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Abstract: Spherical radial basis function (SRBF) is an effective method for calculating regional
gravity field models. Calculating gravity field models with high accuracy and resolution requires
dense basis functions, resulting in complex models. This study investigated the application of
sparse regularization in SRBFs-based regional gravity field modeling. L1-norm regularization, also
known as the least absolute shrinkage selection operator (LASSO), was employed in the parameter
estimation procedure. LASSO differs from L2-norm regularization in that the solution obtained
by LASSO is sparse, specifically with a portion of the parameters being zero. A sparse model
would be advantageous for improving the numerical efficiency by reducing the number of SRBFs.
The optimization problem of the LASSO was solved using the fast iterative shrinkage threshold
algorithm, which is known for its high efficiency. The regularization parameter was selected using
the Akaike information criterion. It was specifically tailored to the L1-norm regularization problem.
An approximate covariance matrix of the estimated parameters in the sparse solution was analytically
constructed from a Bayesian viewpoint. Based on the remove–compute–restore technique, a regional
geoid model of Colorado (USA) was calculated. The numerical results suggest that the LASSO
adopted in this study provided competitive results compared to Tikhonov regularization; however,
the number of basis functions in the final model was less than 25% of the Tikhonov regularization.
Without significantly reducing model accuracy, the LASSO solution provides a very simple model.
This is the first study to apply the LASSO to SRBFs-based modeling of the regional gravity field in
real gravity observation data.

Keywords: regional gravity field modeling; geoid; spherical radial basis function; sparse regularization;
least absolute shrinkage selection operator; covariance matrix; Colorado

1. Introduction

Constructing regional or global Earth gravity field models with increasingly high
accuracy and resolution is one of the basic goals of geophysical and geodetic studies [1,2].
Spherical harmonic (SH) models are natural choices for parameterizing gravity in the
exterior of the solid earth [3]. SH parameterization has global support. Therefore, it is
more suitable for global gravity field modeling. Nevertheless, the high-degree (>3000) SH
coefficients of the global gravity field model are difficult to calculate accurately [4]. Spherical
radial basis functions (SRBFs) are constructed based on the SH representation; thus, they
also satisfy Laplace’s equation and can achieve a good concentration in both frequency
and spatial domains [5]. In other words, SRBFs can achieve a high spatial resolution in
a local region with less model complexity than the SH models [6,7]. This makes SRBFs
very suitable for regional gravity field modeling, though they can readily be used in global
modeling [8]. Furthermore, SRBFs also possess the advantages of allowing for the easy
combination of heterogeneous data. Although it has a rather long history, SRBFs-based

Remote Sens. 2023, 15, 4870. https://doi.org/10.3390/rs15194870 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15194870
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-3440-7530
https://doi.org/10.3390/rs15194870
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15194870?type=check_update&version=1


Remote Sens. 2023, 15, 4870 2 of 23

regional gravity field modeling has received wide attention in the new millennium [4,9–19]
and has been the topic of several recent doctoral studies [6,7,15,20–22].

A key concern while using the SRBFs modeling is determining the distribution of basis
functions, including their locations and numbers. This issue is complex, with no sound
theory to guide its consideration. Therefore, it is generally addressed empirically [12,14,23].
Additionally, some adaptive techniques have been proposed to make it more data-driven, to
a certain extent [11,24,25]. Theoretically, both too many and too few basis functions should
be avoided because they result in overfitting and underfitting problems, respectively. First,
sufficient basis functions should be employed to satisfactorily represent variations in gravity
signal. However, too many basis functions, input data gaps, and the downward continuation
of gravity data cause the system to be ill-posed and/or numerically singular. Second, these
problems can be solved using regularization methods [26–29]. The regularization employed in
the SRBFs-based gravity field modeling, as well as in several other geodetic fields, is often L2-
norm regularization, for example, Tikhonov regularization [30]. With Tikhonov regularization,
the parameters in the solution are shrunk. However, the complexity of the solution in terms of
the number of non-zero parameters remains unchanged compared to that of the least-squares
method without any regularization [31,32]. Therefore, the solutions of both the least-squares
and Tikhonov regularization are dense.

A sparse solution would be preferred if the accuracy of the model did not decrease
or decrease insignificantly. This is because it can reduce the numerical complexity of the
parameter estimation as well as the model complexity. Simply replacing L2-norm in the
Tikhonov regularization with L1-norm can produce a sparse solution. This is called the
least absolute shrinkage and selection operator (LASSO) in the statistical community [33].
With LASSO, not only are the estimated parameters shrunk, but some are also shrunk
to zero, which is non-trivially different from the L2-norm case. Actually, all Lp-norm
regularizations with 0 ≤ p ≤ 1 can generate sparse solutions. However, the optimization
problem is convex only when p ≥ 1. For example, the hard thresholding penalty function
is L0-norm regularization; therefore, it is nonconvex [34]. In addition, the smoothly clipped
absolute deviation penalty function can produce a sparse solution; however, it has a
complex form, and the iterative algorithm runs slowly [35]. This is exactly why L1-norm is
the special one chosen in most sparse modeling cases [36]. The merits of sparse modeling
are explained in [36].

To adapt the SRBFs distribution to the gravity data distribution and signal variation,
some adaptive approaches have long been studied in the literature. Generally, these
methods also contribute to reducing SRBF numbers considerably. The freely positioned
SRBFs approach was suggested by [37] and followed by many others, e.g., [24,38,39].
However, a true and complete freely positioned problem can hardly be resolved practically
because of its non-convexity. Most of these approaches are stepwise, adding or removing
one or a group of the SRBFs in each iteration [11,40]. Usually, these approaches are intuitive
and ad hoc, necessitating a good prior understanding of the property of gravity signals
to be modeled. A comprehensive review of this topic was conducted recently [41]. Also,
in this dissertation, a Bayesian approach is proposed to solve the freely positioned SRBFs
modeling problem, in which the number, locations, and parameters are all treated as
unknowns. However, sampling algorithms are generally required to compute the posterior
density, which causes a heavy computational burden. A preliminary study on the LASSO-
based sparse SRBFs regional gravity field modeling was reported in our previous work [42],
which used a type of synthetic simulation observation. The sparse method was found to
be comparable, in terms of accuracy, to the conventional Tikhonov regularization method.
In this study, the LASSO-based sparse SRBFs modeling was further studied. In summary,
the primary innovations of this study are as follows: (1) a criterion for selecting the
regularization parameter, the Akaike information criterion (AIC), tailored to the special
case of L1-norm regularization is introduced; (2) an approximate covariance matrix is
developed analytically for the estimated parameters in the sparse solution; and (3) the
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LASSO is used in the SRBFs for the first time to model a regional gravity field using real
and different types of gravity data.

