperature, precipitation, and carbon emissions proposed by Pei et al. [38] with
the following equation:

RH = 0.22 × (exp (0.0913T) + ln (0.3145R+ 1)) × 30 × 46.5%

where T denotes air temperature, R precipitation, 30 indicates the number of days because
monthly meteorological data are used, and 46.5% is the fraction of soil carbon emissions
released by microbial respiration [38]. At present, the estimation of heterotrophic respiration
(RH) based on the model established by Pei et al. [38] has been applied and verified in
different ecosystems in northeast and northwest China [47–50].

3.2. Theil–Sen Median Trend Analysis and Mann–Kendall Test

The spatial distribution of the NEP increase and decrease was obtained by combining
the results of Theil–Sen trend analysis and the Mann–Kendall test [42]. The Theil–Sen
median trend analysis method and Mann–Kendall test [34] were used to explain significant
trends in the interannual variation in the NEP. The Theil–Sen trend analysis method is
a nonparametric trend calculation method [39,40], and the Mann–Kendall test can remove
outliers and is suitable for non-normally distributed sample data [41]. The combination
of the Theil–Sen and Mann–Kendall methods for bilateral tests has become an important
method for determining trends in long time-series data.

The Theil–Sen trend degree (β) is calculated as follows:

β = median
xj − xi

j− i
1 < i < j < n

where n represents the span of the time series. In this study, we define n = 21; β is the
slope of the similar element NEP regression equation, and xi and xj are the NEP time series.
When β > 0, NEP has an increasing trend over time, and when β < 0, NEP has a decreasing
trend over time. The results are tested for significance by the Mann–Kendall method.

The Mann–Kendall test is given as follows:

S =
n−1

∑
i=1

n

∑
j=n+1

sign
(
xj − xi

)
where S is the test statistic and sign () is the sign function. The formula is calculated
as follows:

sign
(

xj − xi
)
=


1 (xj − xi > 0)
0

(
xj − xi = 0

)
−1 (xj − xi < 0)

The trend test was performed using the test statistic Z, calculated as follows:

Z =


S−1√
Var(S)

(S > 0)

0 (S = 0)
S+1√
Var(S)

(S < 0)

Var(S) =
n(n− 1)(2n− 5)

18
where xi and xj are the NEP time series and n is the number of samples. Z1−α/2 is found
in the normal distribution table as the corresponding value at the confidence level α.
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The standardized Z value is a standard normal distribution, and the trend is considered
significant if |Z|>Z1−α/2.

In this study, α = 0.05, i.e., |Z| > 1.96 indicates that the trend passed the significance-
level test with a confidence level of 95% (p < 0.05). |Z| was used together with the Theil–Sen
trend value to classify the spatial changes in NEP into four categories: significant decrease,
slight decrease, slight increase, and significant increase. MATLAB software programming
was used to implement the analysis of the interannual variation trend of NEP in the study
area from 2001 to 2020.

3.3. Hurst Index

To analyze the persistence of NEP in the study area, the Hurst index based on the
rescaled range analysis method (R/S) [43] was used in this study.

The Hurst index (H) is a valid indicator of the persistence of time series data [44], and
it takes a value in the range of 0 < H < 1. Based on H, we can determine whether the time
series data are completely random or have some persistence. When H = 0.5, the NEP time
series data are not persistent, that is, they are not dependent on the past; when 0 < H < 0.5,
the NEP time series data have inverse persistence, which means that the future changes are
negatively correlated with the past; and when 0.5 < H < 1, the NEP time series data have
persistence, which means that the future changes are consistent with the past. The closer
the value of H is to 1, the stronger the persistence is; in contrast, the closer it is to 0, the
stronger the inverse persistence is.

We use ArcMap Desktop 10.8 to couple the Hurst index calculation results with the
Theil–Sen trend through the Mann–Kendall test to complete the dynamic process persis-
tence analysis of NEP. The main tools we use include ‘Reclassify’ and ‘Raster Calculator’ in
‘Spatial Analyst Tools’.

