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Abstract: Understanding the pixel-scale hydrology and the spatiotemporal distribution of regional
precipitation requires high precision and high-resolution precipitation data. Satellite-based precipita-
tion products have coarse spatial resolutions (~10 km–75 km), rendering them incapable of translating
high-resolution precipitation variability induced by dynamic interactions between climatic forcing,
ground cover, and altitude variations. This study investigates the performance of a downscaled-
calibration procedure to generate fine-scale (1 km × 1 km) gridded precipitation estimates from the
coarser resolution of TRMM data (~25 km) in the Indus Basin. The mixed geographically weighted
regression (MGWR) and random forest (RF) models were utilized to spatially downscale the TRMM
precipitation data using high-resolution (1 km × 1 km) explanatory variables. Downscaled precip-
itation estimates were combined with APHRODITE rain gauge-based data using the calibration
procedure (geographical ratio analysis (GRA)). Results indicated that the MGWR model performed
better on fit and accuracy than the RF model to predict the precipitation. Annual TRMM estimates
after downscaling and calibration not only translate the spatial heterogeneity of precipitation but
also improved the agreement with rain gauge observations with a reduction in RMSE and bias of
~88 mm/year and 27%, respectively. Significant improvement was also observed in monthly (and
daily) precipitation estimates with a higher reduction in RMSE and bias of ~30 mm mm/month
(0.92 mm/day) and 10.57% (3.93%), respectively, after downscaling and calibration procedures. In
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general, the higher reduction in bias values after downscaling and calibration procedures was noted
across the downstream low elevation zones (e.g., zone 1 correspond to elevation changes from 0 to
500 m). The low performance of precipitation products across the elevation zone 3 (>1000 m) might
be associated with the fact that satellite observations at high-altitude regions with glacier coverage are
most likely subjected to higher uncertainties. The high-resolution grided precipitation data generated
by the MGWR-based proposed framework can facilitate the characterization of distributed hydrology
in the Indus Basin. The method may have strong adoptability in the other catchments of the world,
with varying climates and topography conditions.

Keywords: RF; MGWR; TRMM; spatial downscaling; calibration; rain gauges

1. Introduction

Precipitation is an important part of the hydrological cycle which plays a critical role
in regulating land surface and hydrologic processes, including stream flow, groundwater
recharge, soil moisture, and atmospheric temperature in the earth’s system [1–4]. Precip-
itation variability either in the form of wetness or droughts [5], could adversely affect
the water resources, agriculture, and other ecosystem services [6–8]. High-resolution and
precise information on precipitation is extremely important for a wide range of applications,
particularly to address spatial–temporal distribution of hydrology [9–12]. Precipitation
observations from rain-gauge stations generally have good accuracy [10]; however, sparse
distribution of rain gauges especially in the large catchments such as the Indus Basin
hinders their regional-scale applications to conduct research, policies, and decision-making
processes for water resources management. On-going space observations from the past few
decades made it possible to monitor precipitation with global and regional coverage [13,14]
such as the Tropical Rainfall Measuring Mission (TRMM) [15–17], Global Satellite Map-
ping of Precipitation (GSMaP) [18], Global Precipitation Climatology Project (GPCP) [19],
Climate Prediction Center (CPC) [20], MORPHing technique (CMORPH) [21], Precipi-
tation Estimation from Remotely Sensed Information using Artificial Neural Networks
(PERSIANN), PERSIANN Cloud Classification System (PERSIANN-CCS) [22], Integrated
Multi-satellite Retrievals for GPM (IMERG) available at different spatial–temporal resolu-
tions [23]. Among these, the TRMM-based precipitation estimates have commonly been
utilized for basins to catchments scale to monitor land-hydrological processes [24]. Despite
these efforts, TRMM data are still criticized due to their coarse resolution [10,25], rendering
them incapable of translating large-scale variability in precipitation induced by dynamic in-
teractions between climatic forcing, ground cover, and altitude variations. Thus, to achieve
the fine-scale hydrological assessment of the precipitation cycle, improving the spatial
resolution of TRMM precipitation data is highly demanded in the study region [10,26–28].

The spatial downscaling methods enhance the spatial resolution of grided satellite
precipitation products [10,28–31], making it more applicable for sub-basins studies, and
local-scale applications [10,32,33] to study ecology and hydrological cycles, discharge
simulations, and analyze soil erosion [34]. Statistical and dynamic downscaling are two
main approaches to improving the spatial information in gridded products [10,28,35].
Although the dynamic downscaling method can be useful in understanding complex
physical processes (i.e., atmosphere, ocean, and land surface), it is limited in applicability
because it is computationally intensive and time-consuming. Moreover, error chances are
relatively higher [36,37].