In this study, a regional geoid model for Colorado (USA) was developed using the
global gravity model (GGM), a topographic model, gravity data, and the sparse SRBFs
method. In this region, terrestrial and airborne gravity observations are sufficiently dense
to support the 1′ × 1′ (quasi) geoid model computation [43]. This article comprises seven
sections. In Section 2, the sparse SRBFs modeling method is presented. In Section 3, we
introduce the study area, gravity datasets, and pre-processing procedures for the input
data. The remove–compute–restore (RCR) procedure and the SRBFs model configuration
are described in Section 4. The calculation results are presented in Section 5. We discuss the
results in Section 6. Finally, Section 7 presents our conclusions and outlook.

2. Method
2.1. Spherical Radial Basis Function Model

We used Ωint
R and Ωext

R to denote the interior and exterior of the sphere ΩR with radius
R, where the sphere ΩR is completely inside the topographic masses (Bjerhammar sphere).
In the framework of the Runge–Krarup theorem [44], the SRBFs model of the residual
disturbing potential Tres can be denoted as

Tres(x) =
N

∑
j=1

β jΨ(x, zj) (1)

with

Ψ(x, zj) =
∞

∑
l=0

ψl
2l + 1

4π

(
R
|x|

)l+1
Pl(cos θ). (2)

In Equation (1), x denotes the coordinate vector of the point at which the residual
disturbing potential is to be evaluated, and x ∈ Ωext

R , where Ωext
R = ΩR ∪ Ωext

R . The
coordinate vector of the center of the jth basis function is denoted by zj, and zj is located
on the sphere ΩR; cos θ = (x · zj)/ (

∣∣x∣∣∣∣zj
∣∣) . There are N basis functions and N unknown

parameters β j in the above SRBFs model. The residual disturbing potential is called
disturbing because the normal potential is removed from the complete potential [45].
Moreover, it is called residual because the reference GGM part and topographic model
part are further removed from the disturbing potential [46]. In Equation (2), Ψ(x, zj)
is the basis function, and Pl denotes the Legendre polynomial of the lth degree. The
Legendre coefficient ψl has many types of analytical expressions, and different choices
of these coefficients results in different basis function types, e.g., the point mass kernel,
Shannon kernel, Poisson kernel, Blackman kernel, spherical spline kernel, etc. For detailed
information on the definitions of these kernels, please refer to [9,11].

The ith observation is denoted by yi, and the observation equation is expressed as

yi = Li[Tres(xi)] + ei =
N

∑
j=1

β jLi
[
Ψ(xi, zj)

]
+ ei. (3)

In the above equation, ei is the corresponding measurement error and Li denotes
the functional relating the observable ith observation to the residual disturbing potential.
After linearization and in spherical approximation, the (residual) gravity anomaly and the
(residual) gravity disturbance are related to the (residual) disturbing potential as

∆g(x) = − 2
|x|T(x)−

∂T(x)
∂|x| , (4)

δg(x) = −∂T(x)
∂|x| . (5)
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Therefore, for the residual gravity anomaly ∆gres(xi) and the residual gravity distur-
bance δgres(xi), we have

∆gres(xi) =
N

∑
j=1

β j

∞

∑
l=0

ψl
2l + 1

4π

(
l − 1
|xi|

)(
R
|xi|

)l+1
Pl(cos θ), (6)

δgres(xi) =
N

∑
j=1

β j

∞

∑
l=0

ψl
2l + 1

4π

(
l + 1
|xi|

)(
R
|xi|

)l+1
Pl(cos θ). (7)

2.2. Parameter Estimation

By stacking all available observations yi, the observation vector y is obtained, and by
stacking all unknown parameters β j, the parameter vector β is obtained. This results in the
following vector-form observation model:

y = Bβ + e, (8)

where B is the design matrix and e is the error vector. The modeling task is to estimate β
using y with P (weight matrix of the observations).

In Tikhonov regularization, the estimation of the parameters is defined as follows:

β̂ = argmin
β

[
(y− Bβ)TP(y− Bβ) + λ‖β‖2

2

]
. (9)

The above estimation has a closed-form solution:

β̂ = (BTPB + λI)
−1

BTPy, (10)

and the covariance matrix is:

Qβ̂β̂ = σ̂2
0 (B

TPB + λI)
−1

, (11)

where λ (λ > 0) is the regularization parameter and I is an identity matrix. The unit weight
estimation variance can be calculated by

σ̂2
0 =

(
y− Bβ̂

)T
P
(

y− Bβ̂
)

m− neff
, (12)

where m represents the number of observations. The number of effective parameters is
neff = trace[H], and H = B(BTPB + λI)−1BTP.

For LASSO or L1-norm regularization, the estimate is defined as follows:

β̂ = argmin
β

[
(y− Bβ)TP(y− Bβ) + µ‖β‖1

]
. (13)

In the above equation, the regularization parameter µ (µ > 0) is to be tuned, and ‖β‖1
denotes the L1 vector norm. L1-norm regularization has been widely studied over the past
several decades in many fields, such as soft-threshold denoising in wavelet analysis [47]
and signal reconstruction in compressed sensing [48–50], among others. In geoscience, the
applications of L1-norm regularization could date back to the 1980s [51,52].

A closed-form solution exists for the L2-norm or the Tikhonov regularization, as the
corresponding normal equation obtained according to the first-order necessary condition
of the optimization is linear in β. For L1-norm regularization in Equation (13), a closed-
form solution does not exist in general, because the normal equation is nonlinear owing
to the presence of the L1-norm. However, it is indeed a convex optimization problem.
Therefore, several numerical algorithms exist to solve it, such as the iterative reweighted
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least-squares method [53] and the alternating direction method of multipliers [54]. In this
study, an efficient algorithm called the fast iterative shrinkage thresholding algorithm
(FISTA) is employed [55]. The algorithm iteratively performs the following calculations
until convergence:

ϑk = βk−1 +
k−2
k+1 (βk−1 − βk−2)

βk = Tµtk

[
ϑk − 2tkBTP(Bϑk − y)

]
.