4. Results
4.1. NEP Remote Sensing Mapping and Time Course in the Yellow River Basin

The dynamic map of the spatial distribution of NEP in the Yellow River basin from 2000 to
2020 is shown in Figure 3. The total NEP showed an overall fluctuating upward trend (Figure 4),
with an annual average of 6.72 × 10−4 TgC and a growth rate of 1.51× 10−4 TgCa−1. The
variation range of the NEP was 4.24 × 10−4 to 8.51 × 10−4 TgC. The total NEP in 2017 was
the highest at 8.51 × 10−4 TgC, which was 1.79 × 10−4 TgC above average, and it was the
lowest in 2000 at 4.24× 10−4 TgC, which was 2.48× 10−4 TgC below average. As seen from
the fluctuating increasing trend of the NEP in the Yellow River basin, the capacity of the Yellow
River to sequester carbon increased during the 2000–2020 period.

The distribution of the annual average NEP unit area in the Yellow River basin varied
significantly from 2000 to 2020 (Figure 3f). The annual mean NEP per unit area was
208.56 gCm−2a−1, and the area with a positive NEP accounted for 94.92%. Most of the
Yellow River basin was a carbon sink area, in which the distribution area with an NEP per
unit area of 200–300 gCm−2a−1 was the largest, accounting for approximately 25.25%. The
areas with a higher NEP per unit area were mainly distributed in south-central Shaanxi
Province (Baoji city, Xianyang city, Tongchuan city), east-central Gansu Province (Dingxi
city, Tianshui city, Pingliang city), and central Henan Province (Sanmenxia city), which
had values of approximately 300 gCm−2a−1 or more. The carbon source areas were mainly
located in and around the Kubuqi Desert in the Inner Mongolia Autonomous Region. In
addition, lake areas and major urban built-up areas (Xi’an urban area, Luoyang urban area,
Zhengzhou urban area, etc.) in the basin were carbon source areas, which accounted for
5.08% of the total study area.
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4.2. Spatial Variation Characteristics of NEP in the Yellow River Basin

Based on the Theil–Sen trend and the Mann–Kendall test, the spatial trends of NEP
in the Yellow River basin from 2000 to 2020 and its change process were revealed by the
meta-scale image (Figure 5). The results showed that the interannual variation trend of NEP
per unit area in the Yellow River basin had obvious spatial variability with an increasing
trend (increasing regional area > decreasing regional area). The Theil–Sen trend value for
the NEP ranged from −23.37 to 43.66 gCm−2a−1, with 92.98% of values being positive
and an average growth rate of 4.64 gCm−2a−1. In fact, 73.63% of areas had a significant
increase in NEP, 19.57% had a slight increase, 5.96% had a slight decrease, and 0.84% had
a significant decrease.
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Theil–Sen trend results through MK test).

The area with a significant increase in NEP (Table 1) was mainly concentrated in the
Loess Plateau area in the central part of the basin and downstream (Shandong section),
where the comprehensive management of water and soil conservation in the Loess Plateau
and the protection and restoration of wetlands in the Yellow River Delta have led to an
increase in vegetation cover in the area. The areas that slightly increased were mainly
concentrated in the border areas of Sichuan, Qinghai, and Gansu Provinces and the north-
western part of the Loess Plateau. The areas that significantly decreased accounted for
the smallest proportion and were mainly distributed in the areas around the provincial
capitals and at the mouth of the sea in the basin. The areas that slightly decreased were
mainly concentrated in the Kubuqi Desert and the surrounding areas in the north of the
basin, lakes, areas around the municipal districts of major cities in the basin (Xi’an and
Zhengzhou), and near the mouths of rivers into the sea. The reasons for the significant
decrease in urban NEP were mainly related to the increase in the level of urbanization
and the expansion of built-up areas. The decrease in NEP at river inlets was mainly due
to the destruction of vegetation around the inlets and the conversion of areas with large
vegetation cover into offshore fishing grounds. In general, the carbon-sink capacity of the
terrestrial ecosystem in the Yellow River basin increased from 2000 to 2020.

Table 1. The variation trend of NEP in the Yellow River basin.

