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Abstract: Pores and microfractures provide storage spaces and migration pathways for gas accu-
mulation in tight sandstones with low porosity and permeability, acting as one of the controlling
factors of gas production. The development of a rational rock physics model is essential for better
understanding the elastic responses of tight sandstone with complex pore structures. Accordingly,
seismic characterization of pores and microfractures based on the rock physics model provides
valuable information in predicting high-quality tight gas sandstone reservoirs. This paper proposes a
rock-physics-based approach to compute the pore–microfracture indicator (PMI) from elastic prop-
erties for pore structure evaluation in tight sandstones. The PMI is achieved based on the axis
rotation of the elastic parameter space using well-log data. The rotation angle is determined by
finding the maximum correlation between the linearized combination of the elastic parameters and
the introduced factor associated with total porosity and microfracture porosity. The microfracture
porosity is then estimated with an inversion scheme based on the double-porosity model. Finally, the
optimized rotation angle is employed to compute the PMI with seismic data. The obtained results are
of great benefit in predicting the permeable zones, providing valuable information for sweet spot
characterization in tight gas sandstone reservoirs.

Keywords: pore–microfracture indicator (PMI); tight gas sandstone reservoir; double-porosity model;
microfracture porosity prediction; quantitative seismic interpretation

1. Introduction

The Ordos Basin is one of the most petroliferous in north-central China, with numer-
ous natural gases being produced in the tight sandstones from the petroleum systems of
the basin. In general, tight sandstones in the Ordos Basin are characterized by low porosity
(<10%) and low permeability (<1 mD). Pores and microfractures developed in tight sand-
stones lead to the increase of reservoir permeability, providing migration pathways for gas
accumulation. Relatively high-porosity and well-developed microfractures are essential
to configuring permeable zones in tight gas sandstone reservoirs, functioning as one of
the dominant factors for gas enrichment. Simultaneously, the development of natural mi-
crofractures facilitates the formation of pore–fracture networks during hydraulic fracturing,
which is a crucial factor in gas productivity [1–3]. The primary types of pore space in
tight sandstones include dissolved inter-granular and intra-granular pores, microcracks,
microfractures, and structural fractures. Core analysis and well-logging interpretation
provide valuable information for characterizing various pores and fractures. Nevertheless,
pore and fracture identification with seismic methods is of great significance in predicting
sweet spots in tight gas sandstone reservoirs over a large area.

Tight sandstones with high-angle fractures are usually described as the effective
medium with horizontal transverse isotropy or orthorhombic anisotropy, relying on the
features of the host medium. In view of this, these near-vertical fractures are predicted via
various azimuthal seismic inversion methods [4–7]. However, different from predicting
vertical fractures utilizing azimuthal seismic signatures, delineating microfractures with
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seismic methods is challenging due to their implicit elastic properties. In this case, the rock-
physics-based approaches provide an effective solution in characterizing microfractures,
wherein the elastic behaviors associated with pore structures are described with appropriate
rock physics models.

Based on core and thin section observations, complex pore structures in tight sand-
stone were simplified as the combination of round pores and low-aspect-ratio microfrac-
tures [8,9]. The corresponding scattering velocity–porosity relationships were then reason-
ably interpreted by varied crack concentrations. Further, the sophisticated double-porosity
model [10,11] and the multiple-porosity model [12] were proposed to explain tight sand-
stone’s poroelastic behaviors accurately. Experimental investigations confirmed the applica-
bility of the double-porosity model for tight sandstones [13,14]. By extending the model to
delineate heterogeneous pore structures, pore structure evaluation and shear-wave velocity
prediction were performed in tight sandstones [15].

In practice, various templates constructed based on appropriate rock physics models
provide effective tools for estimating reservoir parameters utilizing elastic properties in
various hydrocarbon resources [16–19]. For instance, the rock physics templates (RPTs)
were employed for fluid identification [20] and brittleness evaluation [21] in tight sand-
stone reservoirs. At the same time, several successful applications have been reported for
estimating pore microstructure in tight sandstones using RPTs [22,23]. However, one of
the inherent limitations of applying RPTs for estimating reservoir parameters is that the
corresponding implementation is target-oriented, where the interpretation on a particular
template may work only for a specific target layer. In comparison, direct seismic inversion
of pore parameters may be attractive [24,25], but the robustness of the complex iteration
process in seismic inversion should be properly assessed.