(14)

In the above equation, k denotes the iteration index; ϑ is a vector of auxiliary variables;
Tµt denotes the soft threshold operator, namely

[
Tµtk (a)

]
j = sign

(
aj
)(

[a]j − µtk

)
+

, with

[a]j denoting the jth elements of the vector a; the sign function is defined as

sign
(
[a]j
)
=


1, for [a]j > 0

0, for [a]j = 0

−1, for [a]j < 0

; and the hinge loss function is defined as
(∣∣∣[a]j∣∣∣− µtk

)
+

=


∣∣∣[a]j∣∣∣− µtk , for

∣∣∣[a]j∣∣∣ > µtk

0 , for
∣∣∣[a]j∣∣∣ ≤ µtk

. Let λmax(·) denote the maximum eigenvalue operator,

then the step size is chosen as tk = 1
λmax(BTPB)

. To initialize the iteration and promote

sparsity, let β0 and β−1 be the N × 1 zero vector. The iteration is exited when the change in
the gradient or function value is less than a threshold. The estimate in the last iteration is
the final estimate of the solution, denoted as β̂. Since some elements of β̂ are found to be
zero, the solution is called sparse.

This is called the fixed-step version of FISTA. To achieve rapid convergence speed, the
backtracking version of FISTA with the Barzilar–Borwein method can be employed [55].
In this study, we used the backtracking version of FISTA, which is more efficient than the
fixed-step version.

2.3. Regularization Parameter Selection

For Tikhonov regularization and LASSO, different λ and µ produce different models,
suggesting that certain model selection methods should be used to select the best or optimal
regularization parameter. There are many ways to select the regularization parameter λ
for Tikhonov regularization, such as the GCV [56], AIC [57], and L-curve criterion [58]. To
maintain consistency with LASSO, the AIC was used in this study, and it was calculated
as follows:

AICc(λ) = 2neff + m ln
RSS(λ)

m
+

2neff(neff + 1)
m− neff − 1

. (15)

In the sum of the weighted squares of the residuals, namely, RSS(λ) =[
y− Bβ̂(λ)

]T
P
[
y− Bβ̂(λ)

]
, β̂(λ) is β̂, obtained in Equation (10).

For LASSO, AIC tailored to the specific L1-norm regularization problem is introduced.
By applying the solution of Equation (14), the AIC is calculated as follows:

AICc(µ) = 2n 6=0 + m ln
RSS(µ)

m
+

2n 6=0(n 6=0 + 1)
m− n 6=0 − 1

, (16)

where β̂(µ) is β̂ obtained in FISTA, and the number of non-zero elements in β̂(µ) is denoted
as n 6=0. The establishment of Equation (16) is based on the conclusion in [59], which states
that the effective number of parameters is approximately equal to the number of non-zero
parameters of the LASSO solution [60].

By exhibiting the argument λ or µ, we make it explicit that the AIC is a function of
the regularization parameters. The AIC can be viewed as an index of the model prediction
performance. Therefore, the regularization parameter that makes the AIC minimal is the
optimal one, and the solution with this regularization parameter is the final solution. Since
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LASSO can generate sparse solutions, this implies that LASSO can automatically select
model parameters based on AIC.

2.4. Covariance Matrix of the Estimated Parameters

The covariance matrix describes the precision of the estimated parameters. In this
subsection, an approximate covariance matrix is derived for the estimated parameter vector
in the sparse solution of the LASSO. Moreover, this covariance matrix is also sparse. Please
see Appendix A for an intuitive proof.

From the proof, we can conclude that in the sparse solution, the zero parameters can be
viewed as constants without statistical uncertainty, and the statistically uncertain non-zero
parameters can be approximately viewed as Gaussian, with the covariance matrix being
N−1

AA [61]. This indicates that both the estimated parameters and the corresponding covariance
matrix are sparse in the sparse solution, demonstrating an interesting parallel to the effective
number of parameters, whereas the effective number of parameters approximately equals
that of the non-zero parameters of the final solution in [59]. Additionally, the uncertainty of
the final solution in this contribution can be approximately captured by the uncertainty of
the non-zero parameters in this solution, up to the second-order approximation. If we are
informed before the estimation that β̂B = 0, we can obtain a SRBFs model as in Equation
(1), with only β̂A using the least-squares estimations (β̂A and β̂B denote the non-zero and
zero parts of the β̂, respectively). We denote this fictitious model as the oracle model. It can
be readily proven that the covariance matrix N−1

AA in the sparse solution is nothing but the
covariance matrix of the least-squares solution of the oracle model. However, note that the
estimated parameters in the sparse solution of the original model do not equal those in the
least-squares solution of the oracle model, in general.

3. Data and Study Area

The study area is located in the state of Colorado, USA. It is approximately 550 km
by 730 km, with longitude varying from 110◦W to 102◦W and latitude varying from 35◦N
to 40◦N (Figure 1a). This study area is considered to be representative due to the rough
topography and high elevation. Meanwhile, we have access to the gravity datasets for the
area. In addition, fourteen contributing groups of the Colorado1-cm geoid experiment have
calculated gravity field models for this area, which helps in the interpretation of the results.
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Figure 1. (a) Topographic heights of the study area, and GSVS17 (222 points of the purple line);
(b) original terrestrial (green points) and airborne (blue flight tracks) gravity datasets; target area
ΩT (yellow rectangle), data area ΩD (black rectangle), parameterization area ΩP, and SRBF nodes
(red points).

3.1. Terrestrial and Airborne Gravity Data

There were 59,303 terrestrial gravity observations provided by the National Geospa-
tial Intelligence Agency and National Geodetic Survey (NGS). Figure 1b shows that the
terrestrial gravity observations were unevenly distributed over the entire study area. They
were sparse in the eastern parts, but dense in the central and western parts. Saleh et al. [62]
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estimate that the root-mean-square (RMS) error of NGS’s terrestrial gravity data is about
2.2 mGal.

The GRAV-D (Gravity for the Redefinition of the American Vertical Datum) Science
Team provided a total of 283,716 airborne gravity observations (from MS05 block). The
observations were distributed across 56 distinct flight lines, and the average flight altitude
was approximately 6200 m. The flight lines covered only the southwestern part of the study
area. For the airborne gravity data, the along-track spacing was approximately 100 m,
while that between the cross-tracks was approximately 10 km. The GRAV-D Science Team
suggests applying a frequency domain low-pass filter to the data to remove excess short-
wavelength noise [63]. Many studies have exhibited that the RMS error of the GRAV-D
airborne gravity data is approximately 2 mGal [63–65].