The Variation Trend of NEP
Type Area/km2 Percent/%

Theil–Sen Trend Z Value

Theil–Sen trend > 0 |Z| > 1.96 Significant Increase 594,071.75 73.63
Theil–Sen trend ≥ 0 |Z| ≤ 1.96 Slight Increase 157,913.75 19.57
Theil–Sen trend < 0 |Z| > 1.96 Significant Decrease 6756 0.84
Theil–Sen trend < 0 |Z| ≤ 1.96 Slight Decrease 48,065.25 5.96

4.3. Relationship between NEP and Meteorological Factors in the Yellow River Basin

The annual precipitation and average annual temperature were selected as the me-
teorological factors used to explore the correlation between the NEP and meteorological
factors in the Yellow River basin, and the variation characteristics of the meteorological
factors are shown in Figure 6. The annual average temperature of the Yellow River basin
from 2000 to 2020 ranged between 5.97 and 7.03 ◦C, with an average value of 6.60 ◦C, of
which the average temperature in 2006 was the highest and the average temperature in
2012 was the lowest. The annual average temperature of the Yellow River basin during
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the 2000–2020 period showed a fluctuating upward trend, and the rate of increase was
0.16 ◦C/10 years. The average annual precipitation ranged from 416.52 mm to 587.70 mm,
with an average value of 481.80 mm, where the highest average annual precipitation was
in 2003 and the lowest value was in 2000; moreover, the average annual precipitation in the
Yellow River basin showed a fluctuating upward trend during the 2000–2020 period, with
a rate of increase of 34.644 mm/10 years.
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The partial correlation between the NEP and annual mean temperature in the Yellow
River basin for 2000–2020 was calculated at the pixel scale by fixing the effect of annual
precipitation, and the results were tested for significance, as shown in Figure 7. The
calculated results showed that the partial correlation coefficient of the NEP to temperature
in the basin during the 2000–2020 period ranged from −1.00 to 0.93, with a mean value of
0.15. The mean value showed that there was a positive correlation between the NEP and
annual mean temperature, indicating that the NEP in the Yellow River basin was higher in
areas with higher temperatures. Among them, 77.31% of areas were positively correlated
regions and 22.69% were negatively correlated regions. Among the positively correlated
regions, those passing the significance level of the 0.05 test accounted for 11.96% and were
mainly distributed downstream of the Yellow River in Shandong Province and upstream
of the Yellow River in Gansu Province, in addition to sporadic distributions of areas in
the northeastern and western parts of the study area. Among the negatively correlated
regions, 12.84% passed the significance level of 0.05, mainly in the Kubuqi Desert and its
surrounding areas in the northern part of the Yellow River basin.

The partial correlation between the NEP and annual precipitation in the Yellow River
basin from 2000 to 2020 was calculated at the pixel scale by fixing the effect of mean annual
temperature, and the results were tested for significance. The results show (Figure 8) that
the partial correlation coefficient of NEP to annual precipitation ranged from −1.00 to 0.89,
with a mean value of 0.27. Again, there was a positive correlation between the NEP and
annual precipitation, and it was higher than the partial correlation coefficient of NEP to
annual mean temperature. The percentage of positively correlated regions was 88.09%,
and the percentage of negatively correlated regions was 11.91%. Among the positively
correlated regions, 34.12% passed the significance level test of 0.05 and were distributed
in most areas, such as the border of Shaanxi and Shanxi Provinces, the source area in the
upper part of the basin, and the territories of Gansu and Ningxia in the middle stream. In
addition, 35.82% of the negatively correlated areas passed the significance level of 0.05,
similar to the annual average temperature, and these areas were also mainly located in
the Kubuqi Desert and its surrounding areas in the northern part of the basin. In addition,
there was a patchy distribution in the wetlands of lakes and major urban built-up areas in
the watershed. The NEP in the Yellow River basin was positively correlated with mean
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annual temperature and annual precipitation, but the effect of annual precipitation on NEP
in the basin was greater than that of mean annual temperature.
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4.4. Relationship between NEP and LUCC in the Yellow River Basin

Land use is a manifestation of human activities, and land use/cover change (LUCC)
is the main way in which human activities affect regional NEP; thus, the NEP capacity of
different land use types varies significantly. Based on the land use data products with a
spatial resolution of 30 m, the LUCC data of the study area from 2000 to 2020 were spatially
overlaid to obtain the LUCC map of the Yellow River basin (Figure 9)—in which there
were 39 types of LUCC units—and the areas where the percentage of change area was
greater than 1% (accounting for 95.39% of the total change area) were extracted for a total
of 10 change units (Table 2). Based on these 10 change units, the spatial variation in the
NEP change in the watershed was studied.
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Figure 9. LUCC of the Yellow River basin from 2000 to 2020. We choose the Sankey picture as the
visualization of LUCC. The Sankey picture represents a visual result of energy flow. Here, the total
area of the study area is taken as an energy flow, and its value does not change between 2000 and
2020. Different land cover types changed during this period. The curve from left to right represents
the flow direction of land use type, from type A to type B. The width of the curve represents the
area of LUCC.