The statistical downscaling approach uses simplified algorithms to estimate fine-
scale precipitation at a given location based on high-resolution explanatory variables (e.g.,
temperature, evapotranspiration, vegetation, soil moisture, etc.) [38] and is a commonly
applied approach around different watersheds of the world [10,26,32,38,39]. The most
often utilized statistical downscaling approaches contain linear and nonlinear models such
as GWR (Geographical Weighted Regression), PLSR (partial least squares regression), RF
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(Random Forest) model, and ANN (Artificial Neural Networks) [10,22,40–42]. Studies
have demonstrated the superiority of the localized GWR model in comparison to the
linear and nonlinear regressions sole regressions [38,43] and machine learning techniques
(e.g., ANN and RF) [44]. GWR applications are still criticized because it assumes the
non-stationarity of regression coefficients for all explanatory variables [45,46], while the
previous studies [45,47,48] have reported that regression coefficients could be stationary
(“that do not change in space”) for some variables and non-stationary (“varied over space”)
for other explanatory variables. Introducing all explanatory variables in the GWR model
with non-stationary regression coefficients could reduce the model fitting and result in
uncertainty in the final prediction [45,49,50]. To overcome this constraint, the MGWR
(mixed geographically weighted regression) model handles explanatory variables with
stationary and non-stationary coefficients [45]. This approach isolates the spatially varying
(non-stationary) and constant (fixed terms/stationary) regression coefficients of explanatory
variables to enhance the model fitting and accuracy [45]. Therefore, this study uses the
MGWR model to downscale the coarse-resolution TRMM data to high resolution. However,
applying a localized linear MGWR model to downscale the TRMM data is still lacking for
the entire Indus Basin. Further benchmarking of the research comparing MGWR with a
nonlinear reference model (e.g., RF model) is therefore warranted, which our study has
reported. Random Forests (RF) [51] is a popular machine learning approach that is known
for being able to handle nonlinear relationships between explanatory variables without
overfitting and has shown excellent applications in watershed studies [52,53]. The current
downscaling approach used the original TRMM data as input along with high-resolution
explanatory variables to predict high-resolution precipitation estimates. Therefore, errors
associated with model input parameters, including TRMM, could induce uncertainties
in the final downscaled results [54]. Therefore, adequate data-merging techniques are
required to improve the reliability of model-based estimated precipitation via incorporating
downscaled precipitation with ground observation records [45,50,55,56]. The geographical
difference analysis (GDA) and geographical ratio analysis (GRA) are the most utilized
approaches for merging ground observation records with satellite data [57,58]. However,
according to the literature, the GRA approach performed better than GDA [45,46].

This study presents a methodology to translate the high-resolution spatial–temporal
precipitation estimates by combining downscaled TRMM data with APHRODITE’s (Asian
Precipitation—Highly-Resolved Observational Data Integration Towards Evaluation) rain
gauge-based data over the Indus Basin. The central hypothesis of this study is that MGWR-
based downscaling and calibration procedures can translate spatial heterogeneity in precip-
itation variability and improve the precision of precipitation estimated. The main objectives
of this study are twofold: (1) benchmarking the performance of MGWR in comparison to
the nonlinear reference model (e.g., RF model) to predict the high-resolution precipitation
forecasts, and (2) Demonstrating how a smart combination of downscaled TRMM data
with APHRODITE rain gauge-based precipitation can improve precision in precipitation
estimates.

2. Materials and Methods
2.1. Study Area

The study area covers the Indus Basin, which shares drainage areas in four countries
(China, India, Afghanistan, and Pakistan), with Pakistan having the largest share of the wa-
ter. It is the 12th largest watershed worldwide, occupying an area of 1.12 million km2 [59].
The study region contains the high Hindu Kush, Karakoram, Himalaya, and Tibetan
Plateau Mountain ranges. The Indus River is the largest in the Indus Basin, which orig-
inates from the Tibetan Plateau in China and flows into the Arabian Sea. Glaciers cover
about 220,000 km2 in the study area. The elevation of the Indus Basin ranges between 0 and
>8000 m above sea level (Figure 1a). There are 60 rain gauge stations with available observa-
tions scattered across the Indus Basin. Rain gauges are divided into three different groups
based on the elevation changes e.g., elevation zone 1 (0–500 m), zone 2 (5000–1000 m), and
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zone 3 (>1000 m). The number of gauges along zone 1, zone 2, and zone 3 are 30, 7, and 23,
respectively. Precipitation is subjected to great spatial variability throughout the region,
with ranges as low as 150 mm in the south to 1200 mm in the highland areas (Figure 1b).
Precipitation gradually increases up to 1000 m and decreases with a nonlinear distribution
across the high-altitude regions (Figure 1c). The highest annual precipitation is recorded as
1673 mm/year over the Muree stations, followed by Rawalkot (1568 mm/year).
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Figure 1. (a) Elevation map of Indus Basin, rivers network, and meteorological stations corresponding
to three different elevation zones, (b) annual precipitation isohyets, and (c) annual precipitation
across 60 rain gauge stations along the elevation profile of 0–6000 m.

2.2. Data Sources and Variables

To support the methods and objectives of this study, we have collected data from
multiple sources including satellite, reanalysis, and rain gauge observations (Table 1). More
details are described as follows.
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Table 1. A detailed description of datasets utilized in the study.

Variables Versions Resolution Period Sources

Precipitation TRMM_3B42 ~25 km (daily) 2000–2019 https://disc.gsfc.nasa.gov/mirador-guide (accessed on 23 November 2021)

ET MOD16 1 km × 1 km
(monthly) 2000–2019 https://www.ntsg.umt.edu/project/modis/mod16.php#data-product

(accessed on 23 November 2021)

NAVI MOD13A3 1 km × 1 km
(monthly) 2000–2019 https://lpdaac.usgs.gov/dataset_discovery/modis (accessed on 23 November 2021)

LST MOD11A2 1 km × 1 km
(8 days intervals) 2000–2019 NASA Land Processes Distributed Active Archive Center

Elevation SRTM 90 m × 90 m http://www2.jpl.nasa.gov/srtm/ (accessed on 23 November 2021)

Cloud cover ERA-5 0.125◦ × 0.125◦

(monthly) 2000–2019 http://apps.ecmwf.int/datasets/data/interim-full-moda/ (accessed on 26 November 2021)

Wind speed ERA-5 0.125◦ × 0.125◦

(monthly) 2000–2019 http://apps.ecmwf.int/datasets/data/interim-full-moda/ (accessed on 29 November 2021)

Weather stations data Ground-observations stations (daily) 2007–2012 PMD (Pakistan Metrological department)