3.2. Data Preprocessing

After error detection and outlier removal, a total of 58,123 terrestrial gravity observa-
tions were retained. Therefore, the average point distance was approximately 2.7 km for the
terrestrial dataset. For the terrestrial data, Helmert orthometric heights H were provided.
Thus, surface gravity anomalies were obtained on Earth’s surface in [45] (p. 204):

∆g = g− γ0

[
1− 2

(
1 + f + m− 2 f sin2 ϕ

)H∗

a
+ 3
(

H∗

a

)2
]

, (17)

where g is the measured gravity and γ0 is the normal gravity at the surface of the reference
ellipsoid, computed using Somigliana’s formula [45]. f and a are the geometrical fattening
and semi-major axes of the reference ellipsoid GRS80, respectively. m is the ratio of
centrifugal and gravity acceleration at its equator, ϕ is the geodetic latitude, and H* is
the normal height. To transform the orthometric heights H provided by terrestrial gravity
points to the required normal heights H*, the correction term synthesized from the EGM2008
quasigeoid to geoid separation model was used [66].

For the airborne gravity data, a Gaussian low-pass filter [67] was used to remove
excess short-wavelength noise. To reduce the computational burden, we sampled the data
at a frequency of 1/8 Hz. The basis for reducing the sampling frequency was that there were
strong correlations between consecutive observations after Gaussian low-pass filtering.
After down-sampling, the number of airborne gravity observations was 35,465, with an
average point distance of approximately 1 km along the track. The sampling interval was
selected because it provided a reasonable point density for the required spatial resolution
(computing a 1′ × 1′ quasigeoid model) in this study (see [67,68] for more details). Because
certain observations were found to lie outside of the study area (see Figure 1b), we excluded
these observations, resulting in a total of 32,033 retained airborne gravity observations.
We transformed the airborne gravity data from the measured absolute gravity g to gravity
disturbance δg using the following equation:

δg = g− γ, (18)

wherein γ denotes the normal gravity of the observation point.
The atmospheric correction δgATM was calculated according to [69]:

δgATM = 0.874− 9.9× 10−5H + 3.5625× 10−9H2. (19)

The atmospheric correction values were added to g of all gravity points in the terrestrial
and airborne datasets [70].

4. Experiment Settings
4.1. Remove–Compute–Restore Technique

In this study, the SRBFs model represents the residual disturbing potential, which is the
full disturbing potential minus the GGM disturbing potential and the topographic disturb-
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ing potential. The GGM provides the long-wavelength parts of the regional gravity field,
while the topographic model provides the topographic effects and smooths the input gravity
measurements. SRBFs can extend the regional gravity field to very short spatial scales using
dense gravity data. These procedures are implemented within the framework of the remove–
compute–restore (RCR) technique [71]. Using the RCR technique, the GGM and topographic
gravity model (TGM) components were removed from the gravity anomaly (terrestrial gravity
dataset) and gravity disturbance (airborne gravity dataset) as follows:

∆gres = ∆g− ∆gR, (20)

δgres = δg− δgR. (21)

Then, the SRBFs were used to process the residual measurements (∆gres and δgres) in
order to calculate the residual disturbing potential T̂res. Finally, the removed components
TR were restored:

T̂ = T̂res + TR. (22)

In this study, we employed the setup described by [72]: the GGM XGM2016 [73] up to
a maximum degree of 719 was removed from the terrestrial and airborne data; furthermore,
we removed the TGM dV_ELL_Earth2014 [74] from degree 720 to degree 2160 and the
residual terrain model ERTM2160 [75] from the terrestrial data; as well as removing the
dV_ELL_Earth2014 from degree 720 to degree 5480 from the airborne data. This is because
the above two TGMs were both calculated using the SRTM v4.1 topography model [76],
and had similar gravity signals at the same SH degree.

Table 1 indicates that after removing the GGM and TGMs components, the standard
deviations (STDs) of the terrestrial and airborne observations decreased by 81.9% and
88.8%, respectively. Figure 2 exhibits the magnitudes of the (residual) gravity anomaly and
(residual) gravity disturbance observations.

Table 1. The statistics of the (residual) gravity anomaly observations and the (residual) gravity
disturbance observations (unit: mGal).

Observations Min Max Mean STD

Terrestrial ∆g −141.50 212.45 5.92 38.15
Terrestrial ∆gres −136.09 75.31 0.83 6.92

Airborne δg −44.64 118.91 6.10 28.81
Airborne δgres −18.88 21.38 0.37 3.23

4.2. Maximum Degree of Expansion

According to [72,77], the maximum expansion degree lmax of the SRBFs is correlated
with the mean point distance of the heterogeneous observation sr, namely,

lmax ≤
πR
sr

. (23)

Based on Section 3.2, with sr ≈ 3.0 km, the maximum degree lmax ≈ 6700. Never-
theless, this is only a recommended value, and the resulting model may be sub-optimal.
We adapted this recommended value to determine lmax based on the control data, and
the specific method was a three-step procedure: (1) the candidate values of lmax were
determined according to its recommended value; (2) for each candidate value of lmax, the
optimal regularization parameters of LASSO and Tikhonov regularization were selected
using AIC, respectively, and the RMS errors of the solutions were calculated based on
the control data; (3) the minimum RMS error was found, and the corresponding lmax was
the optimal selection. The numerical results indicate that lmax should be set to 5500 (see
Section 5.1).
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4.3. Types of the SRBFs

Based on previous studies [77,78], different types of SRBFs can be employed in the
analysis step (unknown parameter estimation) and the synthesis step (calculating the gravi-
tational functions), respectively. According to [72], we employed the Shannon function and
the cubic polynomial (CuP) function. Table 2 lists the corresponding Legendre coefficients.

Table 2. Legendre coefficients of the SRBFs.

Function Types Legendre Coefficients

Shannon function ψl =

{
1, for l ∈ [0, lmax]

0, else

CuP function ψl =

{
(1− l

lmax
)

2
(1 + 2l

lmax
), for l ∈ [0, lmax]

0, else

The Shannon function did not smooth the gravity signal in the corresponding spectral
band. Conversely, the CuP function smoothed the gravity signal from the beginning in the
spectral domain. In this study, we used the Shannon function in the analysis step and the
CuP function in the synthesis step (see [72] for detailed reasons). This differs from the setup
of [72] in that they used the Shannon and CuP functions for the terrestrial and airborne
gravity data, respectively, in the analysis step.