Table 2. LUCC and its impact on NEP in the Yellow River basin from 2000 to 2020.

LUCC (2000–2020) Area/km2 Ratio Cumulative
Percentage

NEP Variable
Quantity/t

Cropland–Grassland 35,725.77 30.21% 30.21% 413.31
Grassland–Cropland 27,125.94 22.94% 53.15% 320.60

Barren–Grassland 14,389.36 12.17% 65.32% 57.52
Grassland–Forest 11,184.77 9.46% 74.78% 180.70

Cropland–Impervious 8787.54 7.43% 82.21% 50.76
Grassland–Barren 6918.05 5.85% 88.06% 10.35
Cropland–Forest 3714.22 3.14% 91.20% 62.59
Forest–Grassland 1871.11 1.58% 92.78% 15.98

Grassland–Impervious 1688.48 1.43% 94.21% 8.70
Forest–Cropland 1397.77 1.18% 95.39% 20.91

We counted quantitative statistics on the conversion coefficients between each LUCC
(Table 2), and a total of 118,253.49 km2 of land in the Yellow River basin changed in use
from 2000 to 2020; in addition, the NEP in this part of the region increased by 1154.24 t. The
conversion between the three land uses of grassland, forestland, and cropland accounted
for 68.51%. The change from cropland to grassland was the largest unit of LUCC in the
Yellow River basin during the 2000–2020 period—totaling 35,725.77 km2, accounting for
30.21% of the total area of change—and it was associated with an NEP increase of 413.31 t.
Land use change from grassland to cropland accounted for 22.94% of the changed area,
and the NEP increased by 320.60 t during the 2000–2020 period. There was 1397.77 km2

of forestland cleared to cropland, accounting for 1.18% of the changed area, and the total
regional NEP increased by 20.91 t. In addition, 1871.11 km2 of forestland was converted to
grassland, resulting in an NEP increase of 15.98 t.

Grassland reclamation exposes soil organic matter to air and promotes soil respiration,
thus leading to an increase in soil carbon emissions. The restoration of forest ecosystems
leads to an increase in aboveground biomass and an increase in soil organic carbon content,
which is a carbon sink process, while deforestation is a carbon emission process. Returning
farmland to forest and grassland is an important process to enhance the carbon-sink
capacity, and the effect of returning farmland to forest is greater than that of returning
farmland to grassland. During the 2000–2020 period, the area converted from cropland to
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forestland was 11,184.77 km2, the NEP increase was 180.70 t, and the increase in the unit area
was 16,850.27 gckm−2. The area converted from cropland to grassland was 35,725.77 km2,
the NEP increase was 413.31 t, and the increase in the unit area was 11,569.06 gCkm−2. In
addition, the change from vegetation-covered areas—such as arable land, forestland, and
grassland—to urban construction land and the changes brought about by the abandonment
of cropland have caused the loss of regional NEP.

4.5. Analysis of Future Trends

The Hurst index is an important indicator that characterizes the strength of the de-
pendence of future trends in time series data on past changes. The range of the NEP
Hurst index in the Yellow River basin was 0.12–0.98 (Figure 10), with a mean value of
0.42. The proportion of NEP persistent sequences was only 17.46%, and the proportion
of anti-persistent sequences was 82.54%. The normal distribution of the Hurst index of
the Yellow River NEP (Figure 11) showed that the area shares of strong persistent, weak
anti-persistent, weak persistent, and strong persistent were 0.96%, 81.58%, 17.36%, and
0.1%, respectively. The persistent trend of the multiyear NEP in the Yellow River basin was
significantly smaller than the anti-persistent trend (the peak of the normal distribution was
smaller than the mean and had a left-skewed trend); that is, the overall trend of the NEP in
the Yellow River basin was unstable, and the area with persistent change was smaller. As
shown in Figure 10, the persistent distribution area of the NEP in the Yellow River basin
was mainly concentrated in the central part of the basin and most of the Henan section,
while the rest was sporadically distributed in the downstream inlet and Qinling.