Aphrodite APHRO_MA_V110 0.25◦ × 0.25◦

(daily) 2007–2012 climatedataguide.ucar.edu/data-formats/netcdf

https://disc.gsfc.nasa.gov/mirador-guide
https://www.ntsg.umt.edu/project/modis/mod16.php#data-product
https://lpdaac.usgs.gov/dataset_discovery/modis
http://www2.jpl.nasa.gov/srtm/
http://apps.ecmwf.int/datasets/data/interim-full-moda/
http://apps.ecmwf.int/datasets/data/interim-full-moda/
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TRMM precipitation dataset: The TRMM (Tropical Rainfall Measuring Mission) is
a joint mission launched in November 1997 by NASA (National Aeronautics and Space
Administration) and JAXA (Japan Aerospace Exploration Agency), which offers precipi-
tation records with global coverage. We used daily precipitation data of TMPA (TRMM
Multi-satellite Precipitation Analysis) 3B42 version 7 which is available at 0.25◦ × 0.25◦

spatial resolution. This daily accumulated precipitation product is generated from the
research-quality 3-hourly TRMM Multi-Satellite Precipitation Analysis TMPA (3B42). The
product is already processed by NASA Goddard Earth Science Data (https://disc.gsfc.
nasa.gov/datasets/TRMM_3B42_Daily_7/summary?keywords=TMPA, accessed on 23
November 2021).

APHRODITE rain gauge-based precipitation: The daily gridded (0.25◦ × 0.25◦) precip-
itation data of the densely rain gauge-based dataset (APHRIDTE) are taken from version
(APHRO_MA_V110). They are available for sub-domains Monsoon Asia, Middle East, Rus-
sia, and Japan. It has been widely used as a calibration baseline and in other hydro-climate
studies in Asian watersheds [60–63]. APHRODITE precipitation data were used to enhance
the precision of TRMM data.

Observational rain gauge precipitation records: Daily weather data for 60 rain gauge
stations from 2007–2012 were obtained from the PMD (Punjab Meteorological Department),
which was only used for validation of downscaled results for precipitation estimates.

Explanatory variables: The high-resolution (1 km × 1 km) explanatory variables (i.e.,
Evapotranspiration (ET), wind speed, elevation, slope, normalized difference vegetation
index (NDVI), cloud cover, land surface temperature (LST)) are used in the downscaling
procedure. Except for the elevation and slope, all datasets were collected from the period
2000 to 2019. The detail of the datasets is explained in Table 2. Elevation data were acquired
from SRTM (Shuttle Radar Topography Mission) at 90 m × 90 m, which is resized to
1 km × 1 km resolution utilizing the cubic interpolation technique. Further, the slope map
was prepared from the elevation data using the slope tool in ArcGIS. The monthly NDVI
was acquired from the Terra MODIS sensor onboard NASA’s satellite, provided by the
LPDAC (Land Processes Distributed Active Archive Center) at 1 km × 1 km resolution.
The LST data at 1 km × 1 km resolution is also acquired from the LPDAC, provided by
the MODIS onboard sensor (version MOD11A2) at eight days and the nighttime interval,
which is converted into the monthly mean by taking an average of 8 days records. The
actual ET of MODIS was acquired from the Numerical Terra dynamic Simulation Group at
1 km × 1 km resolution. Monthly cloud cover and wind speed data were acquired from the
European Center for Medium-Range Weather Forecasts (ECMWF), which were resampled
at 0.01◦ × 0.01◦ resolution using the cubic interpolation technique in ArcGIS. More details
about data collection and preprocessing of seven explanatory variables are also available in
an earlier study published by [45].

Table 2. List of evaluation matrices and their formulae used in this study. Here, n indicates the
number of data samples utilized in the study; ETip denotes the precipitation estimates of satellites
(TRMM, downscaled, and calibrated-downscaled); ETiQ depicts the observed precipitation data from
rain gauge stations.

Statistical Indicators Formulas

Coefficient of determination (R2)
[

∑n
i=1(ETip−ETp) (ETiQ−ETQ)√

∑n
i=1(ETip−ETp)

2
∑n

i=1(ETiQ−ETQ)
2

]2

RMSE
√

1
n ∑n

i=1

(
ETip − ETiQ

)2

Mean square error (MSE) 1
n

n
∑

i=1

(
ETip − ETiQ

)2

Bias ∑n
i=1[ETip(xi)−ETiQ(xi)]

∑n
i=1[ETiQ(xi)]

× 100

https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_Daily_7/summary?keywords=TMPA
https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_Daily_7/summary?keywords=TMPA
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2.3. Description of Numerical Models

We used two computational models, MGWR and RF, to downscale the TRMM data
from coarse resolution to fine-scale using explanatory variables as input.

Random Forest (RF) model: RF is an ensemble machine learning model which con-
structs an optimal model through a regression tree and then makes its final prediction
based on the results from all the models [64] (See Figure S1 in the Supplementary Material).
The model splits the original data into subdivisions and develops sub-regression models
on each subdivision representing a single tree. Outputs from all sub-models are averaged
to make a final prediction. The RF model used here could be described as follows.

TRMMprecipitation = f(x) + εwhere x = (x1, x2, x3, . . . , xn) (1)

where TRMMprecipitation = TRMM based precipitation estimates, ε = model error estimates,
x = x1, x2, x3, . . . , xn represent the input variables (i.e., elevation, slope, NDVI, ET, etc., as
background fields), and n is the total number of inputs (e.g., seven in our case). Random
Grid Search (RGS) is utilized through many iterations to determine the optimal values
of the model’s parameters. The optimal values of nodes, ntree (number of tree), mtry
(number of variables randomly sampled and nodes) were bootstrapped with 2, 250, and 4,
respectively.