4.4. Defining the Target, Data, and Parameterization Area

To avoid the edge effects caused by the spatial truncation of data and basis functions as
much as possible, the necessary setting for the target area ΩT, data area ΩD, and parameter-
ization area ΩP was ΩT ⊂ ΩD ⊂ ΩP. ΩT and ΩD are given in Section 3, respectively. Thus,
only the margin ηP,D needs to be defined. Naeimi [15] and Lieb et al. [77] both defined the
width of ηP,D through an experiential formula, and the latter was approximately twice the



Remote Sens. 2023, 15, 4870 10 of 23

width of the former. To minimize the edge effects, we followed the latter. Liu et al. [72]
gave the final equation:

ηP,D =
360◦

lmax × cos(|ϕ|max)
, (24)

where |ϕ|max denotes the maximum absolute value of the latitude of ΩT, and thus the
width of the margin ηP,D ≈ 0.1◦ (see Figure 1b).

4.5. Locations of the SRBFs

The grid type controls the SRBF locations. Several grid types have been studied in the
literature [6,7]. In this study, the commonly used Reuter grid [79] was employed. Given
lmax, the number of the Reuter grid points on the global scale can be approximated by the
following equation [16,80]:

I ≤ 2 +
4
π
(lmax + 1)2. (25)

As already mentioned in Section 4.2, lmax was selected as 5500. Thus, the total number
of Reuter grid points in ΩP was N = 31,595 (see Figure 1b).

4.6. Weight Matrix of Observations

The weight matrices for both terrestrial observations (P1) and airborne observations
(P2) were set as the unit matrix because we assumed that the observations have no cor-
relations and have the same accuracy for one data type. This assumption is commonly
used [22,81]. In the data descriptions in Section 3.1, the priori noise STDs of terrestrial
and air-borne data are provided. The terrestrial and airborne data contained errors with
STDs of ~2.2 mGal and ~2.0 mGal, respectively. Therefore, we were able to obtain the scale
factors σ̂2

1 = 4.84× 10−10m2/s4 and σ̂2
2 = 4.00× 10−10m2/s4. Thus, the weight matrix of

the measurements can be estimated by

P =

 1
σ̂2

1
P1 0

0 1
σ̂2

2
P2

. (26)

4.7. Computation of the Disturbing Potential Functionals

By solving Equation (9) or Equation (13), the residual disturbing potential T̂res was
synthesized by

T̂res(x) = B(x)β̂ (27)

Then, Equation (22) was used to calculate the disturbing potential T̂. For the compu-
tation of the disturbing potential functionals, we followed the basic agreements for the
computation of the Colorado 1 cm geoid experiment [82].

5. Results

In the target area, two datasets were available as control data. The first was the
geometric geoid heights of the 222 Geoid Slope Validation Survey 2017 (GSVS17), which
were provided by the NGS (see Figure 1a). The accuracy of the GSVS17 GPS/leveling
dataset was approximately 1.2 cm [43]. The other was a (quasi) geoid grid model with
1′ × 1′ resolution, which corresponded to the target area. The weighted least-squares
solution of the Tikhonov regularization was included to verify the quality of the LASSO
solution. Comparisons of the solutions of the two methods are provided.

5.1. The Estimated Parameters

We took the GSVS17 GPS/leveling dataset as the control dataset and used the three-
step procedure in Section 4.2 to obtain the optimal lmax. Table 3 shows the optimal regu-
larization parameters corresponding to different lmax values, as well as the RMS errors of
the solutions. The results demonstrate that the RMS value of the LASSO solution and the
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Tikhonov regularization solution were both at their smallest when lmax was approximately
5500, with respect to the control data. Consequently, the maximum expansion degree lmax
of the SRBFs was set to 5500. Figure 3 exhibits the residuals of parameter models with
respect to the input data when lmax = 5500. For the LASSO solution, the residuals of the
terrestrial data had a mean value of−0.46 mGal and an STD of 2.43 mGal, and the residuals
of the airborne data had a mean value of −0.25 mGal and a STD of 1.60 mGal; for the
Tikhonov regularization solution, the residuals of the terrestrial data had a mean value of
−0.41 mGal and a STD of 2.38 mGal, and the residuals of the airborne data have a mean
value of −0.23 mGal and a STD of 1.57 mGal. Considering the priori noise STDs of the
input data, Figure 3 indicates that the selected parameter models fit the input data well.

Table 3. Evaluations of the different geoid models based on various lmax values.

LASSO Tikhonov Regularization

lmax λ RMS (cm) µ RMS (cm)

5000 1.0× 107 2.93 6.14× 1012 2.89
5500 1.1× 107 2.82 6.20× 1012 2.79
6000 1.1× 107 2.91 6.30× 1012 2.88
6500 1.2× 107 3.07 6.46× 1012 3.05
6700 1.2× 107 3.16 6.54× 1012 3.14
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Figure 4 displays the histograms of the parameters estimated by LASSO and Tikhonov
regularization. It can be seen that the LASSO solution follows the Laplacian distribution,
whereas the Tikhonov regularization solution follows the Gaussian distribution. As men-
tioned earlier, the LASSO can completely shrink some of the parameters to zero. For the
LASSO, there were 7859 non-zero parameters among 31,595 estimated parameters. In other
words, approximately 75.1% of the parameters were shrunk to zero. The sparse nature of
the LASSO considerably reduced the final number of the SRBFs, making the model smaller
and simpler.
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Figure 4. Distribution histograms of the estimated parameters β̂. (a) LASSO, (b) Tikhonov regularization.

Figure 5 shows the estimated parameters β̂ and their STDs. Figure 5a,c reveal that
most of the parameters near zero in the Tikhonov regularization solution shrunk to zero in
the LASSO solution. However, the distribution of the remaining parameters was almost
identical between the two solutions. Note that Figures 2b,d and 5a,c exhibit obvious
correlations. Most non-zero parameters are located close to observation points, and more
SRBFs are removed by LASSO in areas with sparser data. At the same time, the estimated
parameters near the points with larger residual gravity anomalies and residual gravity
disturbances are larger. These indicate that the distribution of the non-zero parameters
was adapted to the gravity data distribution and signal variation, and the LASSO removed
redundant parameters based on the data-driven model selection criterion AIC. Figure 5b,d
display the STDs of the parameters estimated by the LASSO and Tikhonov regularization,
which are similar in that larger STDs occurred at data gaps and the margin between ΩD
and ΩP (see Figures 1b and 2).
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5.2. GPS/Leveling Comparisons