This paper is aimed to propose a rock-physics-based indicator for estimating pores
and microfractures in tight gas sandstone reservoirs from seismic data. First, the workflow
associated with the double-porosity model is given, followed by predicting microfracture
porosity using well-log data. Next, a new pore–microfracture indicator is introduced by
optimizing the correlation between elastic properties and the pore factor defined by total
and microfracture porosity. After analyzing the applicability of the proposed indicator
using well-log data, the suggested method is applied to seismic data to identify permeable
zones in tight gas sandstone reservoirs.

2. Methods
2.1. Rock Physics Model of Tight Gas Sandstones

As presented in Figure 1, thin sections of cores from the Ordos Basin indicate that
tight sandstones exhibit complex pore structures, including dissolved inter-granular and
intra-granular pores and structural fractures. The rock physics model correlates pore
parameters and elastic properties and is essential for assessing pores and microfractures
using seismic-inverted attributes.
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In the schematic illustration of the tight sandstone (Figure 2a), the total porosity (φ) of
tight sandstone is divided into the spaces occupied by round pores (φp) and microfractures
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(φf). Hence, our rock physics modeling workflow (Figure 2b) takes into account the
corresponding double-porosity model based on effective medium theories.
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Figure 2. (a) Schematic illustration and (b) flowchart of rock physics modeling for tight sandstones.

First, the Hashin–Shtrikman bounds (HSB) method [26] is used to capture the elastic
properties of the mineral matrix, which is assumed to be chiefly composed of quartz and
clay. The HSB predicts the equivalent elastic modulus of a medium in the following form:

KHS+ = Λ(µmax), KHS− = Λ(µmin) (1)

µHS+ = Γ(ζ(Kmax, µmax)), µHS− = Γ(ζ(Kmin, µmin)) (2)
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where KHS+ and KHS− represent the upper and lower limits of the equivalent bulk modulus
of the solid matrix, µHS+ and µHS− are the upper and lower limits of the equivalent shear
modulus, Kmax and Kmin denote the maximum and minimum values of the bulk modulus
of each component in the solid matrix, µmax and µmin are the maximum and minimum
values of the corresponding shear modulus, K(r) and µ(r) represent the bulk and shear
modulus of the r-th component composing the solid matrix, and the parentheses 〈·〉 indicate
the weighted average of the components by their corresponding volume fractions.

Then, the double-porosity is modeled with the self-consistent approximation (SCA)
method [27] to quantify the influences of pores and microfractures. The SCA-based theory
for multi-phase media could be presented as follows:

∑n
j=1 f j

(
Kj − K∗SC

)
P∗j = 0 (4)

∑n
j=1 f j

(
µj − µ∗SC

)
Q∗j = 0 (5)

where j represents the j-th phase and f j denotes the corresponding volume fraction, Kj and
µj are the bulk and shear modulus of the j-th component, P∗j and Q∗j are geometric factors
of the inclusion added to the background medium, and finally, K∗SC and µ∗SC denote the
estimated equivalent bulk modulus and shear modulus.

It is assumed that the fluids are homogeneously distributed in the double-pore spaces,
with the bulk modulus of the fluid mixture modeled as:

K f = SwKw + SgKg (6)

where Kw and Kg denote the bulk modulus of water and gas, and Sw and Sg represent
water and gas saturation.
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The density of the fluid mixture is computed as follows:

ρ f = Swρw + Sgρg (7)

where ρw and ρg are the densities of water and gas.

2.2. Estimation of Microfracture Porosity Based on the Double-Porosity Model via Well-Log Data

We employ the double-porosity model to estimate microfracture porosity using well-
log data, as illustrated by the workflow in Figure 3. The double-porosity model plays an
effective modeling tool role in the model-based inversion scheme.
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Specifically, microfracture porosity (φf) is regarded as the fitting parameter to be
retrieved, with the volumetric fractions of minerals, porosity, and fluids properties as
inputs of the double-porosity model at each logging interval. The value of φf is estimated
by finding the best match between the P-wave velocity calculated by the model (VP-
calculated) and that measured (VP-measured) in the borehole for a particular value of φf.
The straightforward grid-searching scheme is employed to realize the estimation of φf
within a preset range of φf values in solving the objective function. The outputs include the
predicted φf and the corresponding VP(φf). A by-product is the simultaneously estimated
VS(φf), which gives an appropriate reference for validating the applicability of the rock
physics model in practice. Repeating the above computation at each logging interval can
produce the curves of the fitted VP(φf) and predicted φf and VS(φf).