Mixed Geographically Weighted Regression (MGWR) model: the MGWR model is an
extension of GWR, which hold mixed coefficients, e.g., stationary (constant over space) and
non-stationary (spatial varying) for explanatory variables and is mathematically described
as follows [50,65]:

Yi =
⌊
∑k

j=1 αj xij

⌋
+
[
∑P

l=k+1 βl(ui, vi)xil+ε(ui, vi)

]
(2)

where Yi represents the ith observation of TRMM-based precipitation estimates, αj rep-
resents the stationary coefficient of jth explanatory variable where j = 1, 2, . . . , k, xij is
ith observation of jth stationary explanatory variable, βl(ui, vi) is the non-stationary co-
efficients of lth explanatory variable at location (ui, vi) where l = 1, 2, . . . , p, ε(ui, vi) is
the models error estimates at each location (ui, vi), and xil is the ith observation of the
lth local explanatory variable. The geographical variability test (GVT) is performed to
explore the stationary and non-stationary coefficients for explanatory variables. Firstly,
the traditional GWR model is run keeping all explanatory variables as non-stationary.
Secondly, different sets of new sub-models were built by keeping one variable stationary
while remaining non-stationary. If the new sub-models performed with higher fitting than
the traditional GWR model, the AICc (Akaike information criterion) values indicate that
the model comparison criterion would be lower, while DIFF (i.e., Difference of Criterion)
would be positive, indicating that switched variables in sub-models are stationary and
contrariwise [45,49,65]. In general, if the sub-models have DIFF criterion values > 2, then
the coefficients of variables do not vary spatially and should be introduced as stationary. In
contrast, if the DIFF < −2, the coefficients of variables should be introduced as spatially
varying (non-stationary) terms in the model [65]. The procedure is repeated until we
confirm the stationary and non-stationary coefficients of all explanatory variables and build
an MGWR model with different settings of predictor variables following Equation (2) (see
more details in Figure S2 in Supplementary Material).

The regression coefficients (intercept and slope of each variable) in Equation (2) were
estimated on each location using the following matrix:

β (ui, vi) = (xT (w (ui, vi)) x)−1 xTw ((ui, vi) y (3)

where:
β (ui, vi) = local regression coefficients to be estimated at the location (ui, vi)
x = explanatory variables
y = dependent variable
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w (ui, vi) = weight matrix to be estimated at the location (ui, vi)
Solving the weight matrix required the proper selection of kernel filters which play

an important role in model fitting. We applied a bi-square (BI) filter based on their higher
accuracy, as suggested in the previous studies [45,50]. The continuous weights (wij) were
estimated with a bi-square (BI) filter using the following expression [66]

wij =

 1 − (
d2

ij
θi(k)

)
2
, dij < θi(k)

0, dij > θi(k)

(4)

where:
wij = Weight of the observation at grid location j for estimating the regression coeffi-

cient at grid location i
dij = Euclidean distance between i and j
θi(k) = adaptive bandwidth size of k-th nearest neighbor distance.
All parameter estimations were performed using GWR v4.0.

2.4. Spatial Downscaling of Annual TRMM Data

The RF and MGWR models were tested to develop the associations between TRMM
precipitation data and explanatory variables (i.e., elevation, slope, normalized difference
vegetation index (NDVI), land surface temperature (LST), actual evapotranspiration (AET),
wind speed (WDS), and cloud cover) at coarse spatial resolution. Models developed at
coarse resolution were further used with high-resolution explanatory variables to fore-
cast the high-resolution precipitation estimates. The downscaling process of the TRMM
precipitation is explained in detail in Figure 2 and follows these steps:

1. All high-resolution explanatory variables (1 km × 1 km) were resampled to the
TRMM grid scale (0.25◦ × 0.25◦). The resampled explanatory variables and TRMM
precipitation were used as an input in the RF and MGWR models to predict the coarse
resolution (0.25◦ × 0.25◦) precipitation estimates (step 1 in the flow chart).

2. The estimated precipitation (0.25◦ × 0.25◦) was subtracted from TRMM observations
(0.25◦ × 0.25◦) to calculate the residuals (error) in the model’s estimates.

3. The performance evaluation is conducted to select the appropriate model from RF
and MGWR (step 1 in the flow chart).

4. The model regression coefficients from step 1 were interpolated to high resolution
(1 km × 1 km). The high-resolution explanatory variables (1 km × 1 km) and re-
gression coefficients were used in Equation (2) to obtain the fine scale (1 km × 1 km)
estimated precipitation (step 2 in the flow chart).

5. Finally, residuals from step 1 were interpolated to high resolution (1 km × 1 km) and
subsequently combined with the estimated precipitation to obtain the downscaled-
TRMM precipitation estimates (step 2 in the flow chart).

2.5. Combining Annual Downscaled TRMM Data with APHRODITE

The annual downscaled precipitation data are combined with APHRODITE rain gauge-
based precipitation data using the spatial GRA (Geographical ratio analysis) algorithm
using the following expressions (step 3 in the flow chart).

Pcaldownscaled
(y) = Pdownscaled(y)×

n

∑
j=1

×λj
PAPHRODITE Yj

Pdownscaled Yj
(5)

where
Pcaldownscaled

(y) = merged or calibrated-downscaled precipitation with APHRODITE
rain gauge-based data at 1 km grid “y”

PAPHRODITE Yj = APHRODITE rain gauge-based precipitation at APHRODITE grid “Y”
Pdownscaled Yj = downscaled precipitation values at APHRODITE grid “Y”
λj = Spatial weights at each grid location (Y)j
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2.6. Monthly and Daily Downscaled Precipitation Estimates

A fractional disaggregation approach [45,58] was utilized to disaggregate the annual
high-resolution (1 km) downscaled calibrated precipitation data to acquire the monthly
and daily precipitation estimates using the following expression (step 4 in the flow chart):

TRMMdownscaled (monthly and daily)1km = Annual TRMMdownscaled(1km)× ∑N
i=1 λi

 TRMMj (xi)
0.25 deg

∑n
j=1 TRMM (xi)

0.25 deg

 (6)

where:
TRMMj (xi)

0.25 deg = coarse resolution TRMM precipitation at grid location (xi) of the

jth day) ∑n
j=1 TRMM (xi)

0.25 deg = annual precipitation for n = 12 months and 365 days
λi = weight at each grid location xi with a spatial resolution of 0.25◦ × 0.25◦ and N

represents the total number of grids in the study region.
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2.7. Evaluation Matrices

The downscaled and calibrated results of TRMM precipitation estimates were com-
pared with rain gauge precipitation to evaluate the performance using several different
statistical indicators, e.g., coefficient of determination (R2), Mean Square Error (MSE), Bias,
Root mean square error, and (RMSE) (Table 2).