We evaluated gravimetric geoid heights using the GSVS17 GPS/leveling control
datasets. Table 4 presents the statistics of the differences between geometric and gravimetric
geoid heights. For the GSVS17 benchmarks, the RMS errors were calculated to be 2.82 cm
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and 2.79 cm using the LASSO and Tikhonov regularization methods, respectively. Figure 6
illustrates the geometric and gravimetric geoid heights and their differences at the GSVS17
benchmarks. Figure 6a indicates good agreements between the computed gravimetric
geoid heights and the geometric geoid heights (truth values). Figure 6b demonstrates
that both LASSO and Tikhonov regularization solutions exhibit similar trends regarding
the differences in geoid heights. Specifically, between marks 1 and 181, the difference
curves of the two methods are very close. However, in this interval, more points in the
LASSO solution had differences closer to zero than the Tikhonov regularization solution.
Conversely, between marks 182 and 222, the performance of the Tikhonov regularization
solution is slightly better than that of the LASSO solution. To summarize, the LASSO and
Tikhonov regularization solutions performed similarly in GPS/leveling comparisons, but
the latter outperformed the former slightly.

Table 4. Statistics of differences between geometric and gravimetric geoid heights at the benchmarks
(unit: cm).

Solution Min Max Mean RMS STD

LASSO −6.63 4.38 0.37 2.82 2.79
Tikhonov −6.16 4.44 0.76 2.79 2.75
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Figure 6. (a) The geometric and gravimetric geoid heights at the GSVS17 benchmarks; (b) differences
between the geometric and gravimetric geoid heights.

5.3. Variogram Analysis of the Differences

Information about the quality of the LASSO and Tikhonov regularization solutions
as spatial scale functions is provided by variogram analyses of the differences between
geometric and gravimetric geoid heights at the GPS/leveling control datasets [81]. Figure 7
presents the empirical variograms of the LASSO and Tikhonov regularization solutions. A
variogram expresses the variance of the observed differences between the geometric and
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gravimetric geoid heights for point pairs as a function of lag distances. According to [83],
the term “gammavariance” denotes the variance of the differences at a given lag distance.
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In Figure 7a, for the GSVS17 benchmarks, the gammavariances of the LASSO and
Tikhonov regularization solutions are shown to increase rapidly when lag distances are
less than 290 km and range between ~1.5 cm2 and ~17.8 cm2; they decrease rapidly to
~11.7 cm2 when the lag distances are smaller than 330 km and increase again until the lag
distance is 350 km. Wang et al. [43] analyzed that the significant differences after mark 160
(see Figure 6b) are the primary reason for the large gammavariance values in Figure 7a.
The empirical variograms at GSVS17 between marks 1 and 160 are shown in Figure 7b,
which demonstrates no large fluctuations in the gammavariance values. By comparing
the empirical variograms between the LASSO and Tikhonov regularization solutions, it
can be observed that the former was slightly larger than the latter when the lag distances
were between 0 and 50 km and between 80 and 180 km. On the other hand, the former had
slightly lower gammavariances when the lag distances were between 50 and 70 km and
between 180 and 240 km. In short, the variogram analysis of the differences indicates that
the performances of the LASSO and the Tikhonov regularization solution are very close,
but the latter is slightly superior.

5.4. Area Comparison of Quasigeoid Model (Grids of 1′ × 1′)

The quasigeoid models are given on a 1′ × 1′ grid over the target area between
longitude 109◦W to 103◦W and latitude 36◦N to 39◦N (see Figure 8). For the target area,
the truth value of the quasigeoid model is unknown. However, fourteen contributing
groups of the 1 cm geoid experiment in Colorado have used different methods to calculate
gravity field models for this area. Therefore, the quasigeoid models of the LASSO and
Tikhonov regularization solution were compared with the mean of all groups. Figure 9
illustrates the comparison results. According to the comparison results, the differences
between the LASSO solution and group mean ranged between −5.78 and 9.67 cm, with
a mean value of 0.90 cm, a STD value of 1.63 cm, and an RMS value of 1.86 cm; for the
Tikhonov regularization solution, the differences from the group mean ranged between



Remote Sens. 2023, 15, 4870 15 of 23

−8.11 and 9.32 cm, with a mean value of 0.97 cm, a STD value of 1.64 cm, and an RMS
value of 1.91 cm. Since the RMS values of the fourteen individual solutions of the 1 cm
geoid experiment to the group mean ranged between 1.6 and 5.3 cm [43], the LASSO and
Tikhonov regularization solutions in this study provided good results, and their model
precisions were comparable. Figure 9c illustrates the quasigeoid model differences between
the LASSO and Tikhonov regularization solution; the differences varied between−3.58 and
7.63 cm, with a mean value of −0.08 cm. The comparison results reveal that the quasigeoid
models of the LASSO and Tikhonov regularization solutions were in good agreement,
besides the northern and southeastern parts of the target region, and this was related to the
scarcity of observations within the northern and southeastern parts (see Figures 1b and 2).
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solution and (d) the Tikhonov regularization solution).
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differences between the LASSO and Tikhonov regularization solutions.



Remote Sens. 2023, 15, 4870 16 of 23

Through error propagation, the approximate covariance matrix was used to calculate
the formal noise covariance matrix of the height anomalies derived by the LASSO solution.
The STD maps of the modeled height anomalies are shown in Figure 8b,d. Unlike the quasi-
geoid models, the STD maps of the height anomalies modeled by LASSO and Tikhonov
regularization were remarkably different. For Tikhonov regularization, the formal noise
STDs ranged from a few millimeters to 1.73 cm, and the STDs were larger in the region with
sparser observations. For LASSO, although the largest STD reached 2.56 cm, its STD map
was unexpected. For example, the STDs of the height anomalies in the regions with sparser
observations were considerably small, such as some regions in the eastern and northern
parts of the target area.