The NEP Hurst index of the Yellow River basin was coupled with the trend of Theil–
Sen changes by the Mann–Kendall test to further explore the future development trend
and persistent characteristics (persistent increase or decrease) of NEP in the Yellow River
basin. According to the experimental results (Figure 12 and Table 3), the percentage of
regions with persistence-increasing characteristics of NEP in the Yellow River basin was
15.76%, higher than the percentage of regions with persistence-decreasing characteristics
(significant decrease and slight decrease), which was only 0.81%, and the rest of the regions
were indeterminate (83.43%). The regions with persistent future NEP increases in the Yellow
River basin were significantly higher than those with persistent decreases. Among the
regions with persistent increases in NEP, “weak persistent-significant increases” (13.45%)
were dominant, mainly in central and northern Shaanxi Province, Ningxia Hui Autonomous
Region, southeastern Gansu Province and around Hohhot, followed by upstream and inlet
delta areas. The “weak persistent-slight increase” area was dominated by the lower Henan
section of the Yellow River, followed by a sporadic distribution on the Loess Plateau.
Among the regions with a persistent decrease in NEP, a weak persistent decrease (0.78%)
was dominant, mainly in the major cities and their surrounding areas downstream of the
basin such as Zhengzhou city and Luoyang city, followed by the trend of a persistent
decrease in NEP in the vicinity of Dongping Lake downstream. The majority of the Yellow
River basin (83.43%) has uncertain NEP development in the future, which indicates that
the stability of the Yellow River basin ecosystem still needs to be improved. The NEP in the
areas of sustainable development is dominated by weak sustainability, which indicates that
the carbon-sink capacity of some areas in the Yellow River basin will have a more stable
trend to improve in the future.
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Figure 11. Normal distribution chart of the NEP Hurst index. According to the definition of the
Hurst index; we take 0.5 as the dividing line. Parts larger than 0.5 are called ‘Persistent Series’, and
parts smaller than 0.5 are called ‘Anti-Persistent Series’; at the same time, we have further classified
them. In the ‘Persistent Series’, 0.5~0.75 parts are defined as ‘Weak Persistent’, and 0.75~1.00 parts are
defined as ‘Strong Persistent’; In the ‘Anti-Persistent Series’, the 0.25~0.5 parts are defined as ‘Weak
anti-Persistent’, and the 0.00~0.25 parts are defined as ‘Strong anti-Persistent’.
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5. Discussion 
5.1. Reliability of the NEP and Uncertainty Analysis 

We used the NPP data product of MODIS as the basis for calculating NEP. The data 
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Table 3. Statistical results of NEP trends and the Hurst index.

The Trend of NEP Z value Hurst Value Type Area/km2 Percent/%

Theil–Sen trend < 0 |Z| > 1.96 >0.75 Strong Persistent–Significant decrease 130 0.02%
Theil–Sen trend < 0 |Z| ≤ 1.96 >0.75 Strong Persistent–Slight decrease 113 0.01%
Theil–Sen trend < 0 |Z| ≤ 1.96 0.5 < H < 0.75 Weak Persistent–Slight decrease 4157.25 0.52%
Theil–Sen trend < 0 |Z| > 1.96 0.5 < H < 0.75 Weak Persistent–Significant decrease 2079.75 0.26%
Theil–Sen trend > 0 |Z| > 1.96 >0.75 Strong Persistent–Significant increase 235.5 0.03%
Theil–Sen trend > 0 |Z| ≤ 1.96 >0.75 Strong Persistent–Slight increase 90 0.01%
Theil–Sen trend > 0 |Z| ≤ 1.96 0.5 < H < 0.75 Weak Persistent–Slight increase 18,473 2.29%
Theil–Sen trend > 0 |Z| > 1.96 0.5 < H < 0.75 Weak Persistent–Significant increase 108,286 13.43%

—— —— <0.5 Uncertain Future Changes 672,986 83.43%

In summary, the carbon-sink capacity of the terrestrial ecosystem in the Yellow River
basin was generally enhanced during the 2000–2020 period, and the future development of
the regional carbon sink persistence is large, while the future development of the NEP has
regional uncertainty, and the stability of the basin ecosystem needs to be improved.