3. Results
3.1. Comparison between MGWR and RF-Based Estimated Precipitation

MGWR and RF models were trained with coarse-resolution environmental vari-
ables and TRMM precipitation data. The estimated annual precipitation results from
RF and MGWR models were compared with the coarse-resolution TRMM precipitation
data. Figure 3a,b indicate scatter plots between the estimated and TRMM precipitation
from 2000–2019. Results indicated that the MGWR model fitted better than the RF with
higher values of R2 as 0.96. In the case of the RF model, the points are more scattered
around the 1:1 ratio line, which seems to be a better fit with higher accuracy in the case
of the MGWR model. Figure 3c illustrates the residual distribution of both models based
on the probability distribution function (PDF). The line graph skewed on the right side
and left side from 0 means demonstrated that the model’s estimated precipitation is over-
and under-estimated compared to the original TRMM data. The residual values ranged
between 500 and −500 mm/year. The PDF plots also confirmed that the MGWR model had
lower residuals (error) than the RF model, as evidenced by the fact that most error values
were distributed around zero with a higher peak density, which seems to be found with a
higher spread in the case of the RF model. The time-series estimated precipitation data from
both models were also compared for selected grids across upstream and downstream of the
study region (Figure 3d). It is observed that a good agreement is found between time-series
data of MGWR-based estimated precipitation and TRMM precipitation estimated through
the study period from 2000–2019 over all the selected grids. In contrast, a weaker agreement
is observed in RF-based estimated precipitation.

The spatial patterns of estimated precipitation obtained from the RF and MGWR mod-
els were also compared with the original TRMM precipitation for the average study period
(2000–2019) (Figure 4a–c). It is well noted that MGWR-based estimated precipitation shows
a similar spatial pattern compared to the original TRMM precipitation data. The negative
values of residuals for the RF model were found higher in the upstream regions, indicating
that the RF model does not perform satisfactorily and underestimates the precipitation
in the regions with higher precipitation values (Figure 4d). On the other hand, over- and
under-estimations of MGWR-based precipitation results were relatively lower and showed
a homogeneous pattern in the study region, indicating that MGWR model performance is
highly satisfactory in predicting the precipitation data (Figure 4e).
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Further detailed yearly evaluations of the model’s performances based on different
statistical indicators (R2, MSE, and mean) are provided in Figure 5a–c. Based on R2 values,
the MGWR model performance was satisfactory through the study period from 2000 to
2019, with higher values of R2 ranging between 0.97 and 0.99. On the other hand, the R2

values of the RF model ranged between 0.88 and 0.93 (Figure 5a). The MSE values of the
MGWR model were comparatively less (ranging from 38 to 79 mm/year), which seems to
be higher in the case of RF model (120 to 163 mm/year) (Figure 5b). Overall, the detailed
statistical evaluation indicated that the MGWR model fit better with lower MSE and with
higher values of R2 and outperformed the RF model to predict the precipitation based on
current settings of environmental variables.
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3.2. Spatial Downscaling of Annual TRMM Precipitation

We ran the MGWR model with annual TRMM precipitation in combination with
coarse resolution (~25 km) explanatory variables (wind speed, cloud cover, elevation, slope,
ET, NDVI, and LST) to obtain the model’s regression coefficients (see Figure S3 in the
Supplementary Material). The regression coefficients of explanatory variables obtained at
this stage were subsequently interpolated to high resolution (1 km) and integrated with
high-resolution environmental variables to obtain the estimated precipitation at a 1 km
resolution (Figure 6b). Further, residual correction is performed by adding estimated
precipitation with model residuals to obtain the high-resolution TRMM downscaled data
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(Figure 6b,c). It is observed that the downscaled TRMM precipitation data shows a signifi-
cant improvement in the spatial information (Figure 6c). Further, the precipitation profile
along the ~1200 km transect line shows a very strong resemblance in the precipitation
pattern obtained from both datasets. However, precipitation variations along the ~1200 km
transect line obtained from the downscaled TRMM data translate a more variable trend
compared to the coarse resolution TRMM data (Figure 6d).
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Figure 6. Output maps of MGWR model indicating the (a) estimated precipitation (1 km),
(b) residuals (1 km), (c) downscaled TRMM precipitation (1 km), and (d) precipitation pattern
obtained from the downscaled TRMM and original TRMM along the ~1200 km line of the transect.
(Note: data presented here are average of 2000–2019).

MGWR performance is tested for each year from 2000 to 2019 to generate high-
resolution (1 km) precipitation data for the Indus Basin. Figure S4 compares the spatial
pattern of annual precipitation estimates obtained from the downscaled TRMM data and
original TRMM data for different selected years from 2000 to 2019. It is observed that down-
scaled precipitation estimates indicated quite similar spatial patterns of precipitation values
when compared with the original TRMM data for each year. This indicated that the down-
scaling approach with current high-resolution explanatory variables not only translates
precipitation with enhanced information but also retains the spatial pattern of precipitation
throughout the study period. Here, we applied the downscaling approach over the original
TRMM data; any bias that was already present in the satellite data will eventually be
introduced in the model-based downscaled precipitation results [45,67]. Therefore, we
combined the APHRODITE rain gauge-based precipitation data with downscaled TRMM
results to remove the uncertainties in the downscaling results and improve the precision of
precipitation estimates. Figure 7 represents the calibrated results of precipitation estimates
and their comparison with original TRMM and downscaled TRMM data for three selected
years, 2007, 2009, and 2011. We can see that the calibrated TRMM precipitation results
differed from the downscaled and original TRMM data (Figure 7). The difference was more
prominent across the upstream regions, indicating that uncertainties in the downscaled
results were higher in these regions and the current merging approach helps reduce the
uncertainties in the final precipitation estimates.