Fan and Li [35] provided an iterative method to solve the LASSO and calculate the
covariance matrix of the sparse SRBF parameters, and they also ignored the uncertainty of
the zero parameters, which is the same as the covariance matrix we provide in Section 2.4.
We attempted to solve LASSO by Fan’s method and calculate the STDs of height anomalies.
In terms of the distribution of non-zero SRBF parameters and the precision of the quasigeoid
model, Fan’s method was almost identical to the method adopted in this work. Figure 10
illustrates the STD map of height anomalies calculated using Fan’s method. Similarly, the
STDs of the height anomalies calculated by Fan’s method were smaller in the region with
sparser observations than in the region with denser observations. A major reason is that
there were fairly few non-zero SRBF parameters in the region with sparser observations;
thus, the contribution of these SRBFs to height anomalies in the corresponding regions
was quite limited when the errors were propagated. For Fan’s method, there was another
problem that all STDs were numerically smaller than our proposed method. This is because
Fan’s method uses the corresponding sandwich formula to calculate the covariance matrix
of the sparse SRBF parameters. Thus, for the STDs of the modeled height anomalies, the
method we propose in this work is more conservative, but its calculation is also less realistic.
In this target area, the results of the 1 cm geoid experiment in Colorado indicate that the
best calculation precision of the quasigeoid model is approximately 2 cm [43]. Therefore,
the STDs of the Tikhonov regularization solution are more realistic than our proposed
method and Fan’s method.
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6. Discussion

To verify the effectiveness of the LASSO, the LASSO solution was compared with
the weighted least-squares solution based on Tikhonov regularization. To determine the
maximum expansion degree of the SRBFs and Reuter grid parameter, a three-step procedure
was used. The numerical results indicated that when lmax is 5500, the fitted results of the
LASSO and weighted least-squares solutions are the best. The parameter estimation results
exhibited that the LASSO can obtain a very sparse model. Most parameters with values
close to zero in the Tikhonov regularization solution shrunk to zero in the LASSO solution,
whereas the remaining parameters had nearly the same distribution. Although the number
of zero parameters accounted for 75.1% of all parameters, the sparse model represented the
gravity structure well.
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We calculated the geoid heights at the GSVS17 benchmarks, as well as the quasigeoid
models (grids of 1′ × 1′) of the target area. Comparisons with the GPS/leveling control
dataset exhibited that for the GSVS17 benchmarks, the LASSO solution was slightly worse
than the Tikhonov regularization solution (the RMS of the differences increases from
2.79 to 2.82 cm). At the GSVS17 benchmarks, the empirical variance maps implied an
improvement in the gammavariances for the LASSO solution compared to those of the
Tikhonov regularization solution when the lag distances were between 50 and 70 km
and between 180 and 240 km; however, the situation was the opposite when the lag
distances were between 0 and 50 km and between 80 and 180 km. For the quasigeoid
models covering the target area, the LASSO solution was closer to the group mean than
the Tikhonov regularization solution (the RMS of the differences improves from 1.91 to
1.86 cm). In addition, the quasigeoid model differences between the LASSO and the
Tikhonov regularized solution ranged between −3.58 and 7.63 cm, with a mean value of
−0.08 cm. Using the approximate covariance matrix derived in this study, the formal noise
STDs of the LASSO-derived height anomalies were calculated by error propagation, but the
results were unrealistic. We also tried a method in the statistics field, but the same problem
emerged. In contrast, the STDs of the Tikhonov regularization solution are more realistic.

Referring to the results of the Colorado 1 cm geoid experiment [43], the LASSO and
Tikhonov regularization solutions provided good results in terms of model accuracy, even
if the study area consisted of rugged mountains with considerable data gaps. However, the
sparse SRBFs method has two limitations: first, when combining multiple gravity datasets,
an additional procedure is required in order to estimate their variance factors or relative
weights; second, the noise covariance matrix of the derived model cannot be calculated
realistically at the present stage. The determination of the weights of heterogeneous data
contributes to their optimal combination, while the covariance estimation of the L1-norm
regularized solution is crucial for the realization of globally uniform height systems. Solving
the above two problems is one of our future research goals. Considering the urgent need
for 1 cm geoid models, providing validation data with sub-centimeter accuracy is also
crucial for further research.

7. Conclusions

In this study, the SRBFs method based on sparse regularization was used to com-
pute the (quasi) geoid model in Colorado, USA. To reduce the complexity of the model
and because the system was singular and/or ill-posed, L1-norm regularization (LASSO)
was introduced. LASSO can not only regularize the system, but also produce a sparse
solution. According to the data-driven model selection criterion AIC, LASSO is able to
automatically select the model parameters, i.e., shrinking some of the parameters to zero,
thereby simplifying the model. Moreover, it has high computational efficiency. To the
best of our knowledge, it is the first study to apply the LASSO to SRBFs-based modeling
of the regional gravity field in real gravity observation data. The experimental results
demonstrate that the LASSO solution does not significantly degrade the performance of
the model compared to the Tikhonov regularization solution. Therefore, LASSO proves
to be competitive. This method automatically selects the SRBFs based on signal variation
and gravity data distribution, considerably reducing the number of SRBFs and satisfying
the precision required for modeling. The sparse SRBFs method is a promising alternative
approach to large-scale and high-resolution gravity field modeling tasks.
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Appendix A

Because a closed-form solution formula does not exist for the LASSO, it is not straight-
forward to construct the covariance matrix using the simple error or covariance propa-
gation law, as in the case for Tikhonov regularization. Instead, a Bayesian perspective is
followed [85,86]. We would like to stress that we should start by considering all parameters
in the sparse solution, including both the non-zero and zero parts.

The key to the problem is to consider β̂ as the maximum a posteriori (MAP) estimate.
The a posteriori probability density function (PDF) denoted by prob(β), which is related to
the MAP estimate defined in Equation (13), is expressed as follows

ln[prob(β)] ∝ G(β) =
1
2

F(β) =
1
2
(y− Bβ)TP(y− Bβ) +

1
2

µ‖β‖1. (A1)

The first part on the right side of Equation (A1) corresponds to the negative logarithm
of the likelihood function, while the second part corresponds to the negative logarithm of
the prior probability density. Obviously, the prior here is the Laplacian distribution (double
exponential distribution). The Taylor expansion of G(β) is performed at β̂:

G(β) ≈ G
(

β̂
)
+∇G

(
β̂
)(

β− β̂
)
+ 1

2

(
β− β̂

)T
∇∇G

(
β̂
)(

β− β̂
)

= G
(

β̂
)
+ 1

2

(
β− β̂

)T
∇∇G

(
β̂
)(

β− β̂
)

= G(β),

(A2)

where the zero-Jacobian condition ∇G
(

β̂
)
= 0 is employed, and ∇∇G

(
β̂
)

denotes the
Hessian matrix. For the optimization problem of Equation (13), it is necessary to satisfy the
condition of zero-Jacobian. Therefore, the following relation is obtained from Equation (A2):

prob(β) ∝ exp
[
−G(β)

]
∝ exp

[
−1

2

(
β− β̂

)T
∇∇G

(
β̂
)(

β− β̂
)]

, (A3)

where Qββ =
[
∇∇G

(
β̂
)]−1

is the covariance matrix of the Gaussian distribution repre-
sented by Equation (A3). The covariance matrix Qββ approximately represents the statistical

https://geodesy.noaa.gov/GEOID/research/co-cm-experiment/
https://www.isgeoid.polimi.it/Projects/colorado_experiment.html
https://www.isgeoid.polimi.it/Projects/colorado_experiment.html
https://github.com/Yu-HP/FISTA
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uncertainty of the solution β̂. The following provides the theoretical expression of the
Hessian matrix ∇∇G

(
β̂
)

:

∇∇G
(

β̂
)
= BTPB + 2µ


δ
(

β̂1
)

0 · · · 0
0 δ

(
β̂2
)
· · · 0

...
...