5. Discussion
5.1. Reliability of the NEP and Uncertainty Analysis

We used the NPP data product of MODIS as the basis for calculating NEP. The data
set has been widely used in the research of carbon sink calculation [51,52] and ecological
environment monitoring [53–55], and an R2 = 0.75 (p < 0.01) was found in previous studies
in China area when comparing with ground observations [54]. The calculation of soil het-
erotrophic respiration (RH) uses the empirical model of Pei et al. [38], which is a regression
equation of temperature, precipitation, and carbon emissions. The empirical model has
also been widely used in the arid regions of northwest China [52,56] and even in Central
Asia, and the results of heterotrophic respiration calculations have also been verified [21].
The precipitation and temperature data we used are published in the Earth System Science
Data. The author used 496 independent meteorological observation points for verification,
and the verification results are reliable [36]. Considering that the models and data were
both widely used and verified, we did not set up a separate validation experiment to verify
the accuracy of the calculated NEP. We believe that the calculated NEP results are reliable.
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Uncertainty of the results mainly comes from the following aspects. (1) Spatial reso-
lution factor: The spatial resolution of the MODIS NPP data we used is 500 m, while the
spatial resolution of the temperature and precipitation data used to calculate RH is 1 km.
Therefore, to unify the spatial resolution of NPP and RH, we resampled the temperature
and precipitation data to a resolution of 500 m before calculating RH, which may cause a
certain error between the calculated RH and the real situation. (2) Uncertainty of MODIS
NPP: In areas with low productivity, the artificially high value of MODIS FPAR makes the
value of MODIS products slightly higher. In high-productivity locations, MODIS products
are often underestimated, which is mainly due to the low value for vegetation light-use
efficiency in the MODIS GPP (Gross Primary Production) algorithm [57]. For this reason,
there may be differences in NPP values in some regions, resulting in errors in NEP results.
(3) Mixed-pixel problem. Although the land use data we used reached a spatial resolution
of 30 m, the problem of mixed pixels cannot be avoided. For example, there is no obvious
boundary between grassland and forestland, which will lead to errors when studying NEP
changes caused by LUCC. Additionally, an increase or decrease in NEP does not usually
cover the entire range of the grid cell.

5.2. Analysis of Influence Mechanism

By using partial correlation analysis, the results show that the partial correlation
coefficient (mean 0.15, Figure 7) of NEP and temperature in the Yellow River basin is lower
than that of NEP and precipitation (mean 0.27, Figure 8) (Table 4). This is consistent with the
current research: the increase in temperature and precipitation will affect soil moisture and
temperature, thus affecting the carbon flux of the ecosystem (precipitation plays a leading
role in regulating the carbon flux of the ecosystem) [21,22].

Table 4. Area statistics of correlation between meteorological factors and NEP.

Meteorological Factor Correlation with NEP Areas

temperature positive correlation 632,494.75 km2 (74,617.5 km2 pass the significance test)
negative correlation 174,311.75 km2 (23,498 km2 pass the significance test)

precipitation positive correlation 714,109 km2 (242,501.25 km2 pass the significance test)
negative correlation 92,697.5 km2 (34,406.25 km2 pass the significance test)

On the one hand, the increase in temperature will promote the growth of plants and
the life activities of soil microorganisms, thus increasing the photosynthesis and respiration
intensity of the terrestrial ecosystem. At the same time, when the water required for plant
physiological activities and soil respiration is insufficient due to the increase in ambient
temperature, carbon emission and absorption in some terrestrial ecosystems will also
be reduced [58].

On the other hand, the increase in precipitation will effectively improve the soil
moisture content [59]. When soil moisture increases, the positive correlation between GPP
and soil temperature increases. Therefore, under the same temperature conditions, the
increase in precipitation will increase GPP. GPP provides substrates for plant roots, soil
microbial activities, and soil respiration. More GPP will enhance ecosystem respiration.
The increase in GPP caused by the increase in precipitation is stronger than the respiration
of the ecosystem, which leads to an increase in the carbonsink of the ecosystem [58].

This paper studies the NEP changes affected by LUCC. From 2000 to 2020, a total NEP
increase of 1154.24 t was caused by LUCC. LUCC is one of the most influential factors in the
carbon cycle of terrestrial ecosystems [60]. In forest ecosystems, felling trees to transform
them into farmland or grassland, harvesting wood, and other similar forestry management
practices reduce the forest aboveground biomass and, thus, reduce the content of soil
organic carbon [61]. Therefore, to increase the carbon-sink of the forest ecosystem, we
can promote the restoration of the forest ecosystem by reducing deforestation, returning
farmland to forests, and improving forest management [62,63] among other protective
measures. In this process, increased vegetation cover can absorb more carbon in the
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atmosphere [11]. The impact of LUCC on the grassland carbon cycle is mainly reflected
in its impact on soil carbon storage. Reclamation is the main way that human activities
affect grassland carbon storage. Grassland reclamation makes the organic matter in the
soil fully exposed to the air, promotes soil respiration, accelerates the decomposition of
soil organic matter, and then releases the carbon stored in the soil, reducing the soil carbon
storage [64,65]. When the forest is transformed into permanent farmland, the carbon
storage of the soil surface will be reduced by approximately 30% [66]. The conversion of
cultivated land to urban construction land is also a key process of LUCC’s impact on carbon
emissions within agricultural ecosystems: the surface vegetation is uprooted, the soil is
turned over and backfilled, and the original plant types are replaced by land impervious to
water and land for greening, which reduces the carbon absorption capacity and affects the
carbon fixation capacity [63].