Remote Sens. 2023, 15, 318 14 of 27Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 27 
 

 

 
Figure 7. Spatial pattern of coarse resolution TRMM, downscaled TRMM, and calibrated TRMM 
precipitation results estimated for three selected years. 

Further, statistical matrices and scatter plots show performances of annual TRMM, 
downscaled, and calibrated precipitation estimates corresponding rain gauge data across 
the (a) elevation zone 1, (b) elevation zone 2, (c) elevation zone 3, and (d) average of the 
entire study Basin (Figure 8). Results indicated that TRMM results after downscaling (rep-
resented as ‘downscaled’) and subsequently merged with APHRODITE (represented as 
‘calibrated’) show an improvement in precipitation estimates regarding rain gauge data 
across all elevation zones. For instance, R2 improved from 0.67 to 0.76 with a reduction in 
bias from 29.21% to −1.13% and RMSE from 210.48 mm/year to 133.73 mm/year across the 
elevation zone 1 (0–500 m). Over the entire basin, the precipitation estimates after 
downscaling and calibration were improved with a reduction in RMSE and bias values by 
222.25 mm/year to 134.79 mm/year and 29.01% to −1.96%, respectively. 

Figure 7. Spatial pattern of coarse resolution TRMM, downscaled TRMM, and calibrated TRMM
precipitation results estimated for three selected years.

Further, statistical matrices and scatter plots show performances of annual TRMM,
downscaled, and calibrated precipitation estimates corresponding rain gauge data across
the (a) elevation zone 1, (b) elevation zone 2, (c) elevation zone 3, and (d) average of the
entire study Basin (Figure 8). Results indicated that TRMM results after downscaling
(represented as ‘downscaled’) and subsequently merged with APHRODITE (represented
as ‘calibrated’) show an improvement in precipitation estimates regarding rain gauge data
across all elevation zones. For instance, R2 improved from 0.67 to 0.76 with a reduction in
bias from 29.21% to −1.13% and RMSE from 210.48 mm/year to 133.73 mm/year across
the elevation zone 1 (0–500 m). Over the entire basin, the precipitation estimates after
downscaling and calibration were improved with a reduction in RMSE and bias values by
222.25 mm/year to 134.79 mm/year and 29.01% to −1.96%, respectively.
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scaled, and calibrated precipitation estimates compared to rain gauge data (RGS) across the
(a) elevation zone 1, (b) elevation zone 2, (c) elevation zone 3, and (d) average of entire study Basin.

3.3. Temporal Disaggregation of Annual Downscaled TRMM Data

The downscaled and calibrated precipitation results of annual TRMM data were
temporally downscaled (or disaggregated) to acquire the precipitation estimates for the
monthly and daily temporal scales. The monthly precipitation estimates for Jan, May,
and September of the year 2011 obtained after disaggregation of the downscaled TRMM
(1 km) show similar spatial patterns when compared with the coarse resolution TRMM
results (~25 km) (Figure 9). The monthly precipitation results from the coarse resolution
TRMM displayed a mosaic-like information because of the coarse spatial scale of TRMM
data. Precipitation obtained from a MGWR-based downscaling approach, on the other
hand, not only retained the spatial pattern but also enhanced spatial information (see
more images in Figure S5 in the Supplementary Material). Monthly precipitation results
from the calibrated-downscaled data resulted in a significant difference in precipitation
estimates between the downscaled and calibrated-downscaled, notably in the high-altitude
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mountain regions (Figure 9). After merging with the APHRODITE data, the adjusted
amount of precipitation is responsible for the significant disparity between downscaled
and calibrated-downscaled precipitation estimations.
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Figure 9. Spatial pattern of precipitation results obtained from the coarse resolution TRMM, down-
scaled TRMM, and calibrated TRMM precipitation at monthly scale for January, May, and September
of the year 2011.

Results of the spatial pattern of daily precipitation estimates disaggregated from the
coarse resolution TRMM, downscaled TRMM, and calibrated downscaled data for different
days of the year, e.g., 1, 32, 60, 91, 121, 152, 182,213, 244, 274, 305, and 356, are shown in
Figure 10. It is observed that the daily precipitation estimates obtained from downscaled
and calibrated-downscaled datasets also offered better spatial information when compared
with the coarse resolution TRMM data. Remarkably, daily precipitation results obtained
from the calibrated dataset had a significantly different spatial pattern compared to those
produced from the downscaled dataset. However, in most of the study areas, downscaled
and calibrated-downscaled precipitation patterns were similar with some variations. These
facts demonstrated that the temporal disaggregation of annual precipitation to monthly
and daily scales does not affect the results to a higher extent.
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Figure 10. Snap view of the spatial pattern of daily precipitation estimates from coarse resolution
TRMM, downscaled, and calibrated datasets for different days of the year such as 1, 32, 60, 91, 121,
152, 182,213, 244, 274, 305, and 356. Red box indicated the area of interest in the Indus Basin.