. . .
...

0 0 · · · δ
(

β̂n
)
, (A4)

and the following defines the Dirac impulse function:

δ
(

β̂i
)
=


0, for β̂i 6= 0
∞, for β̂i = 0∫ ∞
−∞ δ

(
β̂i
)
dβ̂i = 1

. (A5)

From Equation (A4), we know that in the sparse solution, the diagonal elements of
∇∇G

(
β̂
)

corresponding to the zero parameters are infinite. The definition and inver-

sion of ∇∇G
(

β̂
)

are challenging due to the presence of infinite values.

Instead of directly calculating the inverse matrix of ∇∇G
(

β̂
)

, it is preferable to

perform (approximate) posterior PDF analysis using the first principle. Let β̂ =

[
β̂A
β̂B

]
=[

β̂A
0

]
, where β̂A is the non-zero part of β̂. Similarly, let β =

[
βA
βB

]
; we have N = BTPB =[

NAA NAB
NBA NBB

]
. Thus, the Hessian matrix ∇∇G

(
β̂
)

can be expressed in the following block

form:

∇∇G
(

β̂
)
=

[
NAA NAB
NBA NBB + 2µδ(0)InB

]
. (A6)

Inserting Equation (A6) into Equation (A3), we then have

G(β) = − 1
2

[(
βA − β̂A

)
T
(

βB − β̂B

)T
][

NAA NAB
NBA NBB + 2µδ(0)InB

][
βA − β̂A
βB − β̂B

]
= − 1

2

[ (
βA − β̂A

)T
βB

T
][

NAA NAB
NBA NBB + 2µδ(0)InB

][
βA − β̂A

βB

]
= c0 + c1(βB) + c2(βB) + c3(βB) + c4(βB),

(A7)

wherein 

c0(βA) = − 1
2

(
βA − β̂A

)T
NAA

(
βA − β̂A

)
c1(βB) = − 1

2

(
βA − β̂A

)T
NABβB

c2(βB) = − 1
2 βB

TNBA

(
βA − β̂A

)
c3(βB) = − 1

2 βB
TNBBβB

c4(βB) = −µβB
TβBδ(0)

. (A8)

For any βB 6= 0, the above PDF can be expressed as:

prob(βB=βB)
prob(βB=0) = exp

[
G
(

βB = βB

)
− G(βB = 0)

]
= exp

[
c1

(
βB

)
+ c2

(
βB

)
+ c3

(
βB

)
+ c4

(
βB

)
− c1(0)− c2(0)− c3(0)− c4(0)

]
= exp

[
c1

(
βB

)
+ c2

(
βB

)
+ c3

(
βB

)
+ c4

(
βB

)]
= exp

[
c4

(
βB

)]
exp

[
c1

(
βB

)
+ c2

(
βB

)
+ c3

(
βB

)]
= exp[−δ(0)] exp

[
−µβ

T
BβB

]
exp

[
c1

(
βB

)
+ c2

(
βB

)
+ c3

(
βB
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.

(A9)
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Consider the following condition:{
exp[−δ(0)] = 0

exp
[
−µβ

T
BβB

]
exp

[
c1

(
βB

)
+ c2

(
βB

)
+ c3

(
βB

)]
< ∞

, (A10)

Therefore,
prob

(
βB = βB

)
prob(βB = 0)

= 0. (A11)

Equation (A11) shows that the probability of any event βB = βB 6= 0 occurring is negligible
compared to βB = 0. Thus, the following conclusion can be drawn: we can only consider
the case of βB = 0 and ignore the other cases, thus obtaining{

prob(βB = 0) = 1
prob(βB 6= 0) = 0

. (A12)

Equation (A12) suggests that βB can be regarded as a constant value (zero vector); i.e., there
is no uncertainty; therefore, the uncertainty of the parameter estimates only depends on
the uncertainty of βA = β̂A, as shown in the following equation:

prob(β) ∝ exp
[
G(β)

]
= exp[c0(βA) + c1(0) + c2(0) + c3(0) + c4(0)]
∝ exp[c0(βA)]

= exp
[
− 1

2

(
βA − β̂A

)T
NAA

(
βA − β̂A

)]
∝ exp(βA)

= N
(

β̂A, N−1
AA

)
.

(A13)

Therefore, the following Gaussian distribution can be obtained:

βA ∼ N
(

β̂A, N−1
AA

)
. (A14)

The above result can also be proved through abstract matrix analysis as follows.
According to the inversion of a block matrix, the Hessian matrix in Equation (A6) could be
inverted as:

Qββ =
[
∇∇G

(
β̂
)]−1

=

[
NAA NAB
NBA NBB + 2µδ(0)InB

]−1

=

[
N−1

AA + N−1
AANABNMNBAN−1

AA −N−1
AANABM

−MNBAN−1
AA M

] (A15)

with
M =

(
NBB + 2µδ(0)InB −NBAN−1

AANAB

)−1
= (2µδ(0)InB)

−1

= 1
2µδ(0)InB

= 0.
(A16)

By substituting Equation (A16) into Equation (A15), we obtain the following:

Qββ =

[
QβA βA

QβA βB

QβB βA
QβB βB

]
=

[
N−1

AA 0
0 0

]
. (A17)

The zero-covariance matrix of βB, as shown in Equation (A17), indicates that the
corresponding distribution is degenerate [87]. A degenerate distribution has a probability
of one at the degenerate point, namely, Equation (A12). Moreover, Equation (A17) indicates
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that the distribution of βA can be viewed as Gaussian, with the covariance matrix being
N−1

AA, which is identical to Equation (A14).
This completes the proof.
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