5.3. Further Research Strategies and Improvement Suggestions

Through the analysis and discussion of the above results, we believe that improving the
spatial and temporal scale of NPP data will play a decisive role in more accurate measurement
of NEP. NPP estimation models include the statistical model Miami [67], process model
BIOME-BGG [68], parameter model CASA (Carnegie–Ames–Stanford Approach) [21], etc.
Among them, CASA is a light-use-efficiency method that takes remote sensing data as input
parameters and considers the influence of internal and external dual factors. It is applicable
to the dynamic monitoring of vegetation NPP on a macro spatial scale and long time-series.
We considered using CASA in combination with Landsat, Sentinel, and other high-resolution
remote sensing images to improve the spatial resolution of NPP data, and perform monthly
and seasonal synthesis of NPP data. At the same time, the separation of crop-type vegetation
from non-crop vegetation, and accurate compute the NPP of different vegetation types,
was considered.

In terms of driving mechanisms, this study will not be limited to exploring the response
of NEP changes to precipitation and temperature. We will add soil evapotranspiration [69],
topographic, and other natural factors [70] to further explore the deep mechanisms of NEP
change. Therefore, further research should widely collect actual monitoring data to estimate
the NEP of the Yellow River basin more accurately. At the same time, we will also consider
the impact of seasonal change factors [71], as well as human activities, meteorological, and
topographic factors on NEP fluctuations. Therefore, we aimed to better understand the
source and contribution mechanisms of the carbon cycle in the Yellow River basin.

6. Conclusions

Quantitative accounting of the spatial and temporal dynamics and uncertainties of
the NEP in the Yellow River basin is of great practical significance and provides guidance
for the high-quality development of the basin and the achievement of the dual carbon
goals. The article adopted a quantitative NEP estimation model to realize a comprehensive
calculation simulation of annual NEP in the Yellow River basin from 2000 to 2020 and
conduct a mapping analysis of spatial and temporal change processes. On this basis, the
coupling relationship between spatial and temporal changes in NEP and climate change
and human activities was analyzed using bicorrelation techniques, and the uncertainty of
spatial and temporal changes in NEP and future carbon-sink potential was explained. The
following conclusions were obtained from the study:

(1) The total NEP in the Yellow River basin showed an overall upward increasing
trend from 2000 to 2020, with an annual average value of 6.72 × 10−4 TgC. The Theil–Sen
trend degree ranged from −23.37 to 43.66 gCm−2a−1, with an average growth rate of
4.64 gCm−2a−1 (p < 0.01, 2-tailed).

(2) The spatial distribution of the annual average NEP in the Yellow River basin
varied significantly from 2000 to 2020. The annual average NEP per unit area was
208.56 gCm−2a−1. Most of the Yellow River basin (94.92%) was a carbon sink area, and
the carbon source area was mainly distributed in the Kubuqi Desert and its surrounding
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areas. Some areas in Qinghai Province and the middle and lower reaches of the Yellow
River were also carbon source areas, accounting for 5.08% of the total study area.

(3) The change in land use type was the main reason for the change in regional
NEP, and climate change had an important impact on the watershed NEP. During the
2000–2020 period, a total of 118,253.49 km2 of land use types in the watershed changed,
and the regional NEP increased by 1154.24 t. The restoration of forest ecosystems, returning
cropland to forest, and returning cropland to grassland were the main land use change
units that increased the NEP in the study area.

(4) There are uncertainties in the future development of NEP. Although the future
carbon-sink capacity of some areas in the Yellow River basin will have a stable trend
of improvement, simulation by Hurst index future persistence analysis showed that the
regional anti-sustainability sequence accounted for a relatively large proportion of the area
with uncertain change (83.43%).
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