We compared the results with rain gauge data to confirm the accuracy of the monthly
and daily precipitation estimates disaggregated from downscaled and calibrated-downscaled
data. It is noted that a good agreement is found between the regional times series of
estimated precipitation (TRMM, downscaled, and calibrated) and rain gauge-based pre-
cipitation data (Figure 11a). The performance evaluation over the entire basin indicated
that precipitation estimates of TRMM data after downscaling and calibration procedure
show a slight increase in R2 from 0.79 to 0.80. However, a significant improvement was
observed with a higher reduction in RMSE and bias in the TRMM precipitation data as
43.02 mm/month to 14.16 mm/month and 15.73% to 5.25% after downscaling and calibra-
tion procedures (Figure 11b). In general, the correlation coefficient between the estimated
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precipitation and rain gauges was comparatively higher across elevation zone 1 and zone 2
(Figure 11c,d) than in elevation zone 3 (Figure 11e).
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performance evaluation of different precipitation estimates compared to rain gauge data across three
elevation zones and the entire basin.

We further explored the performances of the daily precipitation by comparing results
with rain gauge observations. It is observed that downscaled and calibrated results of
daily precipitation show strong agreement when compared with daily time series of rain
gauge data (Figure 12a). Furthermore, the performance of precipitation estimates from
TRMM, downscaled, and calibrated datasets is evaluated using different statistical indica-
tors (correlation coefficient, root mean square error, and bias) across the entire Basin and
selected stations across the three elevations zones (Figure 12b–e). For instance, performance
evaluation over the entire Basin indicated that TRMM precipitation estimates showed an
improvement with a decrease in RMSE and Bias values from 1.42 to 0.50 mm/day and
7.25% to 3.32%, respectively, and an increase in R2 from 0.82 to 0.85 (Figure 12b). Based on
bias values, TRMM-based precipitation estimates have relatively higher over- and underes-
timations across all elevation zones, which seems to be lower in downscaled and calibrated
results, suggesting that the present downscaling-calibration measures advance the preci-
sion in daily precipitation estimates (Figure 12c–e). In general, the higher reduction in bias
values after downscaling and calibration procedures was noted across the downstream
low-elevation zones (e.g., zone 1 correspond to elevation changes from 0 to 500 m).
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Figure 12. (a) Comparison between daily time series of precipitation estimates (TRMM, downscaled,
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entire basin.

4. Discussion

The current study reconstructed the high-resolution precipitation forecast by com-
bining APHRODITE rain gauge-based precipitation with downscaled TRMM data. The
estimated precipitation forecast performance was also investigated across the Indus Basin
in different elevation zones. Here, we discussed the following key points.

The selection of appropriate explanatory variables plays a critical role in the down-
scaling procedure [45,68]. The seven high-resolution explanatory variables explaining the
physiographical and hydro-climatic conditions of the Indus Basin were selected, including
elevation, evapotranspiration, slope, vegetation characteristics, land surface temperature,
wind speed, and cloud cover conditions. Variables were chosen because of their regional
significance [69] and overall effects on the changing trend in precipitation patterns [45,70].
Other studies have well-reported applications of these explanatory variables over the other
global watersheds [55,71–73]. The results of the variable importance test (VIMP) to evaluate
the relative importance of each explanatory variable indicated that wind speed was found
to be of relatively high importance (58%), followed by the NDVI (47%) and elevation (47%)
(Figure 13). The strong association between precipitation and NDVI and elevation has also
been reported by [74]. The actual ET, LST, and slope were found to be equally important in
the model for predicting precipitation data. Several variables were introduced in the RF
and MGWR model to predict the high-resolution precipitation forecast in the Indus Basin,



Remote Sens. 2023, 15, 318 20 of 27

although the geographically weightage regression (GWR) model has a widely applied
approach to building non-stationary relationships between the explanatory variables and
prediction (TRMM in our case) [45,75,76], and these relationships facilitate the downscaling
spatial resolution of gridded satellite products [45,74]. The GWR model considers all input
variables’ coefficients as non-stationary, which is invalid. The coefficients of some variables
could be spatial varying (non-stationary) and fixed (constant or stationary) for some vari-
ables [45,74,77]. Introducing all variables’ coefficients as non-stationary reduces the model
fitting and could result in uncertainties [45,49,50]. Therefore, detailed characterization of
explanatory variables and proper selection plays a vital role in model fitting. In our study,
we separated the stationary and non-stationary coefficients based on the GVT test to build
an MGWR model (see Table S1 in the Supplementary Material). This model handles both
types of coefficients to increase the model fitting. Previous researchers also proved that
the MGWR model outperformed the GWR model when appropriate variables based on
their stationary and non-stationary behaviors were introduced in the models [45,50,77,78].
Therefore, we introduced the applications of the MGWR model to downscale TRMM, and
its performance was also compared with a machine learning (RF) model. We found that
the MGWR model outperformed the RF model, which has also been reported in previous
studies [46,79,80].
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in the study region.