2.3. Pore–Microfracture Indicator (PMI) Defined Using Elastic Properties

Based on the concept of the Poisson impedance (PI) [28] and the previously developed
method for estimating the optimized PI [29,30], a novel pore–microfracture indicator (PMI)
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is proposed to appropriately describe features of pore spaces in tight sandstones by utilizing
seismic attributes:

PMI(θ) = IP cos θ −VP/VS sin θ (8)

where IP represents P-wave impedance, VP/VS is velocity ratio, and θ denotes the rotation
angle transferring IP and VP/VS to PMI.

In practice, the optimized θmax value is determined by seeking the maximum corre-
lation between PMI(θ) and the factor φ × φf using well-log data. Herein, the factor φ ×
φf is utilized to describe characteristics of pore spaces since both total porosity (φ) and
microfracture porosity (φf) are vital for improving the permeability of tight sandstones.
In this case, the obtained PMI(θmax) exhibits the maximum correlation with φ × φf and
is employed to assess permeable zones in tight sandstones. In the following sections, the
effectiveness of PMI(θmax) for evaluating the factor φ × φf is proved.

3. Results
3.1. Study Area and Datasets

Our study area is located on the eastern margin of the Ordos Basin. Seismic data are
collected by implementing a three-dimensional (3D) seismic prospecting method in the
understudied region. As shown by the two-way travel time (TWT) of seismic reflections
from the target tight sandstone (see Figure 4), the tectonic structure in the study area is
relatively simple. Seismic lines and the locations of three gas-producing wells have been
demonstrated in Figure 4.
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Figure 5 displays the cross-well seismic section where the interpreted horizons and the
target interval of the tight gas sandstone formation are illustrated. The sampling interval
of the seismic data is 1 ms. The 3D cubes of elastic wave velocities and bulk density are
obtained via the pre-stack seismic inversion, which will be used to quantitatively interpret
pores and microfractures based on the method proposed in Section 2.3. The well-log
curves measured in the three wells are employed to capture microfracture porosity with
the model-based method in Figure 3.
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3.2. Prediction of the Microfracture Porosity in Tight Sandstones Using Well-Log Data

To estimate the factor φ × φf proposed in Section 2.3, we should evaluate φ and φf
appropriately. The total porosity (φ) can be obtained from the standard logging curve.
Microfracture porosity (φf) is computed with the method presented in Section 2.2 using
well-log data, with the predicted results shown in Figure 6. The properties of the minerals
and fluids used in the method are provided in Table 1. The values of φf are predicted by
fitting the VP obtained with the double-porosity model (blue curves) and the VP measured
in the borehole (black curves). As illustrated by the relative errors in VP estimation for
all three wells, the calculated VP rationally fits with the measured VP, demonstrating the
applicability of the proposed model and the corresponding method for φf estimation in the
tight gas sandstone of the understudied area.

Table 1. Properties of constituents used for the rock physics modeling [31].

Properties Clay Quartz Water Gas

K (GPa) 21.00 36.60 2.25 0.012
µ (GPa) 7.00 45.00 0.00 0.000

ρ (g/cm3) 2.60 2.65 1.04 0.078

Meanwhile, the relative errors in vs. estimation show that the predicted vs. values (red
curves) are in good agreement with the measured vs. values (black curves). Quantitative
analysis indicates that the averaged correlation coefficients of the predicted and measured
vs. curves are 0.93, 0.95, and 0.93 in wells A, B, and C. The averaged relative errors are
4.6%, 4.4%, and 4.6% in these 3 wells. The vs. prediction results somehow justify the
proposed method.

3.3. Calculation of the PMI for Pore and Microfracture Evaluation in Tight Gas Sandstones

The factor φ × φf is now computed using the measured total porosity (φ) and the
estimated microfracture porosity (φf), with the results presented in Figure 7. Based on the
method described in Section 2.3, the PMI is then computed for various rotation angles
(θ), where the optimization of θ (i.e., θmax) is evaluated by finding the maximum correla-
tion between PMI(θ) and φ × φf. As demonstrated in Figure 8, the computed correlation
coefficients for various values of θ values indicate that its optimized value (θmax) is approx-
imately equal to 101◦ for the three wells (see Figure 8). The corresponding curves of the
PMI for θmax = 101◦ are displayed in Figure 7.
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Based on the presented results in Figures 6 and 7, the cross-plots of VP/VS and IP
color-coded by φ and φf are illustrated in Figure 9a,b, respectively. The obtained results
indicate that φ can be distinguished by IP such that the growth of φ is associated with the
decreasing IP for all VP/VS cases (see Figure 9a). On the other hand, as demonstrated in
Figure 9b, data points with various values of φf exhibit particular clusters. Specifically, the
increase in φf corresponds to the lessening of both VP/VS and IP.
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The data points have identical distributions in Figures 9b and 10. As illustrated by
the color-coded legends, however, the data points with different values of φ × φf (see
Figure 10) exhibit more focusing and separable characteristics than those with varying φf
(see Figure 9b). Therefore, the obtained results reveal that the discrimination of φ × φf
based on elastic properties VP/VS and IP could be more reliable than the discrimination of
an individual factor φf based on the same elastic properties. At the same time, the factor
φ × φf exhibits a more rational evaluation of high-quality tight sandstones because total
porosity and microfracture porosity present inclusive influences on the gas storage capacity
and the rock’s permeability.
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Figure 11 illustrates the cross-plot of VP/VS and PMI color-coded by φ × φf. The
values of PMI are estimated as illustrated in Figure 7. It shows that the PMI exhibits a
good correlation with φ × φf, where the increase in φ × φf is associated with the lessening
of the PMI. The results suggest that the PMI acts as a rational indicator to evaluate the
development of pores and microfractures in tight sandstones.
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Furthermore, Figure 12 compares the responses of various parameters to the factor φ×
φf. The results demonstrate that φ × φf presents no correlation with VP/VS (see Figure 12a).
In contrast, φ × φf exhibits a visible negative correlation with IP (see Figure 12b), while the
correlation between φ × φf and the PMI is more noticeable (see Figure 12c). The obtained
results further confirm the applicability of the PMI as an indicator to assess the pore space
in tight sandstones.

3.4. Estimation of the PMI Using Seismic Data

The plotted results in Figures 11 and 12c suggest that the proposed PMI exhibits a
distinct correlation with φ × φf; therefore, it can be utilized to discriminate permeable
zones with highly developed pores and microfractures in tight gas sandstone reservoirs.
Subsequently, based on Equation (8) and the estimated θmax, we converted seismic-inverted
VP/VS and IP (Figures 13 and 14) to the PMI (Figure 15).

In general, low values of VP/VS in Figure 13 indicate high gas potential in tight
sandstone. Estimated using well-log data, averaged gas saturations of tight sandstone
reservoirs in the target formation are approximately equal to 0.56, 0.60, and 0.45 in wells
A, B, and C. This result is consistent with the relative magnitude of the VP/VS value for
the target layer in Figure 13. Meanwhile, as Figure 9a suggests, low IP values in Figure 14
present areas with high total porosity (φ). The averaged porosities of the tight sandstone
reservoirs measured based on the log data in the three boreholes are somehow comparable,
which are 0.14, 0.11, and 0.13 in wells A, B, and C, respectively. The tight sandstone with low
IP in well B exhibits a thinner layer thickness, corresponding to a slight drop in averaged
porosity obtained in the borehole.
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As discussed above, the computed PMI in Figure 15 performs as an indicator for
detecting permeable zones with high total porosity and microfracture porosity. The dif-
ference between PMI (see Figure 15) and IP (see Figure 14) could reflect the presence of
microfractures. Further, the averaged permeability values estimated using well-log data
are 1.96, 2.59, and 1.05 mD for the tight sandstone reservoirs in wells A, B, and C, with their
relative magnitudes agreeing with the PMI anomalies presented in Figure 15.

Finally, the cubes of VP/VS, IP, and PMI are illustrated in Figures 16–18, giving useful
information for the characterization of the tight gas sandstone reservoirs.
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4. Discussions
4.1. Construction of the PMI for Pore and Microfracture Characterization in Tight Sandstones

The distribution pattern of data clusters with variable φ × φf in the VP/VS–IP space
(see Figure 10) inspired us to propose PMI based on Equation (8). Although the data clouds
the present separated distribution in Figure 10, direct estimation of the factor φ × φf is
not simple. We determined the optimized rotation angle (i.e., θmax) in Equation (8) by
finding the maximum correlation coefficient between the factor φ × φf and the linearized
combination of VP/VS and IP, with the results illustrated in Figure 8. Consequently, data
clouds with different values of φ × φf in the rotated space can be conveniently identified
by the PMI at θmax (see Figure 11).