The downscaling of TRMM precipitation data to fine sale improved the spatial in-
formation and reduced the bias in data compared with rain-gauge values. At the same
time, a higher inconsistency is observed between the coarse-resolution TRMM precipitation
and rain-gauge observations. This inconsistency may be due to coarse pixel resolution
(0.250 × 0.250), which may include a mixed nature of rain and non-rain zones and cause
uncertainty in the results [81,82]. Precipitation values could deviate by ~38% between
two gauges located within a single satellite pixel (4 km × 4 km) [56,81] also reported that
the mean deviation of rain gauge observations and TRMM precipitation over the single
pixel was relatively higher than when calculated with a cluster of pixels at finer scales.
To further prove this evidence, we compared the precipitation estimates acquired from
the coarse resolution TRMM and downscaled data over the single-pixel (25 km × 25 km)
corresponding to two rain gauges (Lahore (AP) and Lahore (PBO)) (Figure 13). It is well
noted that downscaled TRMM estimates show a similar spatial precipitation pattern com-
pared to the original TRMM data. However, downscaled data well translated the spatial
heterogeneity in the precipitation values across the area of interest, which seems to be
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homogeneous in the case of the original TRMM. We see that two rain gauges located in a
single pixel at ~108 km show a difference in observed precipitation of 48 mm, indicating
that precipitation varies at a smaller scale which cannot be translated in the single satellite
pixel of TRMM (e.g., indicating precipitation of 685 mm/year through the selected region).
On the other hand, downscaled-based precipitation showed a significant spatial change
even within a single pixel and translated the changes corresponding to the rain gauge
values. The deviations of TRMM precipitation from gauge observations were recorded
as 73 mm and 121 mm, corresponding to the Lahore (PBO) and Lahore (AP) gauge sta-
tions, respectively. In comparison, the deviations of downscaled precipitation estimates
were 66 mm and 14 mm for Lahore (PBO) and Lahore (AP) gauge stations, respectively
(Figure 14). The larger deviations between the single rain gauge observation and TRMM
precipitation records are mainly associated with the scale of discrepancy [82]. It could be
decreased either by improving the calibration process with dense rain gauge networks or
rescaling the satellite to a high spatial resolution [83], which also supports our findings.
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snap view of downscaled precipitation over single pixel (25 km × 25 km).

Downscaled results still contain higher values of bias, which might be associated with
the downscaling procedure applied to original TRMM data, and any errors associated with
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satellite products could be induced in the final downscaled results. Therefore, additional
preprocessing is required to improve the precision of downscaled precipitation estimates.
Merging rain-gauge data with satellite estimates provides a favorable solution to enhance
the precision of precipitation estimates through calibration techniques [37,45,56,84]. Since
the current study covers the entire Indus Basin and the sparse distribution of gauge
networks, especially in the upstream high-altitude areas [63,85], restricts the potential
of merging and calibration methods to improve the reliability of precipitation, therefore,
the APHRODITE dataset was used in the merging process, and available gauges were
only used to assess the performance of TRMM, downscaled, and calibrated downscaled
(or merged) products. In the present study, we used the GRA approach for merging
TRMM data with APHRIDTE as recommended by [45,56]. Our findings indicated that
the accuracy of TRMM precipitation estimates greatly improved when we [86,87] merged
with APHRODITE rain gauge-based data. [88] also reported that the dense rain gauge
network dataset (APHRODITE) significantly enhances the accuracy of TRMM after merging.
GRA and GDA approaches are simple and effective techniques to adjust over- and under-
estimation in the model-based downscaled and satellite estimates

We evaluated the quality of precipitation estimates acquired from the downscaled and
calibrated results in reference to the original TRMM estimates across three different eleva-
tion zones, e.g., 0–500 m, 500–1000 m, and >1000 m. We found that the TRMM precipitation
forecast after downscaling and calibration procedures showed a greater reduction in error
across the low-altitude regions (e.g., zone 1 and zone 2) than the high-altitude regions. In
contrast, the performances of TRMM estimates were slightly lower across the high-altitude
regions (e.g., zone 3). The low performance of precipitation products across the elevation
zone 3 might be associated with the fact that these regions are covered with glacier and sea-
sonal snow, and satellite observations are subjected to uncertainties [45,63,89]. The annual,
monthly, and daily downscaled results of the precipitation forecast were still satisfactory,
given higher values of R2 and lower bias compared with available ground observations
data. The current study is mainly designed to improve the spatial (horizontal) information
of TRMM precipitation across the Indus Basin; however, further efforts are required to ad-
just the vertical amount of precipitation, mainly in the high-altitude mountain regions with
glacier coverage, which consists of sparse rain gauges, and the precipitation measurements
are unreliable or unavailable [63,90].

5. Conclusions

This study developed a downscaling-calibration approach to translating high-resolution
spatio-temporal precipitation estimates by combining downscaled TRMM with APHRODITE
rain gauge-based data in the Indus Basin. We compared the performances of MGWR and
RF models in the downscaling framework. The downscaled precipitation estimates were
also merged with the APHRODITE data using the GRA approach to enhance the accuracy.
The downscaled and calibration results generated by this study were compared with the
rain-gauge observations for different elevation zones to ensure the accuracy of the results.
Overall, the main findings of this study include:

• The GVT test indicated that LST and slope coefficients are stationary and hence
should be switched in the global part of the model, and the rest of the variables were
introduced as local variables with non-stationary behaviors.

• The MGWR model performed better with higher fitting and accuracy to predict the
precipitation than the RF model.

• Downscaled TRMM datasets not only translate the spatial heterogeneity of precipita-
tion estimates but also reduce the deviation in results when compared with rain gauge
observations.

• The accuracy of the downscaling results was considerably increased after combining
them with APHRODITE rain gauge-based precipitation data.
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• Evaluation across different elevation zones indicated that the downscaling-calibrated
procedure improved the quality of precipitation estimates across the low-elevation
zones, while a slight improvement was observed across the high-altitude regions.

High-resolution data generated by the proposed MGWR-based modeling framework
would assist water resource managers to use it for the decision making process at dis-
tributed basis, particularly over the high-altitude areas, which have the sparse distribution
of gauge observations. The method can also be encouraged to test over similar regions of
other global watersheds.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs15020318/s1, Table S1. Selection of stationary and non-stationary
variables based on DIFF values. Figure S1. An overview of RF model computation. Figure S2.
Building MGWR model based on GVT test. Figure S3. Regression coefficients interpolated at 1 km
resolution. Figure S4. Comparison between the spatial pattern of annual precipitation estimates
obtained from the original TRRM (~25 km) and downscaled TRMM (1 km) for different years from
2000–2019. Figure S5. Comparison between the spatial pattern of monthly precipitation estimates
obtained after disaggregation of the annual TRRM (~25 km) and downscaled TRMM (1 km) for
different months of 2019.
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