The method presented in the present study can be regarded as an extension of the
commonly used Poisson impedance [28]. One merit of our proposed PMI is to give valuable
information for pore and microfracture evaluation in tight gas sandstone reservoirs, which
has not been thoroughly revealed by most current methods based on elastic properties.
At the same time, the proposed method is rock-physics-based, not solely depending on
straightforward well-log data analysis like the Poisson impedance. Specifically, the con-
struction of the PMI incorporates the microfracture porosity (φf), which is predicted by the
double-porosity model using well-log data (see Figure 6). The microfracture porosity is
a crucial constituent in the factor φ × φf and cannot be directly measured in a borehole.
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Nevertheless, the impact of φf or φ × φf on the rock permeability and the gas productiv-
ity of tight sandstone reservoirs deserves further explorations when more well-log and
production data are available in the future.

4.2. Applicability of the Double-Porosity Model for Tight Sandstones

Successful application of the PMI for pore and microfracture evaluation relies on the
reliable estimation of φf. Accordingly, a rational modeling approach is of great significance
for tight sandstones. In this paper, the double-porosity model (see Figure 2) is employed
based on the geological understanding of tight sandstones in the understudied area (see
Figure 1). The double-porosity model offers an effective approach for predicting microfrac-
ture porosity based on the scheme proposed in Figure 3. As demonstrated in Figure 6, the
modeling of elastic wave velocities validates the effectiveness of the double-porosity model
for tight sandstones in the understudied area. Subsequently, the obtained φ × φf is utilized
to introduce the PMI for pore and microfracture characterization in tight sandstones (see
Figure 7).

Therefore, the double-porosity model could be employed for the tight sandstones
in the study area. However, in future investigations, other sophisticated models could
be developed based on a better understanding of pore structures for improved modeling
of elastic responses in tight sandstones. The double-porosity model used in this paper
assumes a uniform mixture of multi-phase fluids (gas and water) in pore spaces. However,
heterogeneous distributions of fluids and the associated dispersion and attenuation should
be explored in future studies. Accordingly, one aspect that should be noted is the applicable
frequency bands of the modeling method. Herein, after predicting φf with the double-
porosity model based on the log data (see Figure 6), the PMI is constructed (see Figure 7,
Figure 8, and Figure 11) and subsequently applied to the seismic data (see Figures 13–18).
This process does not consider the potential velocity dispersion, which deserves further
exploration via more sophisticated modeling methods. Another limitation is that the
double-porosity model and the PMI do not consider high-angle tectonic fractures. However,
the vertical fractures are modeled by the anisotropic model and detected with azimuthal
seismic inversion, which is another significant research area in facture characterization.

4.3. Potential Applications of the PMI

As mentioned above, the proposed PMI provides helpful information for pore and mi-
crofracture evaluation in tight sandstones. One potential application of the PMI estimation
results (see Figure 18) is to comprehensively characterize sweet spots in tight gas sandstone
reservoirs by incorporating the results of gas prediction using VP/VS (see Figure 16) and
porosity estimation based on IP (see Figure 17).

Furthermore, the proposed PMI could be incorporated into the seismic inversion
scheme [32–34] to directly predict PMI using pre-stack seismic data. In addition, the
presented method for constructing PMI in this paper could inspire the development of
other effective indicators for pore and fluid identification.

5. Conclusions

This paper proposed a new method to compute PMI as an indicator for pore and
microfracture characterization in tight gas sandstone reservoirs. The PMI was constructed
based on the rock physics estimation of microfractures using well-log data, and it was
subsequently applied to seismic-inverted elastic properties for detecting permeable zones
in tight sandstones. The main obtained results include the following:

1. The rock-physics-based PMI is an estimation of the factor φ× φf, representing the com-
prehensive effect of pores and microfractures. Therefore, the proposed PMI provides
essential information in predicting high-quality tight gas sandstone reservoirs.

2. The double-porosity model exhibits an effective tool for describing complex pore
structures in tight sandstones in the study area. The modeling results of elastic wave
velocities using well-log data confirmed the applicability of the double-porosity model.
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The computed microfracture porosity is a significant factor in defining the factor φ ×
φf and subsequently introducing PMI.

3. The proposed PMI evaluates pore features and could be further employed to compre-
hensively characterize tight gas sandstones by incorporating other reservoir properties
estimated with seismic methods.

In future studies, the obtained PMI should be calibrated based on available petrophys-
ical data and the production status of gas-producing wells. Meanwhile, other sophisticated
modeling methods can be developed for tight sandstones based on an enhanced under-
standing of pore structures and the advancement of rock physics theories. In addition, the
method to obtain PMI could inspire the construction of other fluid and fracture identifica-
tion indicators